JPS6319811A - Manufacture of amorphous silicon film - Google Patents

Manufacture of amorphous silicon film

Info

Publication number
JPS6319811A
JPS6319811A JP61163710A JP16371086A JPS6319811A JP S6319811 A JPS6319811 A JP S6319811A JP 61163710 A JP61163710 A JP 61163710A JP 16371086 A JP16371086 A JP 16371086A JP S6319811 A JPS6319811 A JP S6319811A
Authority
JP
Japan
Prior art keywords
amorphous silicon
gas
silicon film
film
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61163710A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nozaki
野崎 秀俊
Kensaku Yano
健作 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61163710A priority Critical patent/JPS6319811A/en
Publication of JPS6319811A publication Critical patent/JPS6319811A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To prevent the increase of detective density in an amorphous silicon film by forming the amorphous silicon film in a reaction chamber in which a raw material gas is introduced after diluted with a helium gas and decomposed preliminarily. CONSTITUTION:After a 1 ppm-10000 ppm concentration of B2H6 gas diluted with He and a diluted silane or higher order silane gas are adjusted to a set flow rate by a flow rate control system 1, these gases are preliminarily decomposed in a preliminary decomposition chamber 2, introduced in a reaction chamber 3, a substrate 6 is placed on a grounding electrode 5 which is heated by a heater 7 and an amorphous silicon film is formed by applying high frequency power to a cathode electrode 4. Accordingly, the improvements in the characteristics of an a-Si photo voltage element and an a-Si photoconductive film laminated type solidstate image sensor become possible. That is, since an electron excited by light can run in an ia-Si:H film almost without being affected by a trap, the number of electrons discharged in a conduction band from the trap is reduced and as a result, a after image is reduced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、非晶質シリコン膜の製造方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing an amorphous silicon film.

(従来の技術) 非晶質シリコン膜の製造方法のひとつとして、予備分解
法が従来より知られている。例えば、特開昭59−14
8326の中で予備分解法を用いた非晶質シリコン膜↓
造方法が開示されている。
(Prior Art) A predecomposition method has been known as one of the methods for manufacturing an amorphous silicon film. For example, JP-A-59-14
Amorphous silicon film using pre-decomposition method in 8326↓
A manufacturing method is disclosed.

この方法は、原料ガスの分解エネルギーlこ応じて、熱
、高周波、直流マイクロ波、光エネルギーなどで予備的
に原料ガスを分解した後、反応室lこ導入し非晶質シリ
コン膜を形成するものである。
In this method, the raw material gas is preliminarily decomposed using heat, high frequency, DC microwave, light energy, etc. depending on the decomposition energy of the raw material gas, and then introduced into a reaction chamber to form an amorphous silicon film. It is something.

この予備分解法を用いれば、分解エネルギーの異なる2
種以上の原料ガスを未処理のまま反応室に導入し非晶質
質シリコン膜を形成する場合よりは)制御性良く所望の
非晶質シリコン膜を得ることができる。
If this preliminary decomposition method is used, two
A desired amorphous silicon film can be obtained with better controllability (compared to the case where an amorphous silicon film is formed by introducing untreated raw material gases into the reaction chamber).

しかしながら、従来の予備分解法においては予備分解さ
れる原料ガスの希釈ガスに水素、アルゴンガスが用いら
れてきた。この場合水素ガスは予備分解された後、更に
反応室で分解されるために反応室に所望する以上の水素
ラジカルあるいはイオンが発生し、非晶質シリコン膜の
欠陥密度を増加させることになる。同様に2重に励起エ
ネルギーを加えられたアルゴンガスは、より非晶質シリ
コン膜中に堰り込まれやすくなり、膜中に欠陥を形成し
やすくなる。
However, in the conventional preliminary cracking method, hydrogen or argon gas has been used as a diluent gas for the raw material gas to be pre-decomposed. In this case, hydrogen gas is preliminarily decomposed and then further decomposed in the reaction chamber, so that more hydrogen radicals or ions than desired are generated in the reaction chamber, increasing the defect density of the amorphous silicon film. Similarly, the argon gas to which the excitation energy is applied doubly becomes more likely to penetrate into the amorphous silicon film, making it easier to form defects in the film.

従って、非晶質シリコン膜中の欠陥密Kを増加させずに
、本来の予備分解効果が発揮されるような効果が望まれ
ていた。
Therefore, there has been a desire for an effect in which the original preliminary decomposition effect can be exhibited without increasing the defect density K in the amorphous silicon film.

即ち、予備分解される原料ガスの希釈ガスが、二重に予
備分解エネルギーと反応室での分解エネルギーを加えら
れても反応性に乏しく、非晶質シリコン膜中に欠陥密度
を形成しないことが要求されていた。
In other words, even if the diluent gas of the raw material gas to be pre-decomposed is subjected to double pre-decomposition energy and decomposition energy in the reaction chamber, it has poor reactivity and does not form defect density in the amorphous silicon film. It was requested.

(発明が解決しようとする問題点) 以上述べたように、予備分解される原料ガスの希釈ガス
が水素あるいはアルゴンガスである場合、上記のように
希釈ガスが二重に分解エネルギーを加えられる結果、非
晶質シリコン膜中に欠陥密度:を増加させることになり
、予備分解の効果が十分り lこ発lされないという問題があった。
(Problems to be Solved by the Invention) As stated above, when the diluent gas of the raw material gas to be pre-decomposed is hydrogen or argon gas, the diluent gas is double decomposed energy as described above. However, this increases the defect density in the amorphous silicon film, resulting in the problem that the effect of preliminary decomposition is not sufficiently generated.

本発明は上記の問題点の解決を図るものであり、予備分
解法において、非晶質シリコン膜中の欠陥密度を増加さ
せない非晶質シリコン膜の製造方法を提供することを目
的とする。
The present invention aims to solve the above-mentioned problems, and aims to provide a method for manufacturing an amorphous silicon film that does not increase the defect density in the amorphous silicon film in a preliminary decomposition method.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために、本発明による非晶質シリコ
ン膜の製造方法を以下に示す。
(Means for Solving the Problems) In order to achieve the above object, a method for manufacturing an amorphous silicon film according to the present invention will be described below.

予備分解される原料ガスが希釈される必要がある場合、
例えば82H6ガスなどのドーピングガスを予備分解す
る場合、原料ガスをヘリウムガスで希釈して予備分解し
た後に、反応室に導入し、非晶質シリコン膜を形成した
If the feed gas to be pre-cracked needs to be diluted,
For example, when preliminarily decomposing a doping gas such as 82H6 gas, the raw material gas was diluted with helium gas and preliminarily decomposed, and then introduced into a reaction chamber to form an amorphous silicon film.

(作 用) 水素ガスあるいはアルゴンガスは、予備分解エネルギー
および反応室での分解エネルギーを2重に加えられると
、前者は所望以上のイオン(H+。
(Function) When hydrogen gas or argon gas is double-applied with preliminary decomposition energy and decomposition energy in the reaction chamber, the former produces more ions (H+) than desired.

H7+など)およびラジカルが発生し、膜中の欠陥密度
を増加させ、後者は二重に励起エネルギーを加えられる
と膜中に取りこまれやすくなり、欠陥密度を増加させる
。一方ヘリウムガスは、上記のように2重の励起エネル
ギーを加えられても、活性度は非常に小さく、膜中lど
もほとんど取りこまれるごともないので非晶質シリコン
膜の欠陥密度を増加させることもない。従−て、ヘリウ
ムガスを希釈ガスに用いれば、原料ガスの予備分解効果
を生かして、非晶質シリコン膜が製造されることになる
H7+, etc.) and radicals are generated, increasing the defect density in the film, and the latter are more likely to be incorporated into the film when double excitation energy is applied, increasing the defect density. On the other hand, even if double excitation energy is applied to helium gas as described above, the activity is very low and it is hardly incorporated into the film, so it does not increase the defect density of the amorphous silicon film. Nor. Therefore, if helium gas is used as the diluent gas, an amorphous silicon film can be manufactured by taking advantage of the effect of preliminary decomposition of the source gas.

(実施例) 本発明による非晶質シリコンIi!製造方法の一実施例
を以下に示す。
(Example) Amorphous silicon Ii according to the present invention! An example of the manufacturing method is shown below.

予備分解によって形成される非晶質シリコン膜には、シ
リコン系のアモルファス材料としてa−8i :Ge 
:H、a−8i:N:H,a−8i:C:Hなどが仰ら
れているが、以下の実施例ではジボランガス、’(B2
H6)を予備分解して形成した非晶質シリコン膜の例を
示す。
The amorphous silicon film formed by preliminary decomposition contains a-8i:Ge as a silicon-based amorphous material.
:H, a-8i:N:H, a-8i:C:H, etc., but in the following examples, diborane gas, '(B2
An example of an amorphous silicon film formed by preliminary decomposition of H6) is shown.

一般に、アンドープ型の水素化非晶質シリコン膜(以下
1a−8i:Hと記す)は、比抵抗ρが1010(Ωc
In)以下であり、僅かながらn型に近い。そのため、
1a−8i:Hを高抵抗化するために、微量のB2H6
,17”スをシラン(SiH4)あるいは高次シラン(
b I 2 H6)に混合し、反応室で分解反応を発生
させて製膜するやり方が良く知られている。
Generally, an undoped hydrogenated amorphous silicon film (hereinafter referred to as 1a-8i:H) has a specific resistance ρ of 1010 (Ωc
In) or less, and is slightly close to n-type. Therefore,
1a-8i: In order to increase the resistance of H, a trace amount of B2H6 is added.
, 17" with silane (SiH4) or higher silane (
A method of forming a film by mixing it with I 2 H6) and causing a decomposition reaction in a reaction chamber is well known.

上記の場合、82H6ガスを予備分解すれば分解効率が
高まり、非晶質シリコンネットワークの4a位にボロン
が入りやすくなるので同じ高抵抗を達成するために、−
反応室で形成する場合よりは必要とされるB2H6;l
iが少なくて済む。その結果膜中に取り込まれるB−i
が減少し、Bに起因する欠陥密度を減少させることがで
きる。
In the above case, if the 82H6 gas is pre-decomposed, the decomposition efficiency will increase and boron will more easily enter the 4a position of the amorphous silicon network, so in order to achieve the same high resistance, -
B2H6 required than when formed in the reaction chamber;
Only a small number of i is required. As a result, B-i is incorporated into the membrane.
is reduced, and the defect density caused by B can be reduced.

第1図は、本発明の非晶質シリコン膜製造方法に用いる
製造装置の概略図である。この製造装置に従って製造方
法を説明する。
FIG. 1 is a schematic diagram of a manufacturing apparatus used in the amorphous silicon film manufacturing method of the present invention. The manufacturing method will be explained according to this manufacturing apparatus.

He希釈のI Ppm〜lo、000ppm饋度B2H
6カスト、必要なら水素ガスあるいはヘリウムガスなど
で希釈されたシランあるいは高次シランガスを流量コン
トロール系mで設定流量に調整した後、前者のみ熱、高
周波、直流、マイクロ波あるいは光エネルギーで予備分
解室(2)において予備分解し、反応室(3)に4人し
た。基板(6)はヒーター(力で加熱された接地電極(
5)上に置き、カソード電極(4)に高周波電力を加え
非晶質シリコン膜を形成した。上記ガスは反応室(3)
において分解された後に、排気系(8)で外部1に排気
される。勿論、反応室(3)において高周反電力ではな
く、光励起エネルギーなど他の分解エネルギーが加えら
れても良い。
He dilution I Ppm~lo, 000ppm Feediness B2H
After adjusting the flow rate of silane or high-order silane gas diluted with hydrogen gas or helium gas, if necessary, to the set flow rate using the flow control system m, only the former is heated in a preliminary decomposition chamber using heat, high frequency, direct current, microwave, or light energy. It was pre-decomposed in (2), and four people were placed in the reaction chamber (3). The substrate (6) is connected to a heater (ground electrode heated by force).
5) and applied high frequency power to the cathode electrode (4) to form an amorphous silicon film. The above gas is in the reaction chamber (3)
After being decomposed at , it is exhausted to the outside 1 by an exhaust system (8). Of course, other decomposition energy such as optical excitation energy may be applied in the reaction chamber (3) instead of high-frequency inverse power.

ガスm fitは、Total流量として10〜100
SCCMとし、基板温度は50〜300℃、カソード電
極(4)に加える高周波電力は5〜200Wとした。
Gas m fit is 10 to 100 as a total flow rate.
SCCM was used, the substrate temperature was 50 to 300°C, and the high frequency power applied to the cathode electrode (4) was 5 to 200W.

8iH,(シラン)とB、H6ガスの流量比を106:
1に設定し、He希釈B2H6ガスの予備分解エネルギ
ーとして高周波電力5〜200W投入した場合の成膜さ
れる非晶質シリコン膜の抵抗率(ρ)および電子のモビ
リティ−・ライフタイムat(μτ積)を表1に示す。
The flow rate ratio of 8iH, (silane) and B, H6 gas is 106:
1 and input high-frequency power of 5 to 200 W as preliminary decomposition energy of He-diluted B2H6 gas. ) are shown in Table 1.

従来例には水素希釈B2H6ガスを予備分解した例を示
した。
The conventional example shows an example in which hydrogen-diluted B2H6 gas is pre-decomposed.

表1 また、表1の比較例には、予備分解法を用いない他は同
一条件で形成した場合の特性を示した。
Table 1 In addition, the comparative example in Table 1 shows the characteristics when formed under the same conditions except that the preliminary decomposition method was not used.

表1に示すように、本実施例により高抵抗かつ電子のμ
τ積が高い良質なボロン微量ドープ1a−8i:H膜を
得ることができた。
As shown in Table 1, this example shows high resistance and electron μ
A high quality 1a-8i:H film doped with a small amount of boron and having a high τ product could be obtained.

上記の改善がはかられたことにより、a−8i光起電力
素子やa−3i光光導電膜n層型固体撮像素子の特性改
善が可能になった。特にa−8i光光導電横積型固体撮
像素子において、1a−8i:H膜は高抵抗であり、か
つ数μm以上積層される必要があり、電子の高いμτ檀
が要求されるため本実施例による特性改善が者しい。つ
まり、光励起された電子がトラップの影響をほとんど受
けずに、1a−8i:H膜中を走行することができるた
め、トラップから伝導帯に放出される電子数は減少し、
結果的に残像を低減させることができる。
The above improvements have made it possible to improve the characteristics of the A-8i photovoltaic device and the A-3i photoconductive film n-layer solid-state imaging device. In particular, in the a-8i photoconductive horizontally stacked solid-state image sensor, the 1a-8i:H film has high resistance and needs to be stacked over several micrometers, which requires a high electron density, so this implementation was implemented. The characteristic improvement by example is obvious. In other words, the photoexcited electrons can travel through the 1a-8i:H film with almost no influence from the traps, so the number of electrons emitted from the traps to the conduction band decreases.
As a result, afterimages can be reduced.

勿論本発明は、正孔のμτ積も大きくなるので、感光体
ドラムへの応用も可能である。
Of course, the present invention can also be applied to photosensitive drums since the μτ product of holes becomes large.

以上の実施例においては、予備分解される原料ガスがB
2H6ガスの場合について説明してきたが勿論SiH4
,GeH,、C,H,などへの他の原料ガスにおいても
有効であり、膜中の欠陥密度を増加させずに予備分解の
効果を得ることができる。
In the above embodiment, the raw material gas to be pre-decomposed is B
We have explained the case of 2H6 gas, but of course SiH4
, GeH, C, H, etc., and the effect of preliminary decomposition can be obtained without increasing the defect density in the film.

〔発明の効果〕〔Effect of the invention〕

本発明による非晶質シリコン膜製造方法を用いれば、従
来の予備分解される原料ガスの希釈ガスにヘリウムガス
以外を用いる場合よりも膜中の欠陥密度を減少させるた
め、所望の膜質を制御性良く得ることができる。
By using the method for manufacturing an amorphous silicon film according to the present invention, the defect density in the film is reduced compared to the conventional case where a gas other than helium gas is used as a diluent gas for the raw material gas to be predecomposed, so it is possible to control the desired film quality. You can get a good deal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施する上に用いた装置を示す図で
ある。 2・・・予備分解室、3・・・反応室、4・・・高周波
電力が投入されるカソード電極。
FIG. 1 is a diagram illustrating the apparatus used in practicing the invention. 2... Preliminary decomposition chamber, 3... Reaction chamber, 4... Cathode electrode to which high frequency power is input.

Claims (2)

【特許請求の範囲】[Claims] (1)予備分解された原料ガスを反応室に導入し、非晶
質シリコン膜を形成する製造方法において、予備分解さ
れる原料ガスの希釈ガスがヘリウムガスであることを特
徴とする非晶質シリコン膜の製造方法。
(1) In a manufacturing method in which a predecomposed raw material gas is introduced into a reaction chamber to form an amorphous silicon film, the amorphous silicon film is characterized in that a diluent gas for the predecomposed raw material gas is helium gas. Method of manufacturing silicon film.
(2)予備分解される原料ガスがB_2H_6あるいは
、PH_3などのドーピングガスであることを特徴とす
る特許請求の範囲第1項記載の非晶質シリコン膜の製造
方法。
(2) The method for manufacturing an amorphous silicon film according to claim 1, wherein the raw material gas to be predecomposed is a doping gas such as B_2H_6 or PH_3.
JP61163710A 1986-07-14 1986-07-14 Manufacture of amorphous silicon film Pending JPS6319811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61163710A JPS6319811A (en) 1986-07-14 1986-07-14 Manufacture of amorphous silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61163710A JPS6319811A (en) 1986-07-14 1986-07-14 Manufacture of amorphous silicon film

Publications (1)

Publication Number Publication Date
JPS6319811A true JPS6319811A (en) 1988-01-27

Family

ID=15779162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61163710A Pending JPS6319811A (en) 1986-07-14 1986-07-14 Manufacture of amorphous silicon film

Country Status (1)

Country Link
JP (1) JPS6319811A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895550A (en) * 1982-11-01 1983-06-07 Shunpei Yamazaki Device for forming non-single crystal semiconductor layer
JPS59131515A (en) * 1983-01-17 1984-07-28 Toshiba Corp Formation of film of amorphous silicon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895550A (en) * 1982-11-01 1983-06-07 Shunpei Yamazaki Device for forming non-single crystal semiconductor layer
JPS59131515A (en) * 1983-01-17 1984-07-28 Toshiba Corp Formation of film of amorphous silicon

Similar Documents

Publication Publication Date Title
US4409605A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US4226898A (en) Amorphous semiconductors equivalent to crystalline semiconductors produced by a glow discharge process
US4613382A (en) Method of forming passivated polycrystalline semiconductors
JPH06105691B2 (en) Method for producing carbon-doped amorphous silicon thin film
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
IE52688B1 (en) Apparatus and method for making a photovoltaic panel
US4710786A (en) Wide band gap semiconductor alloy material
JPS58155774A (en) Semiconductor device
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
JPH01119015A (en) Silicon carbide semiconductor film and manufacture thereof
JPS58155773A (en) Manufacture of semiconductor device
US4703336A (en) Photodetection and current control devices
JPS6319811A (en) Manufacture of amorphous silicon film
JP2708864B2 (en) Method for producing amorphous semiconductor
US6667197B1 (en) Method for differential oxidation rate reduction for n-type and p-type materials
JPS59175170A (en) Hetero junction solar battery and manufacture thereof
JPS5935016A (en) Preparation of hydrogen-containing silicon layer
JPS62240768A (en) Formation of deposited film
JP2850047B2 (en) Doping method of a-SiC film
JPS6041453B2 (en) Method for producing microcrystalline amorphous silicon film
JP2758161B2 (en) Method for manufacturing semiconductor device
JPS59211289A (en) Manufacture of amorphous silicon solar battery
JPS58102569A (en) Manufacture of amorphous silicon solar battery
JPS61179868A (en) Method of forming accumulated film
JPS63283119A (en) Amorphous semiconductor, amorphous semiconductor device and manufacture thereof