JPS6319846A - Composite semiconductor device for amplification - Google Patents

Composite semiconductor device for amplification

Info

Publication number
JPS6319846A
JPS6319846A JP61163791A JP16379186A JPS6319846A JP S6319846 A JPS6319846 A JP S6319846A JP 61163791 A JP61163791 A JP 61163791A JP 16379186 A JP16379186 A JP 16379186A JP S6319846 A JPS6319846 A JP S6319846A
Authority
JP
Japan
Prior art keywords
current
semiconductor device
field effect
effect transistor
composite semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61163791A
Other languages
Japanese (ja)
Other versions
JPH0797605B2 (en
Inventor
Yasuhisa Omura
泰久 大村
Katsutoshi Izumi
泉 勝俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61163791A priority Critical patent/JPH0797605B2/en
Publication of JPS6319846A publication Critical patent/JPS6319846A/en
Publication of JPH0797605B2 publication Critical patent/JPH0797605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only

Abstract

PURPOSE:To contrive an increase in gm/gd by reducing the drain conductance gd in a current saturated region by a method wherein the title composite semiconductor device is composed of the first conductive channel type insulating gate type field effect transistor and the second conductive channel type junction gate type field effect transistor, and a current bypass circuit is provided between the source terminals of both transistors. CONSTITUTION:To the composite semiconductor device consisting of an N- channel type MOSFET 10 and a P-channel type junction gate field effect transistor JFET 11, a current bypass circuit 12 composed of a resistor, for example, is added. To be more precise, current-voltage characteristics are controlled by providing a current bypass circuit 12 between the terminals 17 and 18 of the composite semiconductor device having a differential negative condactance. As a result, the current-voltage characteristics are added to the current-voltage characteristics of the MOSFET, and besides, the drain conductance gd in the current saturated region becomes very small by, receiving the effect of bypass of the drain current of the current bypass circuit, and the gm/gd is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、信号増幅を行うための複合半導体装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite semiconductor device for signal amplification.

〔従来の技術〕[Conventional technology]

従来、半導体集積回路上で信号増幅を行うために相補型
電界効果トランジスタ(以下、CMOSと略す)による
差動増幅器がしばしば用いられてきた。CMO3は、n
チャネルの絶縁ゲート形電界効果トランジスタ(以下、
MOS F ETと略す)とnチャネルのMOS F 
ETとから構成されるものであり、かかるCMO3を用
いて構成される差動増幅器1段を第9図の回路図に示す
。同図において、1および2はpチャネル形MO3FE
T、3ないし5はnチャネル形MOS F ET、6は
電源電圧■DD端子、7は第1入力端子、8は第2入力
端子、9は出力端子、10は制御端子である。
Conventionally, differential amplifiers using complementary field effect transistors (hereinafter abbreviated as CMOS) have often been used to amplify signals on semiconductor integrated circuits. CMO3 is n
Channel insulated gate field effect transistor (hereinafter referred to as
(abbreviated as MOS FET) and n-channel MOS F
The circuit diagram of FIG. 9 shows one stage of a differential amplifier constructed using such a CMO3. In the same figure, 1 and 2 are p-channel type MO3FE
T, 3 to 5 are n-channel type MOS FETs, 6 is a power supply voltage (DD) terminal, 7 is a first input terminal, 8 is a second input terminal, 9 is an output terminal, and 10 is a control terminal.

このような、増幅器における増幅利得Gは、MOSFE
Tの相互コンダクタンスgm(ミΔIl、/ΔVG) 
 とドレイン・コンダクタンスg4(=ΔΔIo/ΔV
O) とを用いて次式で与えられることが知られている
The amplification gain G in such an amplifier is MOSFE
Transconductance gm of T (mi ΔIl, /ΔVG)
and drain conductance g4 (=ΔΔIo/ΔV
It is known that it is given by the following equation using

G−20log+o(g、%/ ga )    −(
1)それゆえ、大きなGを得るためにはg、/gaをで
きるだけ大きくすることが必要となる。g、/g、を大
きくするには、 (i)g−を大きくする。
G-20log+o(g,%/ga) −(
1) Therefore, in order to obtain a large G, it is necessary to make g,/ga as large as possible. To increase g, /g, (i) Increase g-.

(ii)gdを小さくする。(ii) Reduce gd.

(iii )その双方を行う。(iii) Do both.

の何れかの方法を取るしかない。(i)の場合、半導体
集積回路の製造条件を変えないとすれば、M OS F
 E Tのゲート幅を広くするか、ゲート長を短くする
か、またはその双方を行うかするしか手法はない。しか
し、ゲート幅を広くすると半導体集積回路の寸法が大き
くなるので得策ではないし、ゲート長を短くするとgl
Iは大きくなるが、gdも同程度の割合で大きくなるの
で実質的にあまり効果がない。(ii)の場合、通常の
MOSFETにおいてこの効果を得るには、半導体集積
回路の製造条件を変えないとすれば、ゲート長をできる
限り長くする他ない。しかし、この方法ではg、の大き
さを変えないためにゲート幅を大きくしなければならず
、半導体集積回路の寸法を大きくせざるを得ない。
You have no choice but to take one of these methods. In the case of (i), if the manufacturing conditions of the semiconductor integrated circuit are not changed, MOS F
The only way to do this is to widen the ET gate width, shorten the gate length, or do both. However, widening the gate width increases the dimensions of the semiconductor integrated circuit, which is not a good idea, and shortening the gate length increases the
Although I increases, gd also increases at a similar rate, so there is virtually no effect. In the case of (ii), the only way to obtain this effect in a normal MOSFET is to make the gate length as long as possible, unless the manufacturing conditions of the semiconductor integrated circuit are changed. However, in this method, the gate width must be increased in order to maintain the magnitude of g, which forces the size of the semiconductor integrated circuit to increase.

このような状況の下において、現在のところ実際に採用
されているゲート長は2〜3μm程度である。これは、
M OS F E Tの動作速度を考慮してg。の値を
大きくするように決められたものであり、gdをある程
度犠牲にしたものである。そして、このようなCM O
Sでは、gm/gaとしては30 (Gは約30dB)
という値が限界値であることが経験的によく知られてい
る。
Under such circumstances, the gate length actually adopted at present is about 2 to 3 μm. this is,
Considering the operating speed of MOS FET g. It was decided to increase the value of , sacrificing gd to some extent. And a commercial like this
In S, gm/ga is 30 (G is about 30dB)
It is well known from experience that this value is the limit value.

一方、増幅器として必要な利得は通常50dB以上であ
るといわれており、現在のところ、これを実現するには
第9図に示したようなCMO3差動増幅器を2段接続す
ることが必要となっている。
On the other hand, it is said that the gain required for an amplifier is usually 50 dB or more, and at present, to achieve this, it is necessary to connect two stages of CMO3 differential amplifiers as shown in Figure 9. ing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、CMO3差動増幅器を2段接続するということ
は、当然のことながら集積回路の寸法が大きくなってし
まう。また、増幅器の動作の安定化を図るために通常帰
還回路を設けるが、そのまま帰還をかけると入出力信号
が同位相であるために発振を起こしてしまう。そこで通
常、位相補償回路という余分な回路を付加しなければな
らない。
However, connecting two CMO3 differential amplifiers naturally increases the size of the integrated circuit. Further, a feedback circuit is usually provided to stabilize the operation of the amplifier, but if feedback is applied as is, oscillation will occur because the input and output signals are in phase. Therefore, it is usually necessary to add an extra circuit called a phase compensation circuit.

最近必要度の高まってきている高速アナログ/デジタル
変換器LSI、高速デジタル/アナログ変換器LSIの
中では、数百個以上の差動増幅器が使用されており、C
MO3差動増幅器を2段接続しなけらばならないことに
起因する上記の問題点は、回路設計や集積回路接続に及
ぼす悪影響(設計の煩雑さ、歩留まりの悪さ等による製
品価格への影響)は非常に大きなものとなっている。
More than several hundred differential amplifiers are used in high-speed analog/digital converter LSIs and high-speed digital/analog converter LSIs, which have recently become increasingly necessary.
The above problems caused by the need to connect two MO3 differential amplifiers have no negative impact on circuit design or integrated circuit connections (complicated design, poor yield, etc. on product prices). It is very large.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の増幅用複合半導体装置は上記問題点に鑑みてな
されたものであり、第1導電チャネル形のMOSFET
と第2導電チャネル形のJ、FETとから構成され、前
記MOS F ETのソース端子と前記JFETのドレ
イン端子とを接続し、前記MO3FETのドレイン端子
と前記JFETのゲート端子を接続し、前記MOS F
 ETのソース端子と前記JFETのソース端子との間
に電流バイパス回路を設けたものである。
The amplification composite semiconductor device of the present invention has been made in view of the above problems, and includes a first conductive channel type MOSFET.
and a second conductive channel type JFET, the source terminal of the MOS FET is connected to the drain terminal of the JFET, the drain terminal of the MO3FET is connected to the gate terminal of the JFET, and the MOS FET is connected to the drain terminal of the JFET. F
A current bypass circuit is provided between the source terminal of the ET and the source terminal of the JFET.

〔作用〕[Effect]

MOSFETのドレインをドレイン端子、JFETのソ
ースをソース端子、MOS F ETのゲートをゲート
端子と見做して通常のMOS F ETのように動作さ
せると、MOSFETの電流電圧特性にJFETの電流
電圧特性が付加され、さらに電流バイパス回路によるド
レイン電流のバイパスの影響を受けて電流飽和領域にお
けるドレイン・コンダクタンスg4が非常に小さくなり
、gm/g4が増大する。
If you treat the drain of the MOSFET as the drain terminal, the source of the JFET as the source terminal, and the gate of the MOSFET as the gate terminal and operate it like a normal MOSFET, the current-voltage characteristics of the MOSFET will differ from those of the JFET. is added, and the drain conductance g4 in the current saturation region becomes extremely small due to the effect of bypassing the drain current by the current bypass circuit, and gm/g4 increases.

〔実施例〕〔Example〕

以下、実施例と共に本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail along with examples.

第1図および第2図はいずれも本発明の一実施例を示す
回路図であり、第1図の場合はnチャネル形MO3FE
TIOとpチャネル形接合ゲート形電界効果トランジス
タ(以下JFETと略す)11からなる複合半導体装置
に、例えば抵抗体で構成された電流バイパス回路12を
付加したものであり、第2図の場合はpチャネル形MO
3FET13とnチャネル形JFET14とからなる複
合半導体装置に電流バイパス回路12を付加したもので
ある。第1図および第2図において符号15〜18はそ
れぞれ外部接続端子であり、端子15は通常のMOSF
ETのドレイン端子、端子16は通常のMOSFETの
ゲート端子、端子17は通常のM OS F E Tの
ソース端子に相当する。
Both FIG. 1 and FIG. 2 are circuit diagrams showing one embodiment of the present invention, and in the case of FIG. 1, an n-channel type MO3FE
A current bypass circuit 12 composed of, for example, a resistor is added to a composite semiconductor device consisting of a TIO and a p-channel junction gate field effect transistor (hereinafter abbreviated as JFET) 11, and in the case of FIG. Channel type MO
A current bypass circuit 12 is added to a composite semiconductor device consisting of a 3FET 13 and an n-channel type JFET 14. In FIGS. 1 and 2, numerals 15 to 18 are external connection terminals, and terminal 15 is a normal MOSFET.
The drain terminal of the ET, the terminal 16, corresponds to the gate terminal of a normal MOSFET, and the terminal 17 corresponds to the source terminal of a normal MOSFET.

なお、端子18は電流バイパス回路12とM O5FE
TIOのソースとの接続端子である。
Note that the terminal 18 is connected to the current bypass circuit 12 and M O5FE.
This is a connection terminal to the source of TIO.

第3図は第1図の実施例におけるn形MO3FETIO
とp形JFETIIからなる複合半導体装置の具体的構
成を示す図であり、同図(a)は平面配置図、同図(b
)は同図(a)におけるB−B’断面図、同図(c)は
同図(a)におけるc−c ’断面図である。同図にお
いて、20は半導体基板、21は絶縁物層、22はp形
半導体による能動領域、23および24はn形高不純物
濃度領域、25および26はp形高不純物濃度領域、2
7はゲート絶縁物層である。なお、電極15〜18は第
1図の端子15〜18に他ならない。この図かられかる
ように、n形高不純物濃度領域23.24およびp形能
動領域22により第1図のnチャネルMO3FETIO
が形成され、p形高不純物′濃度領域25.26および
p形能動領域22によりpチャネル形JFET14が形
成されており、この2つのFETl0,11が互いに直
交して重なっている。
Figure 3 shows the n-type MO3FETIO in the embodiment of Figure 1.
2 is a diagram showing a specific configuration of a composite semiconductor device consisting of a p-type JFET II and a p-type JFETII, in which FIG.
) is a sectional view taken along line BB' in figure (a), and figure (c) is a sectional view taken along line c-c' in figure (a). In the figure, 20 is a semiconductor substrate, 21 is an insulating layer, 22 is an active region made of a p-type semiconductor, 23 and 24 are n-type high impurity concentration regions, 25 and 26 are p-type high impurity concentration regions, 2
7 is a gate insulator layer. Note that the electrodes 15-18 are nothing but the terminals 15-18 in FIG. As can be seen from this figure, the n-channel MO3FETIO of FIG.
A p-channel type JFET 14 is formed by the p-type high impurity concentration regions 25, 26 and the p-type active region 22, and these two FETs 10 and 11 overlap each other orthogonally.

第4図(a)および(b)はいずれも第1図の実施例に
おける電流バイパス回路12の具体的構成を示す図であ
り、同図(a)は拡散層抵抗を用いた例、同図(b)は
多結晶シリコン抵抗を用いた例を示す断面図である。同
図において、第3図と同一もしくは相当部分には同一の
符号を付しである。30はp形不純物領域、31.32
はp形高不純物濃度領域、33は絶縁物層、34は多結
晶シリコン、35は絶縁物層であり、電極17aまたは
17bが第3図の電極17と接続され、18aまたは1
8bが第3図の電極18と接続される。
4(a) and 4(b) are both diagrams showing a specific configuration of the current bypass circuit 12 in the embodiment of FIG. 1, and FIG. 4(a) is an example using a diffusion layer resistor, and FIG. (b) is a cross-sectional view showing an example using a polycrystalline silicon resistor. In this figure, the same or corresponding parts as in FIG. 3 are given the same reference numerals. 30 is a p-type impurity region, 31.32
3 is a p-type high impurity concentration region, 33 is an insulating layer, 34 is polycrystalline silicon, 35 is an insulating layer, electrode 17a or 17b is connected to electrode 17 in FIG.
8b is connected to the electrode 18 in FIG.

つぎに、第1図に示す本実施例の動作および特性を説明
する。全体の動作特性を説明する前に、第3図に示した
MO3FETIOとJFETIIとからなる複合半導体
装置すなわち第1図の回路から電流バイパス回路12を
除き、端子18と端子17との間を解放した複合半導体
装置の特性について説明する。このような複合半導体装
置において、端子17を接地し、端子16に正電圧VC
Sを、端子15に正電圧VDSをそれぞれ印加したとき
に、端子15に流れる電流値I。、を測定した結果を第
5図の電流電圧特性図に示す。なお、この実験に用いら
れた半導体装置の主要な構造定数を表1に示す。
Next, the operation and characteristics of this embodiment shown in FIG. 1 will be explained. Before explaining the overall operating characteristics, the current bypass circuit 12 is removed from the composite semiconductor device shown in FIG. 3 consisting of MO3FETIO and JFETII, that is, the circuit shown in FIG. The characteristics of the composite semiconductor device will be explained. In such a composite semiconductor device, the terminal 17 is grounded, and the terminal 16 is connected to a positive voltage VC.
A current value I flowing through the terminal 15 when a positive voltage VDS is applied to the terminal 15. The results of measuring , are shown in the current-voltage characteristic diagram in FIG. Table 1 shows the main structural constants of the semiconductor device used in this experiment.

表1 第5図から明らかなように、図中rBJで示した電流領
域に微分負性コンダクタンスが現れていることがわかる
。この微分資性コンダクタンスはこの複合半導体装置特
有の現象であり、通常のMOSFETでは見られない。
Table 1 As is clear from FIG. 5, differential negative conductance appears in the current region indicated by rBJ in the figure. This differential conductance is a phenomenon unique to this composite semiconductor device, and is not observed in ordinary MOSFETs.

第10図は通常のMO3I”ET(例えば第9図の差動
増幅器に用いられているものや、本実施例に用いられて
いるMO3FETIO)の電流電圧特性図である。この
図から明らかなように通常のMOS F ETでは飽和
領域においてもドレイン・ソース間電圧の上昇に対して
僅かなからドレイン電流も増加しており、ドレインコン
ダクタンスは正の値を示している。
FIG. 10 is a current-voltage characteristic diagram of a normal MO3I"ET (for example, the one used in the differential amplifier in FIG. 9 and the MO3FETIO used in this embodiment). As is clear from this diagram, In a normal MOS FET, even in the saturation region, the drain current increases slightly as the drain-source voltage increases, and the drain conductance shows a positive value.

第5図に示すように、この複合半導体装置において微分
負性コンダクタンスが得られるのはつぎのような理由に
よる。まず、第5図の領域rAJではVDSが小さいの
でMO3FETIOの内部直流抵抗はほぼ一定である。
The reason why differential negative conductance is obtained in this composite semiconductor device as shown in FIG. 5 is as follows. First, in the region rAJ of FIG. 5, since VDS is small, the internal DC resistance of MO3FETIO is almost constant.

また、V D 5はJFETのゲートバイアスともなっ
ているため、この値が小さいときはJFETIIがピン
チオフしていない。それゆえ、■。、の増加と共にID
Sはほぼ線形に増加する。これに対して、領・域rBJ
では、MO3FETIOの内部直流抵抗がほぼドレイン
・ソース間電圧に比例して増加するため、MO3FET
IOにおけるドレイン電流は飽和する。一方、端子15
の電圧V。が増加するということはJFETIIのゲー
ト・バイアスが深くなることになり、JFETの導通電
流が減少する。したがって、複合半導体装置全体として
、IDSが減少し、第5図に示すような微分負性コンダ
クタンスが得られるのである。
Further, since V D 5 also serves as the gate bias of the JFET, when this value is small, the JFET II is not pinched off. Therefore, ■. , with the increase of ID
S increases approximately linearly. On the other hand, the area rBJ
In this case, since the internal DC resistance of MO3FETIO increases approximately in proportion to the drain-source voltage, MO3FETIO
The drain current in IO saturates. On the other hand, terminal 15
voltage V. An increase in JFET II means that the gate bias of JFET II becomes deeper, and the conduction current of the JFET decreases. Therefore, the IDS is reduced in the entire composite semiconductor device, and a differential negative conductance as shown in FIG. 5 is obtained.

なお、第3図に示した構造の複合半導体装置を用いて十
分大きな微分負性コンダクタンスを得るには、MO3F
ETIOのゲート長をドレイン接合24から広がる空乏
層の厚さと同程度の長さとし、能動領域22をドレイン
接合24の深さと同程度の厚さとすることが必要である
Note that in order to obtain a sufficiently large differential negative conductance using the composite semiconductor device having the structure shown in FIG.
It is necessary that the gate length of the ETIO be as long as the thickness of the depletion layer extending from the drain junction 24, and that the active region 22 be as thick as the depth of the drain junction 24.

さて、本発明に係る装置は、このような微分負性コンダ
クタンスを有する複合半導体装置の端子18と端子17
の間に電流バイパス回路12を設けて電流電圧特性をさ
らに制御したものである。
Now, the device according to the present invention has terminals 18 and 17 of a composite semiconductor device having such differential negative conductance.
A current bypass circuit 12 is provided in between to further control the current-voltage characteristics.

第6図(a)〜(c)はそれぞれ、電流バイパス回路1
2として5.OkΩの抵抗を用いた場合の電流電圧特性
、相互コンダクタンスg、およびドレイン・コンダクタ
ンスg、を測定した結果である。
6(a) to (c) respectively show the current bypass circuit 1
2 as 5. These are the results of measuring current-voltage characteristics, mutual conductance g, and drain conductance g when using an OkΩ resistor.

なお、同図(c)で示された特性の破線部は、測定装置
との関係で測定不能となった部分であり、2.24X1
0−’S以下の値であることを意味している。
Note that the broken line part of the characteristic shown in Figure (c) is the part that cannot be measured due to the relationship with the measuring device, and is
This means that the value is less than or equal to 0-'S.

第6図(a)かられかるように、飽和領域におけるドレ
イン電流■。、は第5図と異なり電圧VDIに係わらず
ほぼ一定となっている。これは、JFETllで制限さ
れたていた電流が電流バイパス回路12を介して導通す
ることにより生じたものであり、抵抗値を適当に設定す
ることにより達成することができる。このとき得られた
g、は第6図(b)に示すように、通常のMOSFET
を動作させたときに得られる値の3分の1程度に低下し
てしまうが、同図(C)に示すようにg4の値はその極
小値で1μs以下となるような極めて小さな値となる。
As can be seen from FIG. 6(a), the drain current ■ in the saturation region. , are almost constant regardless of the voltage VDI, unlike in FIG. This is caused by the current limited by JFET11 being conducted through the current bypass circuit 12, and can be achieved by appropriately setting the resistance value. The g obtained at this time is as shown in FIG. 6(b), as shown in FIG.
However, as shown in the same figure (C), the value of g4 becomes an extremely small value of 1 μs or less at its minimum value. .

この値は、通常のMOSFETを動作させたときに得ら
れる値の1 /1000以下の値である。したがって、
g−/gaO値は300以上となり50dB以上の増幅
利得Gを得ることができる。
This value is 1/1000 or less of the value obtained when operating a normal MOSFET. therefore,
The g-/gaO value is 300 or more, and an amplification gain G of 50 dB or more can be obtained.

このような特性見積もりの妥当性実証するために、第7
図に示すような差動増幅器を構成して増幅利得を測定し
た。同図において、41〜44が本実施例の増幅用複合
半導体装置であり、45が入力端子、46が出力端子、
47が帰還回路、48が測定用補助出力端子である。な
お、ここで用いた半導体装置の主要な構造定数を表2に
示す。
In order to demonstrate the validity of such characteristic estimation, the seventh
We constructed a differential amplifier as shown in the figure and measured the amplification gain. In the figure, 41 to 44 are the amplification composite semiconductor devices of this embodiment, 45 is an input terminal, 46 is an output terminal,
47 is a feedback circuit, and 48 is an auxiliary output terminal for measurement. Note that Table 2 shows the main structural constants of the semiconductor device used here.

また、増幅利得の測定条件を表3に示す。Further, Table 3 shows the measurement conditions for the amplification gain.

表2 表3 第8図は測定結果を示す波形図であり、同図(a)に示
す電圧振幅4.2 m Vの入力信号に対し、端子48
から得られる出力信号電圧振幅は1.3 Vとなってい
る。つまり、増幅利得は309(50dB)である。こ
れは予想された増幅利得とほぼ同じ値であり、本発明の
複合半導体装置を用いれば非常に高い増幅利得を得やす
いことを裏付けている。
Table 2 Table 3 Figure 8 is a waveform diagram showing the measurement results.
The output signal voltage amplitude obtained from is 1.3 V. That is, the amplification gain is 309 (50 dB). This value is almost the same as the expected amplification gain, and confirms that it is easy to obtain a very high amplification gain by using the composite semiconductor device of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の増幅用複合半導体装置によ
れば、MOS F ETの電流電圧特性にJFETの電
流電圧特性が付加され、さらに電流バイパス回路による
ドレイン電流のバイパスの影響を受けて電流飽和領域に
おけるドレイン・コンダクタンスg4が非常に小さくな
り、ga/gaが増大する。そのため、本発明の増幅用
複合半導体装置を用いて差動増幅器を構成した場合、1
段の増幅利得を50dB以上とすることができる。した
がって、従来のように50dB以上の増幅利得を得るた
めに差動増幅器を2段にする必要がない。
As explained above, according to the composite semiconductor device for amplification of the present invention, the current-voltage characteristics of the JFET are added to the current-voltage characteristics of the MOS FET, and the current saturation is further affected by the bypass of the drain current by the current bypass circuit. The drain conductance g4 in the region becomes very small and ga/ga increases. Therefore, when a differential amplifier is configured using the composite semiconductor device for amplification of the present invention, 1
The amplification gain of the stage can be 50 dB or more. Therefore, it is not necessary to use two stages of differential amplifiers in order to obtain an amplification gain of 50 dB or more as in the conventional case.

その結果、回路が簡素化され、設計が容易となる。As a result, the circuit is simplified and the design becomes easier.

また、LSIの寸法が小さくなり、製造歩留まりが向上
する。
Furthermore, the dimensions of the LSI are reduced and the manufacturing yield is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はいずれも本発明の一実施例を示す
回路図、第3図は第1図のMOS F ETloおよび
JFETIIからなる複合半導体装置を示す具体的構成
図、第4図は第1図の電流バイパス回路の具体的構成図
、第5図はM OS F E T10およびJFETI
Iからなる複合半導体装置の電流電圧特性図、第6図は
第1図の実施例の特性図、第7図は本発明の増幅用複合
半導体装置を用いて構成された差動増幅器を示す回路図
、第8図は第7図の差動増幅器の特性を示す波形図、第
9図はCMO3による従来の差動増幅器を示す回路図、
第10図は通常のM OS F E Tの電流電圧特性
図である。 10・−・nチャネル形MOS F ET、11 ・p
チャネル形JFET、12電流バイパス回路、13・・
・pチャネル形MOS F ET、14・・・nチャネ
ル形JFET14.15〜18はそれぞれ外部接続端子
1 and 2 are both circuit diagrams showing one embodiment of the present invention, FIG. 3 is a specific configuration diagram showing a composite semiconductor device consisting of MOS F ETlo and JFET II shown in FIG. 1, and FIG. A specific configuration diagram of the current bypass circuit shown in Fig. 1, and Fig. 5
6 is a characteristic diagram of the embodiment of FIG. 1, and FIG. 7 is a circuit showing a differential amplifier constructed using the amplifying composite semiconductor device of the present invention. 8 is a waveform diagram showing the characteristics of the differential amplifier shown in FIG. 7, and FIG. 9 is a circuit diagram showing a conventional differential amplifier using CMO3.
FIG. 10 is a current-voltage characteristic diagram of a normal MOS FET. 10...n-channel type MOS FET, 11 ・p
Channel type JFET, 12 current bypass circuit, 13...
・P-channel type MOS FET, 14...N-channel type JFET14. 15 to 18 are external connection terminals, respectively.

Claims (1)

【特許請求の範囲】[Claims] 第1導電チャネル形の絶縁ゲート形電界効果トランジス
タと第2導電チャネル形の接合ゲート形電界効果トラン
ジスタとから構成され、前記絶縁ゲート形電界効果トラ
ンジスタのソース端子と前記接合ゲート形電界効果トラ
ンジスタのドレイン端子とを接続し、前記絶縁ゲート形
電界効果トランジスタのドレイン端子と前記接合ゲート
形電界効果トランジスタのゲート端子を接続し、前記絶
縁ゲート形電界効果トランジスタのソース端子と前記接
合ゲート形電界効果トランジスタのソース端子との間に
電流バイパス回路を設けた増幅用複合半導体装置。
It is composed of a first conductive channel type insulated gate field effect transistor and a second conductive channel type junction gate field effect transistor, the source terminal of the insulated gate field effect transistor and the drain of the junction gate field effect transistor. a terminal of the insulated gate field effect transistor, a drain terminal of the insulated gate field effect transistor and a gate terminal of the junction gate field effect transistor, and a source terminal of the insulated gate field effect transistor and the junction gate field effect transistor. A compound semiconductor device for amplification that has a current bypass circuit between it and the source terminal.
JP61163791A 1986-07-14 1986-07-14 Amplification compound semiconductor device Expired - Fee Related JPH0797605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61163791A JPH0797605B2 (en) 1986-07-14 1986-07-14 Amplification compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61163791A JPH0797605B2 (en) 1986-07-14 1986-07-14 Amplification compound semiconductor device

Publications (2)

Publication Number Publication Date
JPS6319846A true JPS6319846A (en) 1988-01-27
JPH0797605B2 JPH0797605B2 (en) 1995-10-18

Family

ID=15780771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61163791A Expired - Fee Related JPH0797605B2 (en) 1986-07-14 1986-07-14 Amplification compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH0797605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044048A1 (en) * 1999-01-22 2000-07-27 Siemens Aktiengesellschaft Hybrid power mosfet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044048A1 (en) * 1999-01-22 2000-07-27 Siemens Aktiengesellschaft Hybrid power mosfet
US6633195B2 (en) 1999-01-22 2003-10-14 Siemens Aktiengesellschaft Hybrid power MOSFET

Also Published As

Publication number Publication date
JPH0797605B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
US4518926A (en) Gate-coupled field-effect transistor pair amplifier
US3947778A (en) Differential amplifier
US4267517A (en) Operational amplifier
US5734296A (en) Low voltage operational amplifier input stage and method
JPH07307624A (en) Cmos operational amplifier of low-voltage high-speed operation
JPH0616571B2 (en) Current amplifier
US3956708A (en) MOSFET comparator
US4340867A (en) Inverter amplifier
US3644838A (en) Amplifier using bipolar and field-effect transistors
JPS6155971A (en) Schottky gate field-effect transistor
US4529948A (en) Class AB amplifier
JPS62109428A (en) Logic gate with temperature compensation
JPS6319846A (en) Composite semiconductor device for amplification
US4060770A (en) Differential amplifier
KR100203965B1 (en) Semiconductor integrated circuit
US4638259A (en) CMOS differential amplifier stage with bulk isolation
JPS5937860B2 (en) Semiconductor integrated circuit device
US5751183A (en) Bipolar transistor circuit having a free collector
JPS62272605A (en) Mos amplifier circuit
JPH03120902A (en) Semiconductor device and mixer circuit
JPH051649B2 (en)
JPH02176811A (en) Reference voltage generating circuit
KR790001060B1 (en) Output transmission device
JPH01137807A (en) Circuit for control of drain/source voltage
JPS5939122A (en) Switch circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees