JPS6341134B2 - - Google Patents

Info

Publication number
JPS6341134B2
JPS6341134B2 JP13212880A JP13212880A JPS6341134B2 JP S6341134 B2 JPS6341134 B2 JP S6341134B2 JP 13212880 A JP13212880 A JP 13212880A JP 13212880 A JP13212880 A JP 13212880A JP S6341134 B2 JPS6341134 B2 JP S6341134B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
tape
coating layer
shaped substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13212880A
Other languages
Japanese (ja)
Other versions
JPS5758242A (en
Inventor
Akizo Hideyama
Minoru Hashimoto
Koki Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13212880A priority Critical patent/JPS5758242A/en
Publication of JPS5758242A publication Critical patent/JPS5758242A/en
Publication of JPS6341134B2 publication Critical patent/JPS6341134B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/842Coating a support with a liquid magnetic dispersion
    • G11B5/845Coating a support with a liquid magnetic dispersion in a magnetic field

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は垂直磁気記録媒体を製造するときに用
いられる磁場配向装置に係り、特に高い配向率を
有し、しかも表面平滑な記録媒体を製造し得るよ
うにした垂直磁気記録媒体製造用磁場配向装置に
関する。 磁気記録は、一般に記録媒体の面内長手方向の
磁化を用いる方式によつている。しかし、この面
内長手方向の磁化を用いる記録方式にあつては、
記録の高密度化を図ろうとすると、記録媒体内の
減磁界が増加するため、記録密度をそれ程向上さ
せることはできない。 そこで、このような不具合を解消するために、
近年、記録媒体の表面と垂直な方向の磁化を用い
る垂直磁気記録方式が提案されている。この垂直
磁気記録方式では、記録密度が高まる程、記録媒
体中の減磁界が減少するので、本質的に高密度記
録に適した記録方式と云える。 しかして、このような垂直磁気記録方式を採用
するには、表面とは垂直な方向に磁化容易軸を有
する磁気記録媒体を必要とする。このような要望
を満す記録媒体として、従来、記録膜をCo―Cr
スパツタ膜で形成するものや記録膜を磁性微粒子
の塗膜層で形成するものが提案されている。 ところで、記録膜を磁性微粒子の塗膜層で形成
するものにあつては、次のような製造方法が考え
られる。すなわち、磁性微粒子として、たとえば
BaFe12O19等の六方晶系フエライトを用いる。六
方晶系フエライトを用いる理由は、このフエライ
トは平板状をなしており、しかも磁化容易軸が板
面に垂直であるため、磁場配向処理もしくは機械
的処理によつて容易に垂直配向を行ない得るから
である。このような六方晶系フエライトの磁性微
粒子とバインダとを混合し、これを非磁性テープ
の表面に塗布した後、この塗布層を磁場中にその
表面が磁界の方向と直交するように配置すること
によつて各磁性微粒子の磁化容易軸を磁界の方向
に一致させて配列させた後、塗料を乾燥させれ
ば、垂直磁気記録に適した記録媒体を得ることが
できる。 しかし、上述したいわゆる塗布法によつて垂直
磁気記録媒体を製造する場合には、次のような点
を考慮する必要がある。すなわち、従来の面内磁
気記録方式に較べて垂直磁気記録方式の利点を明
らかにするには、記録最小単位をサブミクロンの
オーダにする必要があり、そのためには、サブミ
クロン以下の磁性微粒子を用いる必要がある。こ
のような微小寸法の磁性微粒子は、単磁区構造、
すなわち微小な磁石となるため、互いに磁気的に
結合し易い。したがつて、バインダ内で均一に分
散するよう注意を払う必要がある。 また、均一な分散がなされた所望の磁性塗料が
得られた場合であつても、このような磁性塗料を
基体上に塗布して磁場配向器によつて垂直配向さ
せる場合において下記の如き現象が往々にして起
こり易い。すなわち、NS極を対向配置させた磁
場配向器の磁極間に磁性塗料を塗布した基体をそ
の表面が磁界と直交するように配置すると、塗料
中の磁性微粒子は磁化容易軸が磁界の方向と一致
するように回転して配向する。このように配向さ
せた後、磁場の印加を停止するかあるいは基体を
磁場外へそのまま取り出そうとすると、塗膜の両
面に残存する磁極のために上記配向磁場の磁界の
方向とは反対方向に反磁場が生じ、この反磁場の
磁界の方向と角度をなす磁性微粒子が面内方向に
トルクを受け、この結果、磁場配向器によつて得
られた垂直配向が著しく阻害されたものとなる。
垂直磁気記録媒体の記録特性は、塗膜中の磁性微
粒子の磁化容易軸が基体表面に対して垂直に位置
しいるものの比率(配向率)に密接に関係し、配
向率が高い程、高い再生出力と高密度記録が可能
となる。したがつて、何らかの手段で反磁場によ
る配向率の低下を防止する必要がある。また、配
向率は、配向磁界と基体の表面とのなす角度によ
つても左右され、磁性微粒子を高配向率で垂直配
向させるには、基体面の磁界方向に対する角度を
90゜±15゜の範囲に設定する必要がある。このこと
は、何らかの手段で磁界内に置かれる基体の傾斜
角を厳密に管理する必要があるばかりか、何らか
の手段で磁界内に位置する基体の湾曲、ねじれ、
振動を防止する必要がある。 さらにまた、磁界内で前記磁性微粒子が回転し
て配向を終了するには塗料の粘度あるいは組成に
よつて数ミリ秒から数百ミリ秒の時間が必要であ
るが、回転が終了した磁性微粒子にそのまま前述
した垂直磁界が印加されつづけると磁性微粒子同
志の磁気的凝集が起こり、この結果塗膜面に凹凸
が生じる。このように、凹凸が発生すると、たと
え配向率が高い場合であつても、記録密度特性と
再生出力特性が阻害される。したがつて、何らか
の手段で磁気的凝集の発生を防止する必要があ
る。このようなことから、配向工程時において、
高配向率が得られるとともに塗膜面を平滑化し得
る磁場配向装置の出現が強く望まれているのが実
情である。 本発明は、このような事情に鑑みてなされたも
ので、その目的とするところは、上述した要望を
全て満足させ得る垂直磁気記録媒体製造用磁場配
向装置を提供することにある。 以下、本発明の詳細を図示の実施例によつて説
明する。 第1図において、図中1は配向用の磁石であ
り、この磁石1は両端面が所定の間隔をもつて対
向する形状に形成された磁芯2と、この磁芯2の
外周に巻装されたソレノイド3a,3bとで構成
されており、上記ソレノイド3a,3bは発生す
る磁界の方向が同一方向となるように図示しない
直流電源に接続されている。 しかして、磁石1の近傍には、上表面が磁性微
粒子を含んだ未乾燥塗膜層4で覆われた非磁性材
製のテープ状基体5を前記磁芯2の磁極面2a,
2b間を通して図中矢印6で示す方向へ一定速度
でかつ一定張力のもとで走行させるピンチローラ
7、キヤプスタン8、ガイドローラ9等からなる
走行機構が設けてある。また、テープ状基体5の
走行路に沿いかつ磁芯2の両側には、4つのガイ
ドローラ10a,10b,10c,10dが回転
自在に設けてあり、これらガイドローラ10a,
10b,10c,10dには、その一部分が前記
磁極面2a,2b間を通過する上記テープ状基体
5の下面に密接に接触して上記テープ状基体5の
磁場内に位置する表面を磁界の方向と直交するよ
うに位置規制するエンドレスベルト11が張設さ
れている。そして前記ガイドローラ10bの回転
軸が回転駆動装置12に連結されており、この回
転駆動装置12から回転力をうけて上記エンドレ
スベルト11のテープ状基体5に接触している部
分が上記基体の走向方向と同一方向でかつ基体と
の間の相対速度差がほぼ零の状態で循環移動する
ようになつている。 また、前記各磁極面2a,2bと、この磁極面
2a,2b間を横切るエンドレスベルト11の部
分との間には、それぞれ電気ヒータ13a,13
bが上記ベルトの走行方向に沿つて配設されてい
る。同様にガイドローラ10bとピンチローラ7
との間にも、この区間を走行する基体を非接触に
挟む関係に電気ヒータ14a,14bが配設され
ている。そして、前記電気ヒータ13a,13b
の発熱量は磁極面2a,2b間を移動する塗膜層
4が上記間を通過し終るまでの間に上記塗膜層4
内の磁性微粒子が再回動不能となる粘度まで上記
塗膜層4を乾燥させ得る値に設定されている。一
方、電気ヒータ14a,14bの発熱量は、これ
らの間を塗膜層4が通過し終るまでの間に上記塗
膜層4を完全に乾燥させ得る値に設定されてい
る。 このような構成であると、ソレノイド3a,3
b、電気ヒータ13a,13b,14a,14b
を付勢するとともに回転駆動装置12および走行
機構を動作させている状態で上表面が磁性微粒子
を含んだ未乾燥塗膜層4で覆われてなるテープ状
基体5を図中矢印6で示す方向に走行させると、
上記未乾燥塗膜層4内の磁性微粒子は、磁極面2
a,2b間を移動する間に磁極面2a,2b間の
磁界によつて、その磁化容易軸が基体面と垂直な
方向となるように配向され、続いて電気ヒータ1
3a,13bからの熱供給に伴なう塗料の乾燥に
よつて上記のように配向したままの状態に固定さ
れた後、磁場外へ移動することになる。かくし
て、未乾燥塗膜層4は最終的に電気ヒータ14a
と14bとの間を通過するとき完全に乾燥され、
ここに垂直磁気記録媒体が形成される。 そしてこの場合には、エンドレスベルト11の
一部分を基体面と磁界の方向と関係を保持する保
持部材として用い、しかも上記一部分をテープ状
基体5の走行方向と同方向へ相対連度差がほぼ零
となるように走行させているので、テープ状基体
5とこれに接触するエンドレスベルト11の一部
分との間の摩擦抵抗をほぼ零にできる。したがつ
て、テープ状基体5と保持部材との間の摩擦およ
びこれによつて発生する静電気に伴なう基体の波
打ち、振動、ねじれの発生を防止でき、テープ状
基体5をエンドレスベルト11によつて指定され
た経路で安定に走行させることができ、この結
果、塗膜層4内の磁性微粒子を高い配向率に配向
させることができる。 また、磁場中において、磁性微粒子が再回動不
能となる粘度まで塗膜層4を乾燥させて磁性微粒
子の配向状態を固定化するようにしているので、
磁場印加中に凝集現象が生じたり、あるいはこの
塗膜層4を磁場外へ移動させたとき反磁場が生じ
ても磁性微粒子が回動するようなことがなく、し
たがつて配向率が低下したり塗膜層4の表面に凹
凸が発生するようなこともない。したがつて、こ
の配向装置を用いれば、高い配向率で、しかも表
面の平滑な垂直磁気記録媒体を製造することがで
きる。 なお、磁場内で塗膜層を乾燥させるためには、
塗布速度に応じて、磁場の距離を長くしなければ
ならない。しかし、乾燥磁場を長くすることは場
所あるいは重量が増大するばかりか経済的に不利
となる。したがつて、第2図に示す如く塗布速度
に応じて加熱冷却可能に形成されたロール10a
の温度を上げるかまたは磁場に進入する前にある
程度乾燥させる予備乾燥器21のいずれか、又は
両方を使用することによつて、高速で塗布する場
合での磁場の長さの短縮化を図るようにしてもよ
い。この場合逆に、低速度で塗布する場合には予
備乾燥器21を停止し、ロール10aを冷却した
り、あるいは磁場内の電気ヒーター13a,13
bの発熱量を調節することによつて最適条件で乾
燥させることができる。 次に上述した配向装置を使つて実際に垂直磁気
記録媒体を製造した例について説明する。 まず、バリウム塩、鉄塩、コバルト塩、チタン
塩を含む水溶液にアルカリを滴下し、共沈物を得
た後、アルカリ除去を行い、加熱して、六方晶系
バリウムフエライト微粒子を得た。これらは、結
晶粒径0.1μm以下で板状性をもち、又この粉体の
磁気特性は飽和磁化60emu/g、抗磁力1000
(Oe)であつた。次にこの磁性微粒子を用いて表
1の組成の磁性塗料を作製した。
The present invention relates to a magnetic field orientation device used in manufacturing perpendicular magnetic recording media, and particularly to a magnetic field orientation device for manufacturing perpendicular magnetic recording media that is capable of manufacturing recording media with a high orientation rate and a smooth surface. Regarding. Magnetic recording generally relies on a method that uses magnetization in the in-plane longitudinal direction of a recording medium. However, in a recording method that uses magnetization in the in-plane longitudinal direction,
If an attempt is made to increase the recording density, the demagnetizing field within the recording medium will increase, so the recording density cannot be improved that much. Therefore, in order to eliminate such problems,
In recent years, perpendicular magnetic recording methods have been proposed that use magnetization in a direction perpendicular to the surface of a recording medium. In this perpendicular magnetic recording method, the demagnetizing field in the recording medium decreases as the recording density increases, so it can be said to be a recording method essentially suitable for high-density recording. However, in order to employ such a perpendicular magnetic recording method, a magnetic recording medium having an axis of easy magnetization in a direction perpendicular to the surface is required. Conventionally, as a recording medium that satisfies these demands, the recording film was made of Co-Cr.
There have been proposed methods in which the recording film is formed from a sputtered film and a recording film formed from a coating layer of magnetic fine particles. By the way, in the case where the recording film is formed of a coating layer of magnetic fine particles, the following manufacturing method can be considered. That is, as magnetic fine particles, for example
A hexagonal ferrite such as BaFe 12 O 19 is used. The reason for using hexagonal ferrite is that this ferrite has a flat plate shape and the axis of easy magnetization is perpendicular to the plate surface, so it can be easily vertically aligned by magnetic field alignment treatment or mechanical treatment. It is. After mixing such magnetic fine particles of hexagonal ferrite and a binder and coating the mixture on the surface of a non-magnetic tape, this coated layer is placed in a magnetic field so that the surface is perpendicular to the direction of the magnetic field. By arranging the easy axis of magnetization of each magnetic fine particle to match the direction of the magnetic field, and then drying the paint, a recording medium suitable for perpendicular magnetic recording can be obtained. However, when manufacturing a perpendicular magnetic recording medium by the above-mentioned so-called coating method, the following points need to be taken into consideration. In other words, in order to clarify the advantages of perpendicular magnetic recording compared to conventional longitudinal magnetic recording, it is necessary to make the minimum recording unit on the order of submicrons. It is necessary to use it. Such small-sized magnetic particles have a single domain structure,
In other words, since they become minute magnets, they are easily magnetically coupled to each other. Therefore, care must be taken to ensure uniform distribution within the binder. Furthermore, even if a desired magnetic paint with uniform dispersion is obtained, the following phenomenon may occur when such a magnetic paint is applied onto a substrate and vertically aligned using a magnetic field orientator. It often happens. In other words, when a substrate coated with magnetic paint is placed between the magnetic poles of a magnetic field orientator with NS poles facing each other, and its surface is placed perpendicular to the magnetic field, the axis of easy magnetization of the magnetic fine particles in the paint coincides with the direction of the magnetic field. Rotate and orient as shown. After oriented in this way, when the application of the magnetic field is stopped or the substrate is taken out of the magnetic field, the magnetic poles remaining on both sides of the coating cause the magnetic field to move in the opposite direction to the direction of the magnetic field of the above-mentioned orienting magnetic field. A magnetic field is generated, and the magnetic fine particles forming an angle with the direction of the magnetic field of this demagnetizing field are subjected to a torque in the in-plane direction, and as a result, the vertical orientation obtained by the magnetic field orientator is significantly inhibited.
The recording characteristics of perpendicular magnetic recording media are closely related to the ratio (orientation rate) in which the easy magnetization axes of the magnetic particles in the coating are perpendicular to the substrate surface; the higher the orientation rate, the higher the reproduction rate. This enables output and high-density recording. Therefore, it is necessary to take some means to prevent the orientation ratio from decreasing due to the demagnetizing field. In addition, the orientation rate is also affected by the angle between the orientation magnetic field and the surface of the substrate.In order to vertically align magnetic fine particles with a high orientation rate, the angle of the substrate surface to the magnetic field direction must be adjusted.
It is necessary to set it within the range of 90°±15°. This not only requires some means to strictly control the inclination angle of the substrate placed in the magnetic field, but also requires some means to prevent the substrate placed in the magnetic field from bending, twisting, etc.
It is necessary to prevent vibration. Furthermore, depending on the viscosity or composition of the paint, it takes several milliseconds to several hundred milliseconds for the magnetic fine particles to rotate in a magnetic field and complete their orientation. If the above-mentioned perpendicular magnetic field continues to be applied, magnetic fine particles will magnetically aggregate, resulting in unevenness on the coating surface. In this way, when unevenness occurs, recording density characteristics and reproduction output characteristics are impaired even when the orientation rate is high. Therefore, it is necessary to prevent the occurrence of magnetic aggregation by some means. For this reason, during the alignment process,
The reality is that there is a strong desire for a magnetic field orientation device that can provide a high orientation rate and smooth the coating surface. The present invention has been made in view of these circumstances, and its purpose is to provide a magnetic field orientation apparatus for manufacturing perpendicular magnetic recording media that can satisfy all of the above-mentioned demands. Hereinafter, details of the present invention will be explained with reference to illustrated embodiments. In FIG. 1, reference numeral 1 is an orientation magnet, and this magnet 1 has a magnetic core 2 formed in such a shape that both end faces face each other with a predetermined interval, and a winding around the outer periphery of the magnetic core 2. The solenoids 3a and 3b are connected to a DC power source (not shown) so that the directions of the generated magnetic fields are the same. In the vicinity of the magnet 1, a tape-shaped base 5 made of a non-magnetic material whose upper surface is covered with an undried coating layer 4 containing magnetic fine particles is placed on the magnetic pole face 2a of the magnetic core 2,
A running mechanism including a pinch roller 7, a capstan 8, a guide roller 9, etc., is provided to run between the rollers 2b and 2b at a constant speed and under constant tension in the direction indicated by an arrow 6 in the figure. Four guide rollers 10a, 10b, 10c, and 10d are rotatably provided along the traveling path of the tape-shaped substrate 5 and on both sides of the magnetic core 2.
10b, 10c, and 10d, a portion of which is in close contact with the lower surface of the tape-shaped substrate 5 passing between the magnetic pole faces 2a and 2b, and directs the surface of the tape-shaped substrate 5 located within the magnetic field in the direction of the magnetic field. An endless belt 11 is stretched so as to be orthogonal to the position of the belt. The rotating shaft of the guide roller 10b is connected to a rotational drive device 12, and the portion of the endless belt 11 that is in contact with the tape-shaped base 5 receives rotational force from the rotational drive device 12 in the direction of the strike of the base. It is arranged to move cyclically in the same direction as the base body and in a state where the relative speed difference between the base body and the base body is almost zero. Further, electric heaters 13a and 13 are provided between each of the magnetic pole surfaces 2a and 2b and a portion of the endless belt 11 that crosses between the magnetic pole surfaces 2a and 2b.
b are arranged along the running direction of the belt. Similarly, the guide roller 10b and the pinch roller 7
Electric heaters 14a and 14b are also disposed between them in a non-contact manner to sandwich the base body traveling in this section. And the electric heaters 13a, 13b
The amount of heat generated by the coating layer 4 is determined by the amount of heat generated by the coating layer 4 moving between the magnetic pole surfaces 2a and 2b until the coating layer 4 finishes passing through the gap.
The value is set to such a value that the coating layer 4 can be dried to a viscosity at which the magnetic fine particles therein cannot be rotated again. On the other hand, the amount of heat generated by the electric heaters 14a and 14b is set to a value that allows the coating layer 4 to be completely dried before the coating layer 4 finishes passing between them. With such a configuration, the solenoids 3a, 3
b, electric heaters 13a, 13b, 14a, 14b
is energized and the rotational drive device 12 and traveling mechanism are operated, the tape-shaped substrate 5 whose upper surface is covered with the undried coating layer 4 containing magnetic fine particles is moved in the direction indicated by the arrow 6 in the figure. When you run it to
The magnetic fine particles in the undried coating layer 4 are formed on the magnetic pole surface 2.
While moving between the pole faces 2a and 2b, the axis of easy magnetization is oriented perpendicular to the base surface by the magnetic field between the magnetic pole faces 2a and 2b, and then the electric heater 1
After being fixed in the oriented state as described above by the drying of the paint accompanying the heat supply from 3a and 13b, it moves out of the magnetic field. Thus, the undried coating layer 4 is finally connected to the electric heater 14a.
and 14b, it is completely dried,
A perpendicular magnetic recording medium is formed here. In this case, a portion of the endless belt 11 is used as a holding member that maintains the relationship between the substrate surface and the direction of the magnetic field, and the portion is moved in the same direction as the running direction of the tape-shaped substrate 5 so that the difference in relative linkage is almost zero. Since the tape-shaped substrate 5 is run in such a manner that the frictional resistance between the tape-shaped substrate 5 and the part of the endless belt 11 that comes into contact with the tape-shaped substrate 5 can be reduced to almost zero. Therefore, it is possible to prevent the occurrence of waving, vibration, and twisting of the base due to friction between the tape-like base 5 and the holding member and static electricity generated thereby, and to prevent the tape-like base 5 from being attached to the endless belt 11. Therefore, it is possible to stably travel along a designated path, and as a result, the magnetic fine particles in the coating layer 4 can be oriented at a high orientation rate. Furthermore, in the magnetic field, the coating layer 4 is dried to a viscosity that makes it impossible for the magnetic fine particles to rotate again, thereby fixing the orientation state of the magnetic fine particles.
Even if an agglomeration phenomenon occurs during the application of a magnetic field, or even if a demagnetizing field is generated when the coating layer 4 is moved out of the magnetic field, the magnetic fine particles do not rotate, so the orientation rate decreases. Also, unevenness does not occur on the surface of the coating layer 4. Therefore, by using this orientation apparatus, a perpendicular magnetic recording medium with a high orientation rate and a smooth surface can be manufactured. In addition, in order to dry the coating layer in a magnetic field,
Depending on the application speed, the distance of the magnetic field must be increased. However, increasing the length of the drying magnetic field not only increases the space and weight but is also economically disadvantageous. Therefore, as shown in FIG. 2, the roll 10a is formed to be able to be heated and cooled according to the coating speed.
The length of the magnetic field can be shortened when applying at high speed by increasing the temperature of the magnetic field or by using a pre-dryer 21 that dries the material to some extent before entering the magnetic field, or both. You may also do so. In this case, conversely, when coating at a low speed, the pre-dryer 21 is stopped and the roll 10a is cooled, or the electric heaters 13a, 13 in the magnetic field are
By adjusting the calorific value of b, drying can be carried out under optimal conditions. Next, an example in which a perpendicular magnetic recording medium was actually manufactured using the above-mentioned orientation apparatus will be described. First, an alkali was dropped into an aqueous solution containing a barium salt, an iron salt, a cobalt salt, and a titanium salt to obtain a coprecipitate, and then the alkali was removed and heated to obtain hexagonal barium ferrite fine particles. These have a crystal grain size of 0.1 μm or less and plate-like properties, and the magnetic properties of this powder are a saturation magnetization of 60 emu/g and a coercive force of 1000.
It was (Oe). Next, a magnetic paint having the composition shown in Table 1 was prepared using the magnetic fine particles.

【表】 (尚、塗料は表1に示すもの以外に針状結晶の
γフエライトのみを六方晶系Baフエライトに置
換したものと2種類を用意した。)上記2種の塗
料を乾燥後の膜厚が約3μmになるよう、ポリエチ
レンテレフタレートから成るテープ状基体5に塗
布し、第1図に示す装置によつて配向ならびに乾
燥させた。この時の磁場の長さは60cmで、塗布速
度20m/minで行ない、磁場内の電気ヒーター1
3a,13bを調整して、テープ状基体5の温度
を約100℃にした。その結果、何れの塗料も磁場
に入つてから約40cmの所で、見かけ上乾燥してい
た。また、この時エンドレスベルト11の循環速
度を塗布速度と同じにした。次に第2図に示す装
置を使つて同様に配向乾燥を行なつた。即ち、予
備乾燥器21の乾燥ゾーンを2mにし、この区間
が約70℃になるように調整し、さらにロール10
aを約80℃に保持した状態で、塗布速度60m/
minで塗布した。この時の磁場の長さは1mで、
磁場内の温度はテープ状基体5が約120℃になる
よう電気ヒーター13a,13bの発熱量を調整
して行なつた。その結果、磁場内の進入端から約
80cmの所で殆んど乾燥しており、磁場外で完全に
乾燥を行なつた。これは前記低速塗布の場合も同
様である。なお、この時のエンドレスベルト11
の速度は55m/minと60m/minで行なつたが、
何れの場合もテープ状基体5は平坦性を保ち、走
行安全性も極めて良好であつた。また針状結晶の
γフエライト塗料の場合、第1図および第2図に
示す磁石として2個の永久磁石を用い、これのN
極どうしを対向させて用いた以外は、すべて同様
にして行なつた。 このようにして得られた記録媒体の配向率は表
2に示す通りである。
[Table] (In addition to the ones shown in Table 1, two types of paints were prepared, one in which only the acicular crystal γ ferrite was replaced with hexagonal Ba ferrite.) The film after drying the above two types of paints. It was coated on a tape-shaped substrate 5 made of polyethylene terephthalate to a thickness of approximately 3 μm, oriented and dried using the apparatus shown in FIG. The length of the magnetic field at this time was 60 cm, and the coating speed was 20 m/min.
3a and 13b were adjusted so that the temperature of the tape-shaped substrate 5 was about 100°C. As a result, all paints appeared to be dry approximately 40 cm after entering the magnetic field. Further, at this time, the circulation speed of the endless belt 11 was made the same as the coating speed. Next, orientation drying was carried out in the same manner using the apparatus shown in FIG. That is, the drying zone of the pre-dryer 21 is set to 2 m, the temperature is adjusted so that this section is approximately 70°C, and the
Coating speed 60m/with a maintained at approximately 80°C.
It was applied at min. The length of the magnetic field at this time is 1m,
The temperature in the magnetic field was controlled by adjusting the heat generation amount of the electric heaters 13a and 13b so that the tape-shaped substrate 5 reached about 120°C. As a result, approximately
It was almost dry at 80 cm, and it was completely dried outside the magnetic field. This also applies to the case of low-speed coating. In addition, the endless belt 11 at this time
The speed was 55m/min and 60m/min, but
In all cases, the tape-like substrate 5 maintained its flatness and had extremely good running safety. In addition, in the case of acicular crystal γ-ferrite paint, two permanent magnets are used as the magnets shown in Figures 1 and 2, and the N
Everything was done in the same way except that the poles were used opposite each other. The orientation ratio of the recording medium thus obtained is as shown in Table 2.

【表】 以上の如く本発明装置によれば、高配向率で表
面平滑な垂直磁気記録媒体を製造し得る配向装置
を得ることができる。 なお、乾燥手段としては、特に限定されるもの
ではなく、例えば熱風、電気ヒーター、スチー
ム、高周波等、即ち、塗料の溶剤が蒸発出来るも
のであれば何でも用いることができる。
[Table] As described above, according to the apparatus of the present invention, an alignment apparatus capable of producing a perpendicular magnetic recording medium with a high orientation rate and a smooth surface can be obtained. Note that the drying means is not particularly limited, and any method can be used, such as hot air, electric heater, steam, high frequency, etc., as long as the solvent of the paint can be evaporated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る磁場配向装置
の概略側面図、第2図は本発明の別の実施例に係
る磁場配向装置の概略側面図である。 1……磁石、2a,2b……磁極面、4……塗
膜層、5……テープ状基体、7……ピンチロー
ラ、8……キヤプスタン、11……エンドレスベ
ルト、13a,13b……電気ヒーター。
FIG. 1 is a schematic side view of a magnetic field orientation device according to one embodiment of the present invention, and FIG. 2 is a schematic side view of a magnetic field orientation device according to another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Magnet, 2a, 2b... Magnetic pole surface, 4... Coating film layer, 5... Tape-shaped substrate, 7... Pinch roller, 8... Capstan, 11... Endless belt, 13a, 13b... Electricity heater.

Claims (1)

【特許請求の範囲】 1 両磁極面を対向させてなる配向用磁石と、こ
の磁石の前記磁極面間を通過するように一表面が
磁性微粒子を含んだ未乾燥塗膜層で覆われたテー
プ状基体を走行させる手段と、前記磁極面間を通
過するテープ状基体に一部分が接触して上記テー
プ状基体の面と磁界の方向とのなす角度を一定化
させるエンドレスベルトと、このエンドレスベル
トと前記テープ状基体との間の相対速度差がほぼ
零となるように上記エンドレスベルトを循環移動
させる駆動手段と、前記基体上の前記塗膜層が前
記磁極面間を通過し終わるまでの間に上記塗膜層
内の磁性微粒子が再回動不能となる粘度まで上記
塗膜層を乾燥させる手段とを具備してなることを
特徴とする垂直磁気記録媒体製造用磁場配向装
置。 2 前記乾燥させる手段は、前記磁極面間に進入
する前の前記塗膜層を予備乾燥させる手段も含ん
だものであることを特徴とする特許請求の範囲第
1項記載の垂直磁気記録媒体製造用磁場配向装
置。
[Scope of Claims] 1. An alignment magnet with both magnetic pole faces facing each other, and a tape whose one surface is covered with an undried coating layer containing magnetic fine particles so as to pass between the magnetic pole faces of this magnet. means for running a tape-shaped substrate; an endless belt that partially contacts the tape-shaped substrate passing between the magnetic pole faces to constantize the angle formed between the surface of the tape-shaped substrate and the direction of the magnetic field; a driving means for circulating the endless belt so that the relative speed difference with the tape-shaped substrate becomes almost zero; and a drive means for circulating the endless belt until the coating layer on the substrate finishes passing between the magnetic pole faces. A magnetic field orientation apparatus for manufacturing a perpendicular magnetic recording medium, comprising means for drying the coating layer to a viscosity such that the magnetic fine particles in the coating layer cannot rotate again. 2. The manufacturing of a perpendicular magnetic recording medium according to claim 1, wherein the drying means also includes means for pre-drying the coating layer before it enters between the magnetic pole faces. magnetic field orientation device.
JP13212880A 1980-09-22 1980-09-22 Magnetic field orientation device for manufacturing vertical magnetic recording medium Granted JPS5758242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13212880A JPS5758242A (en) 1980-09-22 1980-09-22 Magnetic field orientation device for manufacturing vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13212880A JPS5758242A (en) 1980-09-22 1980-09-22 Magnetic field orientation device for manufacturing vertical magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5758242A JPS5758242A (en) 1982-04-07
JPS6341134B2 true JPS6341134B2 (en) 1988-08-16

Family

ID=15074042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13212880A Granted JPS5758242A (en) 1980-09-22 1980-09-22 Magnetic field orientation device for manufacturing vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5758242A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138733A (en) * 1983-12-27 1985-07-23 Toshiba Corp Production of magnetic recording medium
JPS61110342A (en) * 1984-11-05 1986-05-28 Berumateitsuku:Kk Orienting device for magnetic recording medium

Also Published As

Publication number Publication date
JPS5758242A (en) 1982-04-07

Similar Documents

Publication Publication Date Title
US4518627A (en) Apparatus and method for disorienting magnetic particles in magnetic recording media
JPS6292132A (en) Manufacture of magnetic recording medium
US4447467A (en) Method and apparatus for perpendicular magnetic recording medium
JPS6341135B2 (en)
JPS6341134B2 (en)
JPH0221050B2 (en)
JPS6319933B2 (en)
JPS6341132B2 (en)
NL8100802A (en) METHOD FOR MANUFACTURING A MAGNETIC RECORD MEDIUM
JPS6342031A (en) Method and apparatus for production of perpendicular magnetic recording medium
JPH0489624A (en) Production of perpendicular magnetic recording medium
JPH0221049B2 (en)
JPH01169725A (en) Production of magnetic recording medium
JPS61267933A (en) Manufacturing device for magnetic recording medium
JPH01169723A (en) Production of magnetic recording medium
JPH0247012B2 (en)
JPH0370854B2 (en)
JPH0468686B2 (en)
JPH02263323A (en) Apparatus for producing magnetic recording medium
JPS6063728A (en) Manufacture of magnetic disk
JPS59168936A (en) Manufacturing device of magnetic recording medium
JPS5968826A (en) Manufacture of vertical magnetic recording medium
JPH06309661A (en) Orienting method of magnetic recording medium
Satoh et al. Perpendicular Magnetic Field Orientation of Acicular Particles: Oblique Orientation with Field Gradient and Viscosity Gradient in Coating
JPH01169724A (en) Production of magnetic recording medium