JPH02176811A - Reference voltage generating circuit - Google Patents

Reference voltage generating circuit

Info

Publication number
JPH02176811A
JPH02176811A JP33089088A JP33089088A JPH02176811A JP H02176811 A JPH02176811 A JP H02176811A JP 33089088 A JP33089088 A JP 33089088A JP 33089088 A JP33089088 A JP 33089088A JP H02176811 A JPH02176811 A JP H02176811A
Authority
JP
Japan
Prior art keywords
electrode
mosfet
channel
drain
grounded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33089088A
Other languages
Japanese (ja)
Other versions
JPH0727422B2 (en
Inventor
Hitoshi Abiko
安彦 仁
Kiyonobu Hinooka
日野岡 清伸
Toru Shibata
柴田 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63330890A priority Critical patent/JPH0727422B2/en
Publication of JPH02176811A publication Critical patent/JPH02176811A/en
Publication of JPH0727422B2 publication Critical patent/JPH0727422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the power supply variance suppression ratio of the output voltage by setting a load MOSFET at the earth side to perform the differential single conversion at a differential input part. CONSTITUTION:When a power supply varies by DELTAV, the gate-source voltage of a constant current generating N channel depletion MOSFET 118 of a constant voltage generating circuit 120 has no change and therefore the drain current of a PMOSFET 117 has no change. Thus the potential of a node 122 serving as the gate voltage varies by DELTAV so that the drain current of the FET 117 is set at its unchanged level. Therefore the drain currents of MOSFET 107 - 109, 111 and 113 - 116 connected by the current mirror structure are not changed from their unchanged levels. Furthermore the potential of a node 123 serving as the gate voltage of the load MOSFET 103 and 104 which perform the differential single conversion at a differential input part 119 is not changed from its unchanged level. Thus a node 124, i.e., the output of the part 119 is not changed from its unchanged level. As a result, the variance of the power supply never leaks out to an output node 125 of an amplifying circuit 121.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に半導体集積回路に搭載
される電源変動抑圧比の極めて高い基準電圧発生回路の
回路構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a circuit configuration of a reference voltage generation circuit with an extremely high power supply fluctuation suppression ratio mounted on a semiconductor integrated circuit.

〔従来の技術〕[Conventional technology]

従来この種の回路はΔvT型定型圧電圧発生回路ばれ、
第2図に一例を示すようにNチャネルMO8型電界効果
トランジスター(以下MOSFETと略称する)201
.及びNチャネルデイプラージ3フ DNMOSFETと略称する)202により構成される
差動入力部213と、この差動入力部の出力を増幅する
増幅部214(第2図では、206及び207で構成さ
れる1段インバータ)と、これら差動入力部及び増幅部
とカレントミラー構成で接続される定電圧発生回路21
5(第2図では、208、209,210,211で構
成される)と、回路を安定に動作させるための位相補償
回路219から成り、差動入力部の正転入力であるDN
MOSFET20 2のゲート電極が接地されている。
Conventionally, this type of circuit is known as a ΔvT type fixed pressure voltage generation circuit.
As an example is shown in FIG. 2, an N-channel MO8 type field effect transistor (hereinafter abbreviated as MOSFET) 201
.. A differential input section 213 is composed of a differential input section 202 (abbreviated as DNMOSFET) and an N-channel diplarge 3F DNMOSFET, and an amplification section 214 (composed of 206 and 207 in FIG. 2) that amplifies the output of this differential input section. a single-stage inverter), and a constant voltage generation circuit 21 connected to these differential input sections and amplifier sections in a current mirror configuration.
5 (consisting of 208, 209, 210, and 211 in Fig. 2) and a phase compensation circuit 219 for stable operation of the circuit.
The gate electrode of MOSFET 202 is grounded.

尚、第2図中MOSFET2 0 3,2 0 4.。In addition, MOSFET 2 0 3, 2 0 4 in Fig. 2. .

206、208,210,212はPチャネルMO8型
電界効果トランジスター(以下PMO S FETと略
称する)、残りのMOSFETは全てNMOSFETで
あり、PMOSFETの基板電位は全て電源電圧に接続
され、NMO S F E Tの基板電位は全て接地さ
れている。
206, 208, 210, and 212 are P-channel MO8 field effect transistors (hereinafter abbreviated as PMOS FETs), and the remaining MOSFETs are all NMOSFETs, and the substrate potentials of the PMOSFETs are all connected to the power supply voltage. All substrate potentials of T are grounded.

但し、DNMOSFET2 0 2は、基板バイアスが
かかった状態で飽和領域動作するような閾値に設計され
ていなければならない。
However, the DNMOSFET 2 0 2 must be designed to have a threshold value that allows it to operate in the saturation region when a substrate bias is applied.

又、一般には出力216と反転入力201の間には、ト
リミング回路と呼ばれる出力電圧補整回路が設けられる
が本発明とは直接関係がないので省略している。
Further, an output voltage compensation circuit called a trimming circuit is generally provided between the output 216 and the inverting input 201, but it is omitted because it is not directly related to the present invention.

回路動作の概要は、次の通りである。The outline of the circuit operation is as follows.

反転入力のNMOSFET20 1に出力216が入力
されているので負帰還がかかり,出力216にはNMO
SFET20 1及び202に流りるドレイン電流比が
PMOSFET2 0 3及び204のW/Lの比と同
じになるような電圧が現われ、その値は次式で表わされ
る。
Since the output 216 is input to the inverting input NMOSFET 201, negative feedback is applied, and the output 216 has the NMOSFET 201.
A voltage appears such that the drain current ratio flowing through the SFETs 201 and 202 is the same as the W/L ratio of the PMOSFETs 203 and 204, and its value is expressed by the following equation.

但し、μは移動度、C6は単位面積当りのゲート容量、
V(isはゲートソース間電圧% V?は閾値電圧であ
り、各トランジスターのμp I t) H V Q’
l rvTを、それぞれのMOSFET番号の最下位桁
と同じ添字で示しく即ち、例えばμ,はMOSFETI
OIの移動度を示し) W2    W。
However, μ is mobility, C6 is gate capacitance per unit area,
V (is is the gate-source voltage % V? is the threshold voltage, μp I t of each transistor) H V Q'
l rvT with the same subscript as the least significant digit of the respective MOSFET number, i.e., μ, is MOSFET I
(indicates the mobility of OI) W2 W.

L !      L + であるものとする。L!     L+ shall be.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来技術では、出力電圧の電源変動抑圧比(以
下PSRRと略称する)が小さいという欠点がある。
The above-described conventional technology has a drawback that the power supply fluctuation suppression ratio (hereinafter abbreviated as PSRR) of the output voltage is small.

その理由を、以下に説明する。The reason for this will be explained below.

例えば、電源にΔVの変動があるとすると、差動入力部
で差動シングル変換を行う負荷PMO3FBT203及
び、204のゲート電極であるノード217の電位はP
MOSFET2 0 3及び204のドレイン電流が、
電源に変動を受ける前と同じ大きさになるようにΔV変
動し、差動入力部の出力ノード218もΔV変動する。
For example, if there is a fluctuation of ΔV in the power supply, the potential of the node 217, which is the gate electrode of the loads PMO3FBT203 and 204 that perform differential-to-single conversion in the differential input section, is P
The drain current of MOSFET203 and 204 is
The output node 218 of the differential input section fluctuates by ΔV so as to have the same magnitude as before the fluctuation in the power supply, and the output node 218 of the differential input section also fluctuates by ΔV.

従って、変動の周波数が大きくなればなるほど、この変
動は位相補償用のコンデンサー200を通して出力ノー
ド216に漏れてくる。
Therefore, the greater the frequency of the fluctuation, the more this fluctuation leaks through the phase compensation capacitor 200 to the output node 216.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の基準電圧発生回路は、ゲート電極。 The reference voltage generating circuit of the present invention has a gate electrode.

ソース電極、基板電極がいず九も接地された第一のDN
MOSFETと、当該DNMO3F’ETのドレイン電
極にダイオード形態で接続された第一のPMOSFET
と、当該第一のPMOS F E Tに電流ミラー形態
で接続された第二、第三、第四のPMOSFETと、ゲ
ート電極が一定バイアスされ、ソース電極が前記第二、
及び第三のPMOSFETのドレイン電極にそれぞれ接
続さhた第四、及び第五のPMOSFETと、ゲート電
極、及びドレイン電極が前記第四のPMOSFETのド
レイン電極に接続され、ソース電極、及び基板電極がい
ずれも接地された第一〇NMOS F E Tと、ゲー
ト電極が当該第一のNMOSFETのゲート電極と共通
で、ソース電極、及び基板電極がいずれも接地された第
二のNMOSFETと、ゲート電極が一定バイアスされ
、ソース電極、及び基板電極が接地された第三のNMO
SFETと、ソース電極が当該第三のNMOSFETと
ドレイン電極に接続され、ゲート電極が入力に接続され
、基板電極が接地され、ドレイン電極が前記第二のPM
OSFETのドレイン電極に接続された第四〇NMOS
FETと、ソース電極が前記第三〇NMOSFETのド
レイン電極に接続され、ゲート電極、及び基板電極が接
地され、ドレイン電極が前記第三のPMOSFETのド
レイン電極に接続された第二のDNMOSFETと、ソ
ース電極、及び基板電極が接続され、ゲート電極が前記
第二のNMOSFETのドし・イン電極に接続され、ド
レイン電極が前記第四のPMOSFETのドレイン電極
に接続された第五のNMOS F E Tから成り、当
該第五のNMOSFETのゲー・ト電極とドレイン電極
の間に少なくともキャパシターを含む位相補償回路を具
備して構成される。
The first DN whose source electrode and substrate electrode are both grounded.
MOSFET and a first PMOSFET connected in diode form to the drain electrode of the DNMO3F'ET.
and second, third, and fourth PMOSFETs connected to the first PMOSFET in a current mirror configuration, the gate electrodes of which are constant biased, and the source electrodes of which are connected to the second,
and a fourth PMOSFET connected to the drain electrode of the third PMOSFET, a gate electrode and a drain electrode connected to the drain electrode of the fourth PMOSFET, and a source electrode and a substrate electrode connected to the drain electrode of the fourth PMOSFET. A first NMOSFET, both of which are grounded, and a second NMOSFET, whose gate electrode is common to the gate electrode of the first NMOSFET, whose source electrode and substrate electrode are both grounded, and whose gate electrode is A third NMO with a constant bias and a grounded source and substrate electrode.
SFET, the source electrode is connected to the third NMOSFET and the drain electrode, the gate electrode is connected to the input, the substrate electrode is grounded, and the drain electrode is connected to the second PM SFET.
40th NMOS connected to the drain electrode of OSFET
FET, a second DNMOSFET whose source electrode is connected to the drain electrode of the third PMOSFET, whose gate electrode and substrate electrode are grounded, and whose drain electrode is connected to the drain electrode of the third PMOSFET; from a fifth NMOS FET to which an electrode and a substrate electrode are connected, a gate electrode is connected to the drain/in electrode of the second NMOSFET, and a drain electrode is connected to the drain electrode of the fourth PMOSFET. The fifth NMOSFET is provided with a phase compensation circuit including at least a capacitor between the gate electrode and the drain electrode.

本発明によれば、差動入力部で差動シングル変換を行う
負荷MOSFETが、電源側ではなく接地側にあるため
、電源に変動があっても差動入力部の出力ノードには変
動が現われないという効果がある。
According to the present invention, the load MOSFET that performs differential-to-single conversion in the differential input section is located on the ground side rather than on the power supply side, so even if there is a fluctuation in the power supply, the fluctuation will not appear at the output node of the differential input section. There is an effect that there is no.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に従って本発明をより詳細に説明す但し、以
下の説明ではMOSFETはチャネル長が充分大きく飽
和領域でのドレイン電流のチャネル長変調効果は無視出
来るものとする。
Hereinafter, the present invention will be explained in more detail with reference to the drawings. However, in the following explanation, it is assumed that the MOSFET has a sufficiently large channel length so that the channel length modulation effect of the drain current in the saturation region can be ignored.

第1図(a)は、本発明の一実施例を示す回路図である
FIG. 1(a) is a circuit diagram showing one embodiment of the present invention.

今、電源にΔVの変動があるとすると、定電圧発生回路
120の定電流発生用DNMOSFET118のゲート
ソース間電圧は変わらないから2MOSFET117の
ドレイン電流は変動前と変わらない。その為、PMOS
FET117のドレ・イン電流が変動前と同じになるよ
うにゲート電極であるノード122の電位もΔV変動す
る。従って、電流ミラー構成で接続されたMOSFET
107.108,109,111,113,114゜1
is、iiaのドレイン電流も変動前と変わらない。更
に、差動入力部で差動シングル変換を行う負荷MOSF
ET103及び、104のゲート電極であるノード12
3の電位が変動前と変わらないから、差動入力部の出力
であるノード124も変動前と変わらない。その結果、
電源の変動は出力ノード125には漏れてこない。
Now, if there is a fluctuation of ΔV in the power supply, the gate-source voltage of the constant current generation DNMOSFET 118 of the constant voltage generation circuit 120 does not change, so the drain current of the 2MOSFET 117 remains the same as before the fluctuation. Therefore, PMOS
The potential of the node 122, which is the gate electrode, also changes by ΔV so that the drain-to-drain current of the FET 117 becomes the same as before the change. Therefore, MOSFETs connected in a current mirror configuration
107.108,109,111,113,114゜1
The drain currents of is and ia are also unchanged from before the change. Furthermore, a load MOSF that performs differential-to-single conversion at the differential input section
Node 12 which is the gate electrode of ET103 and 104
Since the potential at node 3 remains the same as before the change, the output of the differential input section 124 is also the same as before the change. the result,
Fluctuations in the power supply do not leak to the output node 125.

第1図(b)に従来技術と本発明の基準電圧発生回路の
PSRHの周波数特性を比較して示す。
FIG. 1(b) shows a comparison of the PSRH frequency characteristics of the reference voltage generating circuit of the prior art and the present invention.

従来技術のPSRR特性127が周波数の増加に従って
劣化しているのに対し、本発明のPSRR特性128は
DC時のPSRRが高周波まで伸びており、PSRR特
性が大幅に良くなっていることが解る。
It can be seen that while the PSRR characteristic 127 of the prior art deteriorates as the frequency increases, the PSRR characteristic 128 of the present invention has a DC PSRR extending to high frequencies, and the PSRR characteristic is significantly improved.

以上の説明により明かなように、本発明の主眼はNMO
SFET入力のΔV、型基準基準電圧発生回路いて、差
動入力部の差動シングル変換を行なうMOSFETが接
地側にあることにあるから、例えば、第1図(e)に示
すようにPMOSFET105.106のゲートに供給
するバイアス電圧を、PMOSFET 115と縦積み
にしたダイオード接続のNMOSFET129で発生さ
せたり、第1図(d)に示すように、出力電圧補整回路
(一般にはトリミング回路と呼ばれる)131を駆動す
るのに充分な電流を流す為、基準電工発生回路の出力1
25をDNMOSFET131のソースフォロアで受け
るなど、本主眼を逸脱しない範囲で種々のバリエーショ
ンが可能であることはいうまでもない。
As is clear from the above explanation, the main focus of the present invention is NMO
Since the SFET input ΔV type reference voltage generation circuit is based on the fact that the MOSFET that performs differential-to-single conversion in the differential input section is on the ground side, for example, PMOSFET105, 106 as shown in Figure 1(e). The bias voltage supplied to the gate of the PMOSFET 115 can be generated by a diode-connected NMOSFET 129 vertically stacked with the PMOSFET 115, or an output voltage compensation circuit (generally called a trimming circuit) 131 can be used as shown in FIG. 1(d). In order to flow enough current to drive, the output 1 of the reference electrical generator circuit
It goes without saying that various variations are possible within the scope of the present invention, such as receiving 25 by the source follower of the DNMOSFET 131.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は差動入力部で差動シング
ル変換を行う負荷MOSFETが、電源側ではなく接地
側にあるため、電源に変動があっても差動入力部の出力
ノードには変動が現われず、回路のPSRRが向上する
効果を有する。
As explained above, in the present invention, the load MOSFET that performs differential-to-single conversion in the differential input section is located on the ground side rather than on the power supply side, so even if there is a fluctuation in the power supply, the output node of the differential input section remains unchanged. This has the effect of improving the PSRR of the circuit without causing fluctuations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2図は従来
技術を説明する為の回路図である。 100.200・・・・・・キャパシター、105゜1
06.107,108,111,113,115゜11
7・・・・・・PMOSFET、203,204゜20
6.208,210,212,101,102゜103
.104,110,112,114.1・16・・・・
・・NMOSFET% 118,129,201゜20
2.205,207,209,211,102゜118
.130・・・・・・DNMOSFET、119゜21
3・・・・・・差動入力部、121,214・・・・・
・増幅回路、120,215・・・・・・定電圧発生回
路、126゜219・・・・・・位相補償回路、131
・・・・・・トリミング回路、122,1.23・・・
・・・ゲートノード、124゜218・・・・・・差動
入力部の出力ノード、125゜216・・・・・・出力
ノード、127・・・・・・従来技術のPSRR特性、
128・・・・・・本発明のPSRR特性。 代理人 弁理士  内 原   晋 利  得  (dB) /ρρ・・・・・・亨ヤハ゛5・ター 10!;、 106. IθZ/鍔・・・!’MOSF
ETメfl、11ユ113i、117 1θろだる/α、!ρ番・ ・ ・〜MOδFETy1
0.グi2.ii4.t16 tz2 ・ ・・・・・ゲートノード f6・ ・・ ・ ・ ・呂カノート 81図(o) 1.フ/− ・ ・・NMOSFET 第1図(C) /3ノ・ ・・・ ・・ Ll)S゛↓↓グ回プ 拾 グ図(d)
FIG. 1 is a circuit diagram showing one embodiment of the present invention, and FIG. 2 is a circuit diagram for explaining the prior art. 100.200...Capacitor, 105゜1
06.107,108,111,113,115゜11
7...PMOSFET, 203,204°20
6.208,210,212,101,102゜103
.. 104, 110, 112, 114.1/16...
・・NMOSFET% 118,129,201゜20
2.205,207,209,211,102゜118
.. 130...DNMOSFET, 119°21
3... Differential input section, 121, 214...
・Amplifier circuit, 120, 215... Constant voltage generation circuit, 126° 219... Phase compensation circuit, 131
...Trimming circuit, 122, 1.23...
... Gate node, 124°218 ... Output node of differential input section, 125°216 ... Output node, 127 ... PSRR characteristics of conventional technology,
128...PSRR characteristics of the present invention. Agent Patent Attorney Shintoshi Uchihara Profit (dB) /ρρ......Ten Yaha 5 Tar 10! ;, 106. IθZ/Tsuba...! 'MOSF
ET Mefl, 11 Yu 113i, 117 1θ Rodar/α,! ρ number・・・~MOδFETy1
0. Gui2. ii4. t16 tz2 . . . Gate node f6 . . . Rokanote 81 (o) 1. F / - ・ ... NMOSFET Fig. 1 (C) /3 - ... . . . Ll)

Claims (1)

【特許請求の範囲】[Claims] ゲート電極、ソース電極、基板電極がいずれも接地され
た第一の一チャネル型ディプリーションMOSFETと
、該第一の一チャネル型ディプリーションMOSFET
のドレイン電極にダイオード接続された第一の他チャネ
ル型MOSFETと、該第一の他チャネル型MOSFE
Tに電流ミラー形態で接続された第二、第三、第四の前
記他チャネル型のMOSFETと、ゲート電極が一定バ
イアスされ、ソース電極が前記第二及び第三の他チャネ
ル型MOSFETのドレイン電極にそれぞれ接続された
第四、及び第五の前記他チャネル型MOSFETと、ゲ
ート電極及びドレイン電極が前記第四の他チャネル型M
OSFETのドレイン電極に接続され、ソース電極及び
基板電極がいずれも接地された第一の前記一チャネル型
のMOSFETと、ゲート電極が該第一の一チャネル型
MOSFETのゲート電極と共通で、ソース電極及び基
板電極がいずれも接地された第二の前記一チャネル型の
MOSFETと、ゲート電極が一定バイアスされ、ソー
ス電極及び基板電極が接地された第三の前記一チャネル
型のMOSFETと、ソース電極が第三の一チャネル型
MOSFETのドレイン電極に接続され、ゲート電極が
入力端子に接続され、基板電極が接地され、ドレイン電
極が前記第二の他チャネル型MOSFETのドレイン電
極に接続された第四の前記一チャネル型MOSFETと
、ソース電極が前記第三の一チャネル型MOSFETの
ドレイン電極に接続され、ゲート電極及び基板電極が接
地され、ドレイン電極が前記第三の他チャネル型MOS
FETのドレイン電極に接続された第二の前記一チャネ
ル型のディプリーションMOSFETと、ソース電極及
び基板電極が接地され、ゲート電極が前記第二の一チャ
ネル型MOSFETのドレイン電極に接続され、ドレイ
ン電極が前記第四の他チャネル型MOSFETのドレイ
ン電極に接続された第五の前記一チャネル型のMOSF
ETから成り、該第五の一チャネル型MOSFETのゲ
ート電極とドレイン電極の間に少なくともキャパシター
を含む位相補償回路を具備していることを特徴とする基
準電圧発生回路。
a first one-channel depletion MOSFET whose gate electrode, source electrode, and substrate electrode are all grounded; and the first one-channel depletion MOSFET.
a first other channel type MOSFET diode-connected to the drain electrode of the first other channel type MOSFET;
the second, third, and fourth other-channel type MOSFETs connected to T in a current mirror configuration; the gate electrodes are biased at a constant rate; and the source electrodes are the drain electrodes of the second and third other-channel type MOSFETs. the fourth and fifth other channel type MOSFETs connected to the fourth other channel type MOSFET, respectively, and the gate electrode and the drain electrode connected to the fourth other channel type MOSFET
The first one-channel MOSFET is connected to the drain electrode of the OSFET, and the source electrode and the substrate electrode are both grounded, and the gate electrode is common to the gate electrode of the first one-channel MOSFET, and the source electrode and the second one-channel MOSFET whose substrate electrodes are both grounded, the third one-channel MOSFET whose gate electrode is biased at a constant level, whose source electrode and substrate electrode are grounded, and whose source electrode is grounded. A fourth transistor is connected to the drain electrode of the third one-channel MOSFET, has a gate electrode connected to the input terminal, has a substrate electrode grounded, and has a drain electrode connected to the drain electrode of the second multi-channel MOSFET. The one-channel MOSFET has a source electrode connected to the drain electrode of the third one-channel MOSFET, a gate electrode and a substrate electrode that are grounded, and a drain electrode of the third other-channel MOSFET.
The second one-channel depletion MOSFET is connected to the drain electrode of the FET, the source electrode and the substrate electrode are grounded, the gate electrode is connected to the drain electrode of the second one-channel MOSFET, and the drain the fifth one-channel MOSFET, the electrode of which is connected to the drain electrode of the fourth other-channel MOSFET;
1. A reference voltage generation circuit comprising an ET and comprising a phase compensation circuit including at least a capacitor between the gate electrode and the drain electrode of the fifth one-channel MOSFET.
JP63330890A 1988-12-27 1988-12-27 Reference voltage generation circuit Expired - Lifetime JPH0727422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63330890A JPH0727422B2 (en) 1988-12-27 1988-12-27 Reference voltage generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63330890A JPH0727422B2 (en) 1988-12-27 1988-12-27 Reference voltage generation circuit

Publications (2)

Publication Number Publication Date
JPH02176811A true JPH02176811A (en) 1990-07-10
JPH0727422B2 JPH0727422B2 (en) 1995-03-29

Family

ID=18237650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63330890A Expired - Lifetime JPH0727422B2 (en) 1988-12-27 1988-12-27 Reference voltage generation circuit

Country Status (1)

Country Link
JP (1) JPH0727422B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19613626A1 (en) * 1996-04-04 1997-10-09 Star Gmbh Linear guiding device
KR100776160B1 (en) * 2006-12-27 2007-11-12 동부일렉트로닉스 주식회사 Device for generating bandgap reference voltage
KR100825956B1 (en) * 2006-11-07 2008-04-28 한양대학교 산학협력단 Reference voltage generator
KR100848740B1 (en) * 2001-02-15 2008-07-25 세이코 인스트루 가부시키가이샤 Reference voltage circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19613626A1 (en) * 1996-04-04 1997-10-09 Star Gmbh Linear guiding device
KR100848740B1 (en) * 2001-02-15 2008-07-25 세이코 인스트루 가부시키가이샤 Reference voltage circuit
KR100825956B1 (en) * 2006-11-07 2008-04-28 한양대학교 산학협력단 Reference voltage generator
KR100776160B1 (en) * 2006-12-27 2007-11-12 동부일렉트로닉스 주식회사 Device for generating bandgap reference voltage

Also Published As

Publication number Publication date
JPH0727422B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
US4554515A (en) CMOS Operational amplifier
KR100393287B1 (en) Voltage-controlled oscillator
US6340918B2 (en) Negative feedback amplifier circuit
US4459555A (en) MOS Differential amplifier gain control circuit
JP4315299B2 (en) Low voltage operational amplifier and method
US4477782A (en) Compound current mirror
US7233196B2 (en) Bandgap reference voltage generator
EP2652872B1 (en) Current mirror and high-compliance single-stage amplifier
US4484148A (en) Current source frequency compensation for a CMOS amplifier
US4736117A (en) VDS clamp for limiting impact ionization in high density CMOS devices
US20190129458A1 (en) Low dropout linear regulator with high power supply rejection ratio
JPH02162812A (en) Complementary current mirror
US6362682B2 (en) Common-mode feedback circuit and method
KR950010335A (en) Cascode circuit with high output impedance, capable of operating at low operating voltages
US4383223A (en) CMOS Operational amplifier employing push-pull output stage
US6624696B1 (en) Apparatus and method for a compact class AB turn-around stage with low noise, low offset, and low power consumption
US8779853B2 (en) Amplifier with multiple zero-pole pairs
US20210286394A1 (en) Current reference circuit with current mirror devices having dynamic body biasing
JPH0235485B2 (en)
JPH02176811A (en) Reference voltage generating circuit
US7193456B1 (en) Current conveyor circuit with improved power supply noise immunity
US5864228A (en) Current mirror current source with current shunting circuit
JPH07112133B2 (en) Linear amplifier
JPH02224410A (en) Low distortion current mirror circuit
US4590438A (en) Bipolar transistor circuit with FET constant current source

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14