JPH03295028A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPH03295028A
JPH03295028A JP9710890A JP9710890A JPH03295028A JP H03295028 A JPH03295028 A JP H03295028A JP 9710890 A JP9710890 A JP 9710890A JP 9710890 A JP9710890 A JP 9710890A JP H03295028 A JPH03295028 A JP H03295028A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
magnetic powder
powder
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9710890A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
宏 鈴木
Masaki Hirosachi
正樹 廣幸
Tosaku Nishiyama
東作 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9710890A priority Critical patent/JPH03295028A/en
Publication of JPH03295028A publication Critical patent/JPH03295028A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the medium having recording density exceeding conventionally by an application type magnetic recording medium by adding an application surface AC magnetic field being below its anti-magnetic force to needle-like or granular magnetic powder, and aligning the magnetic powder in the vertical direction of the application surface. CONSTITUTION:On a non-magnetic supporting body, a magnetic layer in which needle-like or granular magnetic powder and a resin compound binder are main agents is applied and formed. Subsequently, immediately thereafter, an in-application surface AC magnetic field in which the maximum magnetic field strength is below coercive force (Hc) of the magnetic powder is added so as to become the vertical direction to each other in two parts in the long size direction. It is limited to the in-surface vertical direction which can become the vertical direction in which the orientation focusing direction of the magnetic powder becomes the direction vertical to the applied AC magnetic field direction of two parts. In such a way, since no repulsion force is generated between adjacent magnetic particles, a vertical orientation processing of an application type medium whose surface is very smooth can be executed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、映像機器、音響関連機器、情報関連機器等に
用いる塗布型の磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a coated magnetic recording medium used in video equipment, audio-related equipment, information-related equipment, and the like.

従来の技術 映像機器分野における高画質化や、音響機器分野でのデ
ジタル信号処理化、あるいはコンピュータ周辺機器の小
型化・高速処理化などに伴い、これらの外部メモリとし
て広く一般に使用されてきた塗布型磁電記録媒体は、高
密度記録領域における録再特性の向上が重要となってき
た。
Conventional technology With the advancement of higher image quality in the field of video equipment, digital signal processing in the field of audio equipment, and miniaturization and faster processing of computer peripheral equipment, coated type external memory has been widely used. For magnetoelectric recording media, it has become important to improve recording and reproducing characteristics in high-density recording areas.

現在主流を成している面内磁気記録方式においては、磁
気特性の優れたメタル磁性粉末を配録素子として採用す
る流れにあり、記録密度を高めるため下記のような手段
が検討されている。
In the currently mainstream longitudinal magnetic recording system, there is a trend to employ metal magnetic powder with excellent magnetic properties as a recording element, and the following measures are being considered to increase the recording density.

■ 磁性粉末を微粒子化し、磁性層中の粒子充填密度を
上げることにより磁気特性の向上を図る。
■ Improve magnetic properties by making magnetic powder into fine particles and increasing the packing density of the particles in the magnetic layer.

■ 磁性層の表面粗さを可能な限り平滑にし、記録・再
生時における磁性層−磁気ヘッド間の空隙による磁気的
損失を抑える。
■ Make the surface roughness of the magnetic layer as smooth as possible to suppress magnetic loss due to the gap between the magnetic layer and the magnetic head during recording and reproduction.

■ 長尺方向に記録するテープにおいて、磁性粉末の整
列方向を可能な限り記録方向である長尺方向に配向処理
し、磁気特性の残留磁化強度を高める。
(2) In a tape that records in the longitudinal direction, the magnetic powder is aligned as much as possible in the longitudinal direction, which is the recording direction, to increase the residual magnetization strength of the magnetic properties.

しかしながらこれらの取り組みに対し、■は超微粉状態
の磁性粉末を作成する上で限界があるとともに、超微粉
を均一に分散する分散技術(分散材料・分散処理方法)
上にも問題がある。
However, in contrast to these efforts, ■ has limitations in creating ultrafine magnetic powder, and dispersion technology (dispersion material/dispersion processing method) to uniformly disperse ultrafine powder
There is also a problem above.

■は鏡面加工用金属ロールの表面性の確保・維持、鏡面
加工用弾性ロールの高温下での機械強度の確保および鏡
面加工性を確保できるバインダ特性などにより、塗布磁
性層の表面を鏡面状に加工する技術に限界がある。
■The surface of the coated magnetic layer can be made mirror-like by ensuring and maintaining the surface properties of metal rolls for mirror-finishing, ensuring mechanical strength under high temperatures of elastic rolls for mirror-finishing, and binder properties that ensure mirror-finishing properties. There are limits to processing technology.

■は超微粒子間の相互作用に打ち勝つ配向処理技術上に
限界がある。
(2) There is a limit to the alignment processing technology that overcomes the interaction between ultrafine particles.

以上のような技術的問題から、塗布型磁気記録媒体では
、スパッタ法や蒸着法による磁性金属薄膜を磁性層に持
つ媒体と同しヘルの高域特性を確保するのは困難とされ
ている。
Due to the above-mentioned technical problems, it is difficult for coated magnetic recording media to secure the same high-frequency characteristics as those for media whose magnetic layer is a magnetic metal thin film formed by sputtering or vapor deposition.

これに対し、金属薄膜媒体では垂直方向に磁化容易軸を
持たせた垂直磁気記録媒体が高密度記録特性に優れてい
ることは既に知られている。塗布型磁気記録媒体におい
ても、針状・粒状磁性粉末を面に垂直方向に配向処理し
て垂直磁気記録媒体としての特性を持たせる研究・特許
出願も年々活発に行われてきている。
On the other hand, among metal thin film media, it is already known that perpendicular magnetic recording media having an axis of easy magnetization in the perpendicular direction have excellent high-density recording characteristics. In the case of coated magnetic recording media, research and patent applications have been actively conducted year by year to provide the properties of perpendicular magnetic recording media by orienting acicular or granular magnetic powder in a direction perpendicular to the surface.

発明が解決しようとする課題 磁性粒子が針状・粒状の塗布型磁気記録媒体において磁
性粒子の磁化容易軸を垂直配向させるには、塗布直後の
塗膜に直流磁界を媒体面垂直方向に印加する方法が一般
的である。
Problem to be Solved by the Invention In order to orient the axis of easy magnetization of the magnetic particles perpendicularly in a coated magnetic recording medium in which the magnetic particles are acicular or granular, a DC magnetic field is applied to the coating film immediately after coating in a direction perpendicular to the medium surface. The method is common.

しかしながらこの基本原理は、磁性粒子の抗磁力(Hc
)以上の磁界を与えることによって磁気モーメントを磁
化容易軸に固定し、さらに外部磁界に平行になるように
磁性粒子が動きだして配向するものである。このとき隣
接する磁性粒子間に−保 は、同一方向に磁気モーメントが向いているために磁気
的反発力が発生するl・熱性を有しており、その反発力
は高記録密度化を狙った粒子サイズが小さくなるほど粒
子間距離が減少し大きなものとなる。
However, this basic principle is based on the coercive force (Hc) of magnetic particles.
) By applying a magnetic field above, the magnetic moment is fixed to the axis of easy magnetization, and the magnetic particles begin to move and become oriented parallel to the external magnetic field. At this time, the magnetic moments between adjacent magnetic particles are oriented in the same direction, so a magnetic repulsion is generated, which is thermal. As the particle size becomes smaller, the interparticle distance decreases and becomes larger.

このような原理に基づいて垂直配向させると、磁性粒子
はお互いの反発力によって塗布面に対し面垂直方向に逃
げ合い、その結果、本方式特有の表面荒れを引き起こし
てしまう。
When vertically aligned based on such a principle, the magnetic particles escape from each other in the direction perpendicular to the coated surface due to mutual repulsion, resulting in surface roughness peculiar to this method.

前述の出願例の中にはこの表面荒れをできるだけ抑える
手法について記述したものもあるが、基本的に改善させ
る発明には至っていない。
Some of the above-mentioned applications describe methods for suppressing this surface roughness as much as possible, but no invention has been developed that fundamentally improves the surface roughness.

垂直磁気記録技術の特徴は記録信号の磁化過程にあるが
、録再ヘッドとの間の空隙が従来の面内記録媒体以上に
なってしまうと効果は小さい。
Perpendicular magnetic recording technology is characterized by the magnetization process of the recording signal, but its effectiveness is small if the gap between the recording and reproducing head becomes larger than that of a conventional longitudinal recording medium.

このため前述の発明によって得られた媒体では、超平滑
な面内磁気記録媒体を上回る録再特性を實現することが
困難であった。
For this reason, with the medium obtained by the above-described invention, it has been difficult to actually realize recording and reproducing characteristics superior to those of ultra-smooth longitudinal magnetic recording media.

本発明は、上記課題を解決し、塗布型磁気記録媒体で従
来以上の記録密度を有する媒体を提供することを目的と
する。
An object of the present invention is to solve the above-mentioned problems and provide a coated magnetic recording medium having a recording density higher than that of conventional media.

課題を解決するための手段 本発明では上記目的を達成するために、非磁性支持体上
に針状もしくは粒状の磁性粉末と樹脂系バインダを正則
とする磁性層を連続塗布形成し、直後に外部から最大磁
場強度が磁性粉末の抗磁力(Hc)以下の塗布面内交f
、磁界を長尺方向の2カ所で互いが直角方向になるよう
に加える配向処理によって磁性粉末を塗布面垂直方向乙
こ整列さセることを特徴とするものである。
Means for Solving the Problems In the present invention, in order to achieve the above object, a magnetic layer consisting of acicular or granular magnetic powder and a resin binder is continuously coated on a non-magnetic support, and immediately after that, an external layer is formed. The maximum magnetic field strength is less than or equal to the coercive force (Hc) of the magnetic powder within the coating surface f
This method is characterized in that the magnetic powder is aligned in a direction perpendicular to the coated surface by an alignment process in which a magnetic field is applied at two locations in the longitudinal direction so that they are perpendicular to each other.

作用 本発明の原理は、外部より与える最大磁場強度か磁性粉
末の抗磁力以下である交流磁界により、磁性粉末の磁気
モーメントが磁化容易軸を中心に振幅運動を起すことを
用いたものである。
The principle of the present invention is that the magnetic moment of the magnetic powder causes an oscillating movement around the axis of easy magnetization by an alternating magnetic field whose maximum magnetic field intensity applied from the outside is less than the coercive force of the magnetic powder.

磁気モーメントの振幅運動の結果、磁性粉末は磁気モー
メントの振幅運動の中点方向、すなわち印加磁界方向に
対し垂直な面内へと集まっていく。
As a result of the amplitude movement of the magnetic moment, the magnetic powder gathers in the direction of the midpoint of the amplitude movement of the magnetic moment, ie, in a plane perpendicular to the direction of the applied magnetic field.

このとき最大磁場強度が抗磁力を越えると、磁気′町〕
K71″;[b角度的′。近°゛磁化容易軸′。固定さ
れ、このような振幅運動に伴う磁性粉末の挙動は得られ
ない。
At this time, if the maximum magnetic field strength exceeds the coercive force, the magnetic field
K71''; [b angular'. Near 'axis of easy magnetization'. Fixed, and the behavior of the magnetic powder accompanying such amplitude motion cannot be obtained.

本発明では、この最大磁場強度が磁性粉末の抗磁力以下
である面内方向の交流磁界を長尺状の2カ所において互
いが直角方向になるように加えることにより、磁性粉末
の配向集束方向を2カ所の印加交流磁界方向に対し垂直
な方向と成り得る面内垂直方向に限定させるものである
In the present invention, by applying an in-plane alternating current magnetic field whose maximum magnetic field strength is less than or equal to the coercive force of the magnetic powder so that the directions are perpendicular to each other at two long locations, the orientation and focusing direction of the magnetic powder is controlled. The direction is limited to an in-plane perpendicular direction which can be a direction perpendicular to the direction of the applied alternating magnetic field at two locations.

この基本原理によれば、隣接する磁性粒子間に反発力を
生じることがないため、表面の非常に平滑な塗布型媒体
の垂直配向処理が可能となる。
According to this basic principle, since no repulsive force is generated between adjacent magnetic particles, it is possible to vertically align a coated medium with a very smooth surface.

その具体的手法としては、2組の交流電磁石に電流I [”’ IIIIIX  ’ S l n (ωt)但
しl mmKは電磁石の発する磁場が磁性粉末のHc以
下となるような電流値となるような交流電流を与え、か
つそれぞれの!磁石が発生する磁界が互いに直角方向に
なるように配置するだけで、設備そのものに可動部分を
持たないため連続的な運転においても非常に高い信頼性
を持つものであさらにこの直交する2方向からの交流磁
界を与える前に、磁性粉末の抗磁力の3倍以上の磁場強
度を有する面内長尺方向の直流磁界配向処理によって長
尺方向に初期配向方向を揃えることにより、さらに後方
2段の効果を高めで効率的で優れた垂直配向性をもつ塗
布型垂直媒体を提供しようというものである。
The specific method is to apply a current to two sets of AC electromagnets, I [''' IIIIX ' S l n (ωt), where l mmK is a current value such that the magnetic field generated by the electromagnets is less than or equal to the Hc of the magnetic powder. It is highly reliable even in continuous operation because the equipment itself does not have any moving parts, just by applying alternating current and arranging the magnetic fields generated by each magnet in directions perpendicular to each other. Furthermore, before applying an alternating current magnetic field from these two orthogonal directions, the initial orientation direction is set in the longitudinal direction by an in-plane longitudinal direct current magnetic field orientation treatment having a magnetic field strength three times or more than the coercive force of the magnetic powder. By arranging them, the effect of the rear two stages can be further enhanced to provide a coated vertical medium that is efficient and has excellent vertical alignment.

この方法では、磁性粉末にHc以上の直流磁界が一度加
わることにより磁化容易軸方向に残留磁化が残っている
。しかし、その後交流磁界が加えられることによる消磁
効果により、面垂直方向に配向したときには隣接する磁
性粉末間の反発による表面荒れは起こらない。むしろ磁
性粉末が長尺方向に初期配向されていることにより、直
交する2方向からの交流磁界を直接与えたときよりもさ
らに効果的に垂直方向に配向させることができる。
In this method, residual magnetization remains in the direction of the easy axis of magnetization by once applying a DC magnetic field of Hc or higher to the magnetic powder. However, due to the demagnetizing effect caused by the subsequent application of an alternating magnetic field, surface roughness due to repulsion between adjacent magnetic powders does not occur when the particles are oriented in a direction perpendicular to the surface. Rather, because the magnetic powder is initially oriented in the longitudinal direction, it can be more effectively oriented in the perpendicular direction than when alternating current magnetic fields from two orthogonal directions are directly applied.

実施例 以下、本発明の実施例と従来例の比較について図面を参
照しながら説明する。
EXAMPLE Hereinafter, a comparison between an example of the present invention and a conventional example will be explained with reference to the drawings.

実施例1 本発明に基づく配向装置についてその具体的な構成を示
す。
Example 1 A specific configuration of an alignment apparatus based on the present invention will be described.

本実施例で使用した配向処理装置は、第1図に示すよう
に、2組のC字型コアを有する電磁石lによって構成さ
れる。電磁石は強磁性体でかつ透磁率の低い物質で作ら
れたC字型のコア1−1と電導率の高い導線を巻いて作
られたコイル1−2から構成される。電磁石は連続媒体
2の長尺方向に隣接して配置され、長尺方向手前の電磁
石は0字の両端の磁極が長尺方向に並ぶように設置し、
長尺方向後ろの電磁石はその磁極が幅方向に向くように
設置している。そしてそれぞれのt[石には、交流電流
発生器3によって、 1=laxx  ・s in (ωt)なる電流を加え
ている。ここでI、、、Xは、■、、、lXによって発
生するNi6i石の磁極間の磁界の強さH,1,が磁性
粉の抗磁力Hcよりも小さくなるような電流値に設定し
た。また一般の単相200■の交流を用いたことにより
、ωは50セとなっている。
As shown in FIG. 1, the alignment processing apparatus used in this example is constituted by an electromagnet 1 having two sets of C-shaped cores. The electromagnet is composed of a C-shaped core 1-1 made of a ferromagnetic material with low magnetic permeability and a coil 1-2 made by winding a conductive wire with high conductivity. The electromagnets are arranged adjacent to each other in the longitudinal direction of the continuous medium 2, and the electromagnet at the front in the longitudinal direction is installed so that the magnetic poles at both ends of the letter 0 are lined up in the longitudinal direction.
The electromagnet at the rear in the longitudinal direction is installed so that its magnetic pole faces in the width direction. Then, an alternating current generator 3 applies a current of 1=laxx·s in (ωt) to each t stone. Here, I, . . . Also, by using a general single-phase 200cm AC, ω is 50cm.

このような配向装置を用いることにより本発明は、磁性
粉を互いの磁気的な反発を起こさせることなく塗布面に
対し垂直方向に容易に配向させることができる。
By using such an orientation device, the present invention can easily orient the magnetic powder in the direction perpendicular to the coating surface without causing mutual magnetic repulsion.

実施例2 実施例2の構成を第2関に示す。Example 2 The configuration of the second embodiment is shown in the second section.

実施例2では実施例1の原理をさらに効果的に作用させ
ることを狙ったもので、実施例1の配向処理装置の長尺
方向手前側Sこ直流磁界による面内長尺配向装置を設置
したものである。その面内長尺配向装置は、同磁極同士
を向い合わせにして長尺状の連続媒体を挟むようにして
配置した1組の希土類永久磁石(サマリウムコバルト)
5と、同極同士によって反発する磁界を吸い込むように
磁極設定した導線でソレノイド状に巻かれた電磁石5と
から構成されている。初段配向を与える希土類永久磁石
(サマリウムコバルト)では抗磁力の3倍の磁場設定に
し、後部のiit磁石では1〜2倍の磁場強度としてい
る。
Embodiment 2 aims to make the principle of Embodiment 1 work even more effectively, and an in-plane long alignment device using a direct current magnetic field was installed on the front side in the longitudinal direction of the alignment processing device of Embodiment 1. It is something. The in-plane elongated orientation device consists of a set of rare earth permanent magnets (samarium cobalt) arranged with the same magnetic poles facing each other and sandwiching a elongated continuous medium.
5, and an electromagnet 5 wound in a solenoid shape with a conducting wire whose magnetic poles are set so as to absorb magnetic fields repelled by the same polarity. For the rare earth permanent magnet (samarium cobalt) that provides initial orientation, the magnetic field is set to three times the coercive force, and for the rear IIT magnet, the magnetic field strength is set to one to two times the coercive force.

比較例 本発明における実施例1,2に対し、第1表に示す従来
法による配向処理を比較例として検討した。
Comparative Example In contrast to Examples 1 and 2 according to the present invention, orientation treatment according to the conventional method shown in Table 1 was examined as a comparative example.

第1表 る。Table 1 Ru.

比較例1は、従来技術の面内長手記録方式に合わせて、
磁性粒子を連続媒体の長尺方向に配向させるための装置
である。その構成を第3図に示す。
In Comparative Example 1, in accordance with the conventional in-plane longitudinal recording method,
This is a device for orienting magnetic particles in the longitudinal direction of a continuous medium. Its configuration is shown in FIG.

これは実施例2において用いた面内長尺配向装置のみに
よって構成される、同磁極同士を向い合わせにして長尺
状の連続媒体を挟むようにして配置した1&IIの希土
類永久磁石(サマリウムコバルト)4と、同極同士によ
って反発する磁界を吸い込むように磁極設定した導線で
ソレノイド状に巻かれた!磁石5とから構成される。
This is composed of only the in-plane elongated orientation device used in Example 2, and 1&II rare earth permanent magnets (samarium cobalt) 4 arranged with the same magnetic poles facing each other and sandwiching a elongated continuous medium. , it is wound like a solenoid with a conductive wire whose magnetic poles are set so that it absorbs the magnetic field repelled by the same polarity! It is composed of a magnet 5.

比較例2は直流磁場による垂直配向方式の一例である。Comparative Example 2 is an example of a vertical alignment method using a DC magnetic field.

その構成は第4図に示すように直流磁界を発生させるた
めに長尺状連続媒体を挟んで他極同士を対抗させて用い
た1組の希土類永久磁石(サマリウムコバルト)6によ
るものである。
Its structure, as shown in FIG. 4, consists of a set of rare earth permanent magnets (samarium cobalt) 6, with opposite poles facing each other with a long continuous medium in between, in order to generate a DC magnetic field.

ただしこの配向方法では、長尺媒体上の磁性粉が垂直方
向に配向するために必要な磁場長を得にくい欠点がある
However, this orientation method has the disadvantage that it is difficult to obtain the magnetic field length necessary to orient the magnetic powder on the elongated medium in the vertical direction.

そこで比較例3では、第5図にその構成を示すように比
較例2の欠点を補うため4組の希土類永久磁石を連続媒
体の長尺方向に並べている。
Therefore, in Comparative Example 3, as shown in FIG. 5, four sets of rare earth permanent magnets are arranged in the longitudinal direction of the continuous medium in order to compensate for the drawbacks of Comparative Example 2.

これら比較例2.3では希土類永久磁石によって直流磁
界を得ているが、 ■ 永久磁石に着磁するときの磁場の均質性■ 長尺媒
体に面していない磁極から戻ってくる磁界成分 の影響が配向性劣化に大きく影響することが問題点とし
て上げられる。
In Comparative Examples 2 and 3, a DC magnetic field is obtained using a rare earth permanent magnet, but ■ The homogeneity of the magnetic field when magnetizing the permanent magnet ■ The influence of the magnetic field component returning from the magnetic pole that does not face the long medium The problem is that this greatly affects the deterioration of orientation.

そこで比較例4では、永久磁石単独で構成した比較例2
,3の欠点を改善するために第6図に示すように、2組
のt磁石7を強磁性体によるヨーク8によって磁気結合
させることにより対向しない磁極からの磁場の影響を最
小限にし、磁極に挟まれた空間ではtfm石の特徴とす
る均質な直流磁界が得られるようにしたものである。こ
こで用いる電磁石は、強磁性体でかつ透磁率の低い物質
で作られた棒状のコア7−1と電導率の高い導線を巻い
て作られたコイル7−2から構成される。
Therefore, in Comparative Example 4, Comparative Example 2 was constructed using only a permanent magnet.
, 3, as shown in FIG. 6, two sets of t-magnets 7 are magnetically coupled by a yoke 8 made of ferromagnetic material to minimize the influence of magnetic fields from magnetic poles that do not face each other, and the magnetic poles are In the space between the two, a homogeneous DC magnetic field, which is a characteristic of TFM stones, can be obtained. The electromagnet used here is composed of a rod-shaped core 7-1 made of a ferromagnetic material with low magnetic permeability and a coil 7-2 made by winding a conductive wire with high conductivity.

また比較例5はその構成を第7図に示すように、比較例
2の欠点を比較例3で補ったのと同様に、比較例4で用
いた電磁石を4組並べたものである。
Further, as shown in FIG. 7, Comparative Example 5 has a structure in which four sets of electromagnets used in Comparative Example 4 are arranged in a similar way to Comparative Example 3, which compensates for the drawbacks of Comparative Example 2.

いままで紹介した比較例2〜5については、その配向原
理より考えて、それぞれの構成で得られる磁場強度を磁
性粉の抗磁力Hcの3倍に設定しこれら実施例、比較例
については1、非磁性支持体として厚み10μmのポリ
エチレンテレフタレートフィムル(以下、PETフィル
ムと略ス)ヲ用い、その表面に厚み3.0μm磁性層を
連続塗布形成し、裏面に厚み05μmのハックコート層
を形成したバイバンド811m V T R用テープと
して試料を作った。
Regarding Comparative Examples 2 to 5 introduced so far, considering the orientation principle, the magnetic field strength obtained with each configuration was set to three times the coercive force Hc of the magnetic powder. A polyethylene terephthalate film (hereinafter referred to as PET film) with a thickness of 10 μm was used as a nonmagnetic support, and a magnetic layer with a thickness of 3.0 μm was continuously coated on the surface thereof, and a hack coat layer with a thickness of 05 μm was formed on the back surface. A sample was made as a bi-band 811m VTR tape.

以下本実施例、比較例について、試料の作成方法を詳細
に説明する。
Hereinafter, the method for preparing samples for this example and comparative example will be explained in detail.

(1)磁性層を形成する材料 磁性層を形成する材料およびその比率は、メタル磁性体
  :     100重量部樹脂系バインダ :  
   20重量部アルミナ           6重
量部カーボン           1重量部脂肪族系
潤滑剤 :      4重量部硬化剤       
     4重量部である。
(1) Materials forming the magnetic layer The materials forming the magnetic layer and their ratios are: Metal magnetic material: 100 parts by weight Resin binder:
20 parts by weight Alumina 6 parts by weight Carbon 1 part by weight Aliphatic lubricant: 4 parts by weight Hardening agent
4 parts by weight.

メタル磁性体は、バイバンド8 m V T R用(!
:して−船釣に広く知られている容易に入手可能なもの
を選定した。第2表に特性を示す。
Metal magnetic material is for bi-band 8m VTR (!
: We selected the ones that are widely known and easily available for boat fishing. Table 2 shows the characteristics.

第2表 樹脂系バインダには、第3表に示す樹脂を混合しVTR
用テープのバインダとして標準的な構成とした。
The resin binder in Table 2 is mixed with the resin shown in Table 3.
It has a standard configuration as a binder for tapes.

(以 下 余 白) 配合比率:磁性粉重量をlOOとした重量比各各の量は
、バインダ樹脂系での塗膜の引っ張り試験および磁性塗
膜のスクラッチ強度試験の結果から最も優れた比率とし
ている。
(Left below) Blend ratio: Weight ratio based on the weight of magnetic powder in 100 The amount of each is determined as the best ratio based on the results of a tensile test of a coating film with a binder resin system and a scratch strength test of a magnetic coating film. There is.

樹脂dは、アルミナを前処理するために選択した。Resin d was chosen to pretreat alumina.

アルミナは、粒径が0.10−0.30 amテBET
比表面積が9〜15m”/Hの一般的なものを用い、樹
脂d:1重量部によってあらかじめミル分散機を用いて
適度な粘度にて分散処理した。
Alumina has a particle size of 0.10-0.30 am
A common material having a specific surface area of 9 to 15 m''/H was used, and 1 part by weight of resin d was dispersed in advance at an appropriate viscosity using a mill disperser.

残りのバインダ19重量部については、磁性粉の混線・
前分散のときに添加した。カーボンについては、−次粒
子の粒径が200〜300人のものを用いた。
For the remaining 19 parts by weight of binder, mix the magnetic powder
It was added during pre-dispersion. Regarding carbon, carbon having a secondary particle size of 200 to 300 particles was used.

脂肪族系潤滑剤には、磁気記録媒体でよく使われている
3種類を選び、以下の配合比にて混入した。
Three types of aliphatic lubricants commonly used in magnetic recording media were selected and mixed in the following blending ratio.

C11:  2重量部 c、    :   1重量部 C−C:1重量部 II       通 硬化剤には、一般によく用いられるイソシアネート化合
物を使った。
C11: 2 parts by weight C: 1 part by weight C-C: 1 part by weight II A commonly used isocyanate compound was used as the curing agent.

(2)磁性塗料の作成 磁性塗料の作成はつぎのようにして行った。(2) Creation of magnetic paint The magnetic paint was prepared as follows.

メタル磁性粉とカーボンおよびメチルエチルケン:トル
エンニアノン=3:3:1のfR合m 剤をミキサに加
えながら一時間攬はんして粉体を溶剤に十分湿潤させた
のち、樹脂a・樹脂b・樹脂Cと不足分の前記混合溶剤
をミキサに加えながら5時間攪はんして粉体増粒を行っ
た。その後塗料粘度を調節しなから混練処理を4時間行
った。
After adding the metal magnetic powder, carbon, and fR mixture of methyl ethylkene and toluene anone in a ratio of 3:3:1 to a mixer and stirring for one hour to sufficiently wet the powder with the solvent, resin a. While adding Resin B, Resin C and the remaining amount of the mixed solvent to a mixer, the mixture was stirred for 5 hours to increase the powder size. Thereafter, the mixture was kneaded for 4 hours without adjusting the viscosity of the coating material.

この磁性混練物を希釈した後、通常塗料分散によく使わ
れるサンドミルによって分散を進めた。サンドミル−次
分散の終了とともに樹脂dによって別分散を施したアル
ミナペーストを添加・攬はんし、再びサンドミルにて二
次分散処理した。
After diluting this magnetic kneaded material, it was dispersed using a sand mill, which is commonly used for dispersing paints. Upon completion of the sand mill secondary dispersion, alumina paste which had been separately dispersed using resin d was added and extracted, and the secondary dispersion treatment was performed again using the sand mill.

このようにして得たメタル磁性塗料原液に、塗工直前に
潤滑剤溶液と硬化剤を添加・攪はんして磁性塗料の調合
を終了するものとした。
Immediately before coating, a lubricant solution and a curing agent were added and stirred to the metal magnetic paint stock solution obtained in this manner to complete the preparation of the magnetic paint.

(3)磁性層の形成方法 磁性層の形成方法は、調合・分散の終了した磁性塗料を
グラビアコータにてPETフィルム上に連続的に塗工し
、塗工直後に本発明における実施例1.2および従来の
方式による比較例1〜5の配向処理を施した。配向処理
後には磁性粉体の配向戻りを抑えるための適度な温風送
風をノズルによって行い、急激な塗膜乾燥による表面荒
れを起こさぬ程度に配向の固定処理を施した。その後本
乾燥工程を経た後にカレンダ処理を施して鏡面仕上げを
行い、これを硬化炉中にて硬化反応させた。
(3) Formation method of magnetic layer The method of forming the magnetic layer is to continuously coat the prepared and dispersed magnetic paint onto the PET film using a gravure coater, and immediately after coating, as described in Example 1 of the present invention. 2 and Comparative Examples 1 to 5 were subjected to orientation treatment using a conventional method. After the orientation treatment, a suitable amount of warm air was blown through a nozzle to prevent the magnetic powder from returning to its orientation, and the orientation was fixed to the extent that surface roughness due to rapid drying of the coating film was not caused. Thereafter, after passing through a main drying step, a calender treatment was performed to give a mirror finish, and this was subjected to a curing reaction in a curing furnace.

(4)バックコート層の形成方法。(4) Method of forming a back coat layer.

バック・コート層は、磁性層を形成・硬化後にカーボン
・ブラ、りを主成分とする専用の塗料をグラビアコータ
にて連続塗布形成した。
After forming and curing the magnetic layer, the back coat layer was formed by continuously applying a special paint containing carbon paint as a main component using a gravure coater.

このようにして作成したそれぞれの試料を8閣幅にスリ
ットした後、その特性について比較検討した。説明の便
宜上第4表のように番号をつけた。
After slitting each of the samples thus prepared into eight widths, their characteristics were compared and examined. For convenience of explanation, numbers are given as shown in Table 4.

第4表 以上1−1.1−2.2−1〜2−5の各試料について
、 ■ テープ角形比(Br/8m)の面内長手成分幅方向
成分および面垂直成分 ■ 磁性層の表面粗さ ■ 録再出力の周波数特性 について評価を行った。それぞれ評価に当っては、■ 
振動型磁化測定装置 ■ 光干渉式非接触三次元表面粗さ計 ■ 市販バイバンド8■VTRの改造デンキを用いた。
For each sample in Tables 4 and above 1-1.1-2.2-1 to 2-5, ■ In-plane longitudinal component, width direction component, and surface perpendicular component of tape squareness ratio (Br/8m) ■ Surface of magnetic layer Roughness■ We evaluated the frequency characteristics of the recording/playback output. When evaluating each, ■
Vibrating magnetization measuring device ■ Optical interference type non-contact three-dimensional surface roughness meter ■ A commercially available Biband 8 ■ A modified electric VTR was used.

以下、評価結果について順を追って説明する。The evaluation results will be explained step by step below.

第8図は、]−]1.1−2.2−1〜2−の各試料に
ついてテープ長尺方向・幅方向と面垂直方向の角形比に
ついて示したもので、掃引磁場10kOeにて振動型磁
化測定装置で測定したものである。面垂直方向について
は、膜厚効果からくる反磁界の影響を4πMsにて補正
計冨した値を採用している。第8図から明らかなように
、垂直方向に配向処理を施した試料1−1.1−22−
2〜2−5の6サンプルの中で本発明による試料1−2
が面垂直方向の磁化成分を示す角形比が最も高く、併せ
て長手 輻方向の角形比が最も小さいものとなっている
。すなわち磁性粉末の配向状態としては面内成分がほと
んどなく、効率よく面垂直方向に向いている。そして試
料1−1が次いで垂直磁化成分が高い。試料1−1のテ
ープ長尺方向・幅方向の角形比はほぼ同し値で、面内成
分としては等方的であることが解る。従来例の試料2−
4.2−5では、面垂直角形比と長手方向の角形比が高
く幅方向の成分が小さいことから、直流磁場によって垂
直方向に配向しながらも向ききらずに磁場に引きずられ
、その結果として長手成分が増えていることを示してい
る。試料2−22−3では、配向の3成分の中では垂直
方向が高めになっているが他の2成分も大きく、磁性粉
末の配向方向としてはランダムな状態から少し垂直成分
が強まったに過ぎない。
Figure 8 shows the squareness ratio in the tape length direction/width direction and the perpendicular direction for each sample of ]-]1.1-2.2-1 to 2-. This was measured using a type magnetization measuring device. For the direction perpendicular to the plane, a value is used which is corrected by 4πMs for the influence of the demagnetizing field resulting from the film thickness effect. As is clear from FIG. 8, sample 1-1.1-22- was subjected to vertical alignment treatment.
Sample 1-2 according to the present invention among the six samples 2 to 2-5
The squareness ratio indicating the magnetization component in the direction perpendicular to the plane is the highest, and the squareness ratio in the longitudinal direction is also the smallest. That is, the orientation state of the magnetic powder has almost no in-plane component and is efficiently oriented in the direction perpendicular to the plane. Sample 1-1 has the second highest perpendicular magnetization component. It can be seen that the squareness ratios of Sample 1-1 in the tape longitudinal direction and width direction are approximately the same value, and that the in-plane component is isotropic. Conventional sample 2-
In 4.2-5, since the surface perpendicular squareness ratio and the longitudinal squareness ratio are high and the width direction component is small, even though it is oriented perpendicularly by the DC magnetic field, it is dragged by the magnetic field without being completely oriented, and as a result, the longitudinal This shows that the ingredients are increasing. In sample 2-22-3, among the three orientation components, the vertical direction is high, but the other two components are also large, and the vertical component is only slightly stronger than the random orientation direction of the magnetic powder. do not have.

第9図(al −(g)では、l−1,1−2,2−1
−2−5の各試料の三次元表面粗度の測定結果を示した
。面に垂直な直流磁場によって配向処理した2−2〜2
−5の各試料は、面内長尺方向に先に配向処理した従来
テープ例である2−1と比較し大幅に表面性が悪い。こ
れはHcの3倍の直流磁場によって磁化を持った磁性粉
末が互いに磁気的凝集を引き起こしたためで、先に紹介
した面垂直方向の磁化成分を大きな試#4はとその程度
はひどくなっていることが解る。これに対し本発明によ
る試料1−1.1−2では、面垂直方向の磁化成分が最
も大きいにもかかわらず従来テープ2−1と同レベルの
表面性を実現している。特に試料1−1.1−2の間に
大きな差がないことは、作用で述べた交流磁界による消
磁効果が試料1−2に現れていることが示されている。
In Figure 9 (al-(g), l-1, 1-2, 2-1
The measurement results of the three-dimensional surface roughness of each sample of -2-5 are shown. 2-2-2 aligned by a DC magnetic field perpendicular to the plane
Each of the samples No.-5 had significantly poorer surface properties than No. 2-1, which is a conventional tape example which was first oriented in the in-plane longitudinal direction. This is because magnetic powders with magnetization caused magnetic aggregation with each other due to a DC magnetic field three times stronger than Hc, and the extent of this was even worse in sample #4, which had a large magnetization component in the direction perpendicular to the surface. I understand. On the other hand, sample 1-1.1-2 according to the present invention achieves the same level of surface properties as conventional tape 2-1, although the magnetization component in the direction perpendicular to the surface is the largest. In particular, the fact that there is no large difference between samples 1-1 and 1-2 indicates that the demagnetizing effect due to the alternating magnetic field described in the section of the effect appears in sample 1-2.

この結果から明らかなように、本実施例による試料1−
1.1−2は、比較例中垂直配向処理している試料2−
2〜2−5では困難であった表面性を面垂直方向の角形
比と両立させながら共に高いレベルを実現している。
As is clear from this result, sample 1-
1.1-2 is sample 2- which was subjected to vertical alignment treatment in the comparative example.
The surface properties, which were difficult to achieve with 2 to 2-5, are compatible with the squareness ratio in the direction perpendicular to the surface, while achieving high levels of both.

実用レベルの表面性を持つ試料1−1.1−2および従
来テープ例2−1について、市販のバイバンド8 +w
 V T Rデツキを改造して記録・再生時の周波数特
性を測定した。その結果を示した図が第10図である。
Regarding Sample 1-1.1-2 and Conventional Tape Example 2-1, which have surface properties at a practical level, commercially available Biband 8 +w
A VTR deck was modified and the frequency characteristics during recording and playback were measured. FIG. 10 shows the results.

特に高周波領域において従来テープよりも高い出力を示
し、本発明の目的とする垂直磁化膜の特徴を塗布型磁気
テープで実現できることが明らかに解る。
In particular, it shows a higher output than conventional tapes in the high frequency range, and it is clearly seen that the characteristics of the perpendicular magnetization film, which is the object of the present invention, can be realized with coated magnetic tapes.

以上実施例においては、強磁性体のコアの回りに銅の平
線をコイル状に巻いてNfet石として使用しているが
、これは本発明の構成を規定するものではない。長時間
通電時の電磁石の発熱を抑えるために冷却パイプを組み
入れたり中空の低抵抗導線をコイルに使用してもかまわ
ない。さらには磁極間の距離を大きくしたときに本発明
の規定する磁界が得られるように、超伝導現象を応用し
た超伝導マグネットを用いてもよい。
In the embodiments described above, a copper flat wire is coiled around a ferromagnetic core and used as an Nfet stone, but this does not define the structure of the present invention. In order to suppress the heat generated by the electromagnet during long-term energization, a cooling pipe may be incorporated or a hollow low-resistance conductor wire may be used for the coil. Furthermore, a superconducting magnet applying the superconducting phenomenon may be used so that the magnetic field specified by the present invention can be obtained when the distance between the magnetic poles is increased.

また各実施例においては1個の電磁石を持って一方向の
交流磁界を与える配向装置しているが、これは本発明を
限定するものではない。設備の大きさ・ライン速度と効
果を得るのに必要な磁場長の関係から、現実的なサイズ
の複数の1i磁石によってその働きを持たせて良い。
Further, in each of the embodiments, the orientation device has one electromagnet and applies an alternating current magnetic field in one direction, but this does not limit the present invention. Due to the relationship between the size of the equipment, the line speed, and the magnetic field length required to obtain the effect, a plurality of 1i magnets of a realistic size may be used to perform this function.

また、本発明による塗布型磁気記録媒体の作成例として
バイバンド8 m V T Rテープについて記述した
が、他のVTRテープ5磁気テープ、またはフレキシブ
ルディスクなどの磁気ディスクにも応用可能である。
Further, although a bi-band 8 m VTR tape has been described as an example of producing a coated magnetic recording medium according to the present invention, the present invention can also be applied to other VTR tapes, 5 magnetic tapes, or magnetic disks such as flexible disks.

発明の効果 以上の実施例から明らかなように本発明によれば、磁性
層の表面性を損なわず超平滑な表面を実現させながら塗
布面型直配同性に優れた塗布型垂直磁気記録媒体を連続
的に、しかも安定して製造することができる。そして本
発明によって得た媒体の!磁変換特性は、高密度記録領
域においても優れた録再特性を示すものである。
Effects of the Invention As is clear from the above embodiments, the present invention provides a coated perpendicular magnetic recording medium that achieves an ultra-smooth surface without impairing the surface properties of the magnetic layer and has excellent coated surface direct alignment properties. It can be produced continuously and stably. And of the medium obtained by the present invention! The magnetic conversion characteristics exhibit excellent recording and reproducing characteristics even in high-density recording areas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)は本発明を実施するに当たって
使用される磁場配向装置の一例を示す概略平面図および
正面図、第2図は本発明の他の実施例における磁場配向
装置の概略正面図、第3図は比較例として従来の長尺方
向に配向した磁気テープを製造する際の配向装置の概略
構成図、第4図〜第7図はそれぞれ直流磁場を連続媒体
面に垂直に与えた比較例での配向方法を示した概略図、
第8図は実際に試作した実施例、比較例の各試料につい
て、テープ長尺方向1幅方向と面垂直方向の角形比につ
いて振動型磁化測定装置で測定した結果をまとめた特性
図、第9図(a)〜(g)は非接触の三次元表面粗さ計
にて表面性を測定した結果を示した図、第10図は実施
例、比較例の各試料の中で実用的な表面性が得られた本
実施例と比較例中の従来テープについて、市販のバイバ
ント’ 8 an V T Rデツキを用いて周波数特
性を比較した結果を示員た特性図である。 1・・・・0字コアによる電磁石、1−1・・・・・・
0字コア、1−2・・・・・・導線によるコイル、2・
・・・・長尺状連続媒体、3・・・・・・交流;流発生
器。
1(a) and 1(b) are schematic plan views and front views showing an example of a magnetic field orientation device used in carrying out the present invention, and FIG. 2 is a schematic plan view and front view showing an example of a magnetic field orientation device used in another embodiment of the present invention. A schematic front view, FIG. 3 is a schematic configuration diagram of an orientation apparatus for manufacturing a conventional magnetic tape oriented in the longitudinal direction as a comparative example, and FIGS. A schematic diagram showing the orientation method in the comparative example given in
FIG. 8 is a characteristic diagram summarizing the results of measuring the squareness ratio in the tape longitudinal direction, width direction, and surface perpendicular direction using a vibrating magnetization measuring device for each of the samples of Examples and Comparative Examples that were actually produced as prototypes. Figures (a) to (g) show the results of surface roughness measurements using a non-contact three-dimensional surface roughness meter. FIG. 3 is a characteristic diagram showing the results of comparing the frequency characteristics of the conventional tape in the present example and the comparative example, in which the characteristics were obtained, using a commercially available Vivant' 8 an VTR deck. 1...Electromagnet with 0-shaped core, 1-1...
0-shaped core, 1-2... Coil by conductor, 2.
... Long continuous medium, 3 ... Alternating current; flow generator.

Claims (2)

【特許請求の範囲】[Claims] (1)非磁性支持体上に針状もしくは粒状の磁性粉末と
樹脂系バインダを主剤とする磁性層を塗布形成し、直後
に外部から最大磁場強度が磁性粉末の抗磁力(Hc)以
下の塗布面内交流磁界を長尺方向の2ヵ所で互いが直角
方向になるように加えることにより磁性粉末を塗布面垂
直方向に整列させることを特徴とする磁気記録媒体の製
造方法。
(1) A magnetic layer mainly composed of acicular or granular magnetic powder and a resin binder is coated on a non-magnetic support, and immediately thereafter applied from the outside so that the maximum magnetic field strength is less than the coercive force (Hc) of the magnetic powder. A method for manufacturing a magnetic recording medium, which comprises aligning magnetic powder in a direction perpendicular to a coated surface by applying an in-plane alternating current magnetic field at two locations in a longitudinal direction so as to be perpendicular to each other.
(2)非磁性支持体上に針状もしくは粒状の磁性粉末と
樹脂系バインダを主剤とする磁性層を塗布形成し、直後
に長尺方向の3ヵ所において外部から磁界を与えて配向
処理を施し、そのうち初段は磁性粉末の抗磁力の3倍以
上の強度を有する面内長尺方向の直流磁界配向処理を、
その後は最大磁場強度が磁性粉末の抗磁力(Hc)以下
の塗布面内交流磁界を2ヵ所において互いが直角方向に
なるように加える配向処理により磁性粉末を塗布面垂直
方向に整列させることを特徴とする磁気記録媒体の製造
方法。
(2) A magnetic layer containing acicular or granular magnetic powder and a resin binder as main ingredients is coated and formed on a non-magnetic support, and immediately thereafter an orientation treatment is performed by applying an external magnetic field at three locations in the longitudinal direction. The first stage uses a direct current magnetic field orientation treatment in the in-plane longitudinal direction, which has a strength more than three times the coercive force of the magnetic powder.
After that, the magnetic powder is aligned in the direction perpendicular to the coated surface through an alignment process in which an alternating magnetic field within the coated surface with a maximum magnetic field strength equal to or less than the coercive force (Hc) of the magnetic powder is applied at two locations so that they are perpendicular to each other. A method for manufacturing a magnetic recording medium.
JP9710890A 1990-04-12 1990-04-12 Manufacture of magnetic recording medium Pending JPH03295028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9710890A JPH03295028A (en) 1990-04-12 1990-04-12 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9710890A JPH03295028A (en) 1990-04-12 1990-04-12 Manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH03295028A true JPH03295028A (en) 1991-12-26

Family

ID=14183400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9710890A Pending JPH03295028A (en) 1990-04-12 1990-04-12 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH03295028A (en)

Similar Documents

Publication Publication Date Title
JP2006092672A (en) Magnetic tape
JP6632465B2 (en) Magnetic recording medium and recording apparatus for microwave assisted recording
JPH0570208B2 (en)
JPS581836A (en) Magnetic orientation system
JPS6343811B2 (en)
JPH03295028A (en) Manufacture of magnetic recording medium
JPH0156452B2 (en)
JPH0221050B2 (en)
Kwon et al. Rheomagnetic properties of mixed magnetic particle suspensions
JPH03295029A (en) Manufacture of magnetic recording medium
JP2632943B2 (en) Magnetic recording media
JP2006216178A (en) Magnetic tape
JP3158294B2 (en) Manufacturing method of magnetic recording medium
JPH0349025A (en) Magnetic recording medium
EP0450956B1 (en) Method of producing magnetic recording media
JPH03288330A (en) Production of magnetic recording medium
JPS6319933B2 (en)
JP2835744B2 (en) Manufacturing method of magnetic recording medium
JP2844553B2 (en) Manufacturing method of magnetic recording medium
JPH06309661A (en) Orienting method of magnetic recording medium
JPH05197954A (en) Diagonal orientation method for magnetic recording medium and diagonal orienting device thereof
JPH0969229A (en) Method and apparatus for manufacturing magnetic recording medium
Masuko et al. A perpendicularly oriented coating of rice shaped iron particles
JPH08106622A (en) Magnetic recording medium and its production
JPH0562152A (en) Magnetic tape