JPS6319767A - Manufacture of zinc electrode for alkaline storage battery - Google Patents

Manufacture of zinc electrode for alkaline storage battery

Info

Publication number
JPS6319767A
JPS6319767A JP61163956A JP16395686A JPS6319767A JP S6319767 A JPS6319767 A JP S6319767A JP 61163956 A JP61163956 A JP 61163956A JP 16395686 A JP16395686 A JP 16395686A JP S6319767 A JPS6319767 A JP S6319767A
Authority
JP
Japan
Prior art keywords
zinc
active material
electrode
calcium
material paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61163956A
Other languages
Japanese (ja)
Inventor
Takashi Ueda
上田 高士
Yoshikazu Ishikura
石倉 良和
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61163956A priority Critical patent/JPS6319767A/en
Publication of JPS6319767A publication Critical patent/JPS6319767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To retard shape change of zinc electrode or dendritic growth of zinc, and also to retard hardening of zinc active material paste during manufacture by coating an electrode core with zinc active material paste added with calcium gluconate. CONSTITUTION:Zinc active material paste to which calcium gluconate is added is applied to an electrode core, and dried. The adding amount of calcium gluconate is 10-20 wt% based on the zinc active material. Since calcium hydroxide produced by reaction with alkaline electrolyte fixes zincate ion as calcium zincate, the shape change of a zinc electrode 2 or the dendritic growth of zinc attendant upon the progress of charge-discharge cycles is retarded. Since formation of calcium zincate is prevented during manufacture of zinc electrode, hardening of zinc active material paste can be retarded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はニッケルー亜鉛蓄電池、銀−亜鉛蓄電池などの
アルカリ蓄電池に用いられる亜鉛極の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing zinc electrodes used in alkaline storage batteries such as nickel-zinc storage batteries and silver-zinc storage batteries.

(ロ)従来の技術 負極活物質に亜鉛を用い次アルカリ蓄電aは、エネルギ
ー密度が高く、安価である利点を有する。
(b) Conventional technology Sub-alkaline storage a using zinc as the negative electrode active material has the advantage of high energy density and low cost.

しかし亜鉛極は可溶性電極であり充放電反応で亜鉛が溶
出、析出を繰り返すものであるなめ充放電サイクルの進
行とともに極板形状が変化したり、又、充電時には亜鉛
が均一に電析せず樹枝状に生長しこの樹枝状亜鉛がセパ
レータを貫通し対極と短絡してしまうという欠点があっ
た。これ全改善するなめに例えば特公昭54−9696
号公報に開示されているように、負極の亜鉛活物質中に
水酸化カルシウムの粉末を均一に混合することにより、
放電反応に伴って負極から溶出する亜鉛酸イオンを亜鉛
酸カルシウムCajn(OH)4の形で固定することが
提案されている。しかしながら亜鉛活物質中忙水酸化力
〜シウム粉末を混合し、水を加えてに一スト状にする際
、亜鉛酸カルシウムの生成がおこりペーストの硬化が発
生し製造工程上における作業性の低下、集電体上活物質
の密着任が低下しはく離しやすいといった問題点がある
However, zinc electrodes are soluble electrodes, and zinc elutes and precipitates repeatedly during charge/discharge reactions.The shape of the electrode plate changes as the charge/discharge cycle progresses, and the zinc does not deposit uniformly during charging, causing the zinc to elute and precipitate repeatedly. There was a drawback that the dendritic zinc, which grew in the form of a dendritic structure, penetrated the separator and short-circuited with the counter electrode. In order to completely improve this, for example, the Special Publication Publication No. 54-9696
As disclosed in the publication, by uniformly mixing calcium hydroxide powder into the zinc active material of the negative electrode,
It has been proposed to fix zincate ions eluted from the negative electrode during a discharge reaction in the form of calcium zincate Cajn(OH)4. However, when mixing the hydroxide power in the zinc active material and sium powder and adding water to form a single stroke, calcium zincate is formed and the paste hardens, reducing workability in the manufacturing process. There is a problem that the adhesion of the active material on the current collector decreases and it is easy to peel off.

(ハ)発明が解決しようとする問題点 末完F!Aは、亜鉛極の形状変化や樹枝状亜鉛の生長を
抑制すると共に、亜鉛櫃袈造時における亜鉛活物質ペー
ストの硬化を抑制すること全目的とする。
(c) The problem that the invention attempts to solve is complete! The purpose of A is to suppress the change in the shape of the zinc electrode and the growth of dendritic zinc, as well as to suppress the hardening of the zinc active material paste during the construction of the zinc casing.

に))間呟点を解決する之めの手段 不発E!Aは、グルコン酸力μシウム全添加した亜鉛活
物質ペーストを極板芯体に塗着、乾燥することを特徴と
するものである。尚、グルコン酸カルシウムの添加量と
しては亜鉛活物質に対して10〜20重蛍%が好適する
ni)) The means to resolve the issue has failed! Method A is characterized in that a zinc active material paste to which μsium gluconic acid is fully added is applied to the electrode plate core and dried. The amount of calcium gluconate to be added is preferably 10 to 20% based on the zinc active material.

←)作用 グルコン酸カルシウムtC加した亜鉛活物質ペーストを
極板芯体に塗着、乾燥する本発明によるアルカリ蓄電池
用亜鉛極の製造方法によれば、亜鉛極の裂遺段階では水
酸化力A/S/ウムが存在しないのでペーストの硬化が
抑制され、作業性の低下や、集電体と活物質との密着性
が低下するといった問題が解消されると共に、祈る方法
で製造し之亜鉛様を電池に組込むと亜鉛極中のグルコン
酸カルシウムがアルカリ電解液と反応して水酸化カルシ
ウムを生成し、従来のように初期から水酸化カルシウム
を添加する場合と同様に水酸化カルシウムの存在によっ
て放電時に亜鉛極から溶出する亜鉛酸イオンを亜鉛酸力
〜シウムとして固定することができ、亜鉛極の形状変化
による容量低下、樹枝状亜鉛の生長による内部短絡全防
止しうる。
←) EffectAccording to the method for manufacturing zinc electrodes for alkaline storage batteries according to the present invention, in which a zinc active material paste containing calcium gluconate tC is applied to the electrode plate core and dried, the hydration power A is reduced at the cracking stage of the zinc electrode. The absence of /S/um suppresses the hardening of the paste, eliminating problems such as reduced workability and poor adhesion between the current collector and the active material. When incorporated into a battery, the calcium gluconate in the zinc electrode reacts with the alkaline electrolyte to produce calcium hydroxide, and the presence of calcium hydroxide causes discharge, similar to the conventional case where calcium hydroxide is added from the beginning. Zinc acid ions sometimes eluted from the zinc electrode can be fixed as zinc acid ions, thereby completely preventing capacity reduction due to changes in the shape of the zinc electrode and internal short circuits due to growth of dendritic zinc.

また、グルコン酸カルシウムの湿潤作用により亜鉛活物
質ペースト充填時の充填密度の向上が計れる。
Furthermore, the wetting effect of calcium gluconate can improve the packing density when filling the zinc active material paste.

(へ)実施例 亜鉛活物質として酸化亜鉛粉末45重量モ亜鉛粉末45
重量形、添加剤として酸化水銀粉末5重量%、そしてグ
ルコン酸力IVVウム全亜鉛つ物質に対して15重jl
q6(水酸化力〜シウム換算で2.5重量り添加し、十
分に混合し念後、ポリテト、F7A/オロエチレン(P
TFE )ディヌハーションを5重量96添加し、更に
水を加え混練した。この活物質ペーストチローラにて圧
延してシート状にしたものをパンチングメタル集電体の
両面に配設して加圧成型したのち、乾燥して亜鉛極を得
意。
(f) Example Zinc oxide powder 45% weight mozinc powder 45% as zinc active material
Gravimetric form, 5% by weight of mercury oxide powder as additives, and 15% by weight of gluconic acid for all zinc substances.
Add q6 (hydroxidation power ~ 2.5 weight in terms of sium), mix thoroughly, and add polytetra, F7A/oloethylene (P
TFE) 5 weight 96 of Dinuhershon was added, and water was further added and kneaded. This active material paste is rolled into a sheet using a chiller roller, placed on both sides of a punched metal current collector, pressure-molded, and then dried to form a zinc electrode.

このようにして得られ九亜鉛#、七公知の焼結式ニッケ
ル極とを組み合わせて、単二サイズのニッケルー亜鉛蓄
電池(本発明電池A)を得念。第1図はこの電池の縦断
面図であり(1)はニッケル極、(2)は亜鉛極であっ
てこれら電#1.は多層セパレータ+31を介して渦巻
状に巻回されて渦巻電極体全構成しており、これらの正
、負極及びセパレータには電解液(KOH”)が保持さ
れており遊陪の電解液が殆んど存在しない構成となって
いる。(4)は負極端子兼用の電池缶、(5)はガス抜
き機構(図示せず)全具備し念正極端子兼用の封口体で
あり、これらはそれぞれ亜鉛極、ニッケ/L/極t/c
電気的に接続され、絶縁バッキング(6)ヲ介して密閉
されている。
By combining the nine zinc # thus obtained and seven known sintered nickel electrodes, a AA size nickel-zinc storage battery (Battery A of the present invention) was created. FIG. 1 is a longitudinal cross-sectional view of this battery, in which (1) is a nickel electrode, (2) is a zinc electrode, and these electrodes #1. is spirally wound through a multilayer separator +31 to form the entire spiral electrode body, and these positive and negative electrodes and the separator hold electrolyte (KOH), and most of the free electrolyte is (4) is a battery can that also serves as a negative electrode terminal, and (5) is a sealed body that is fully equipped with a gas venting mechanism (not shown) and also serves as a positive electrode terminal. Kiwami, Nikkei/L/Kiwa t/c
They are electrically connected and sealed via an insulating backing (6).

比較例1・どして、グルコン酸カルシウム1ki加しな
い以外は、実施例と同様の方法で得意亜鉛権を用い之比
較電也Bを作製した。
Comparative Example 1 Comparative Denya B was prepared using zinc powder in the same manner as in the example except that 1 ki of calcium gluconate was not added.

比較例2として、グルコン酸カルシウムの代りに水酸化
カルシウム2.5重量%を用いた以外は、実施例と同様
の方法で得た亜鉛極を用いた比較電池Cを作製し友。
As Comparative Example 2, Comparative Battery C was prepared using a zinc electrode obtained in the same manner as in Example except that 2.5% by weight of calcium hydroxide was used instead of calcium gluconate.

第2図は本発明電池Aと比較電池B、Cのサイクル特性
比較図である。サイク/L/条件ば360mAで5時間
充電し、360mAで電池電圧が1.0VK達する迄放
電するというものである。第2図より明らかなように、
本発明電池Aのサイクル特性が優れている。これは、比
奴′4池Bに2いては放電時に亜鉛が亜鉛酸イオンとし
て溶解し充電時に初期形態に電析せず、亜鉛極表面に樹
枝状あるいは海綿状に亜鉛が析出し、充放電サイクルの
進行に伴って正極方向に生長し内部短絡を引きルこして
いると考えられる、一方、比較電池Cにおいては、亜鉛
活物質のペーストを集電体に加圧成型する以前にペース
トの硬化が発生し、活物質ペーストと集電体との密着性
が悪く、活物質ペーストの剥離が発生し、水酸化カルシ
ウムの効果を発揮しないままサイクル特性が低下したと
考えられる。
FIG. 2 is a comparison diagram of the cycle characteristics of the battery A of the present invention and comparative batteries B and C. The cycle/L/condition is to charge at 360 mA for 5 hours and discharge at 360 mA until the battery voltage reaches 1.0 VK. As is clear from Figure 2,
The cycle characteristics of the battery A of the present invention are excellent. This is because zinc is dissolved as zincate ions during discharge in Pond B2 and is not deposited in the initial form during charging, but instead zinc is deposited in a dendritic or spongy form on the surface of the zinc electrode, and this occurs during charging and discharging. It is thought that the zinc active material paste grows toward the positive electrode as the cycle progresses, causing an internal short circuit.On the other hand, in Comparative Battery C, the zinc active material paste hardens before being pressure-molded into the current collector. This is considered to be the reason why the adhesion between the active material paste and the current collector was poor, and the active material paste peeled off, causing the cycle characteristics to deteriorate without exerting the effects of calcium hydroxide.

これらに対して本発明電池Aば、亜鉛極製造時において
グルコン酸カルシウムを添加しているので亜鉛酸カルシ
ウムが生成されず、亜鉛活物質ペーストの硬化が抑制さ
れ芯体と活物質との密着性が向上し之こと、又グルコン
酸カルシウムの湿潤作用により亜鉛活物質ペースト中の
単位含水敏全無添加のものに比べ約10%減少させるこ
とができたので亜鉛極の充填密度が向上したこと、更に
は、本発明電池Aの亜鉛極においてはアルカリ電解液を
注入し之時にグルコン酸カルシウムがアルカリ電解液と
反応し水酸化カルシウムを生成し、この水酸化カルシウ
ムが放電の際に溶出した亜鉛酸イオンを亜鉛酸カルシウ
ムの形で固定し、亜鉛極の変形や樹枝状亜鉛による内部
短絡を抑制することにより長期【亘る充放電サイクルを
可能にしたと考えられるっ 次に、本発明電池において亜鉛活物質に対するグルコン
酸カルシウムの添加量を種々変化させたときのサイクル
特性比較図?第3図に示す。
In contrast, in battery A of the present invention, since calcium gluconate is added during the manufacture of the zinc electrode, calcium zincate is not produced, and the hardening of the zinc active material paste is suppressed, thereby improving the adhesion between the core and the active material. In addition, due to the wetting action of calcium gluconate, the unit water content in the zinc active material paste was able to be reduced by about 10% compared to the one without additives, so the packing density of the zinc electrode was improved. Furthermore, in the zinc electrode of the battery A of the present invention, when an alkaline electrolyte is injected, calcium gluconate reacts with the alkaline electrolyte to produce calcium hydroxide, and this calcium hydroxide dissolves the zinc acid dissolved during discharge. It is believed that by fixing ions in the form of calcium zincate and suppressing deformation of the zinc electrode and internal short circuit due to dendritic zinc, it is possible to enable long-term charge/discharge cycles. Comparison diagram of cycle characteristics when varying the amount of calcium gluconate added to the substance? It is shown in Figure 3.

測定は360mAで5時間充電し、360mAで放電終
止電圧’t 1. OVとするサイクル条件にて比較検
討全行っな。第3図より明らかなように、グルコン酸カ
ルシウム添加量が10〜20重量%であるときが擾れて
いるのがわかる。こればグルコン酸カルシウムの添加量
が5重量%以下であるとグルコン酸カルシウムから解離
して生成する水酸化カルシウムの量が放電時に溶出する
亜鉛酸イオンを亜鉛酸カルシウムとして固定するのに十
分でないためと考えられる。またグルコン酸カルシウム
の添加量が25重量を以上にiると、グルコン酸カルシ
ウムの亜鉛極中に占める割合が増大し亜鉛極の容量の低
下をもたらすと同時に、グルコン酸カ/レつウムから生
成する水酸化力〃シウムが亜鉛活物質全体を包み込んで
しまい活物質の反応性を低下させ早期劣化すると考えら
れる。
The measurement was performed by charging at 360 mA for 5 hours, and at 360 mA, the discharge end voltage 't1. Perform all comparative studies under the cycle conditions set to OV. As is clear from FIG. 3, it can be seen that sagging occurs when the amount of calcium gluconate added is 10 to 20% by weight. If the amount of calcium gluconate added is less than 5% by weight, the amount of calcium hydroxide dissociated from calcium gluconate and generated will not be sufficient to fix the zincate ions eluted during discharge as calcium zincate. it is conceivable that. Furthermore, when the amount of calcium gluconate added exceeds 25% by weight, the proportion of calcium gluconate in the zinc electrode increases, resulting in a decrease in the capacity of the zinc electrode, and at the same time, the amount of calcium gluconate formed from potassium gluconate increases. It is thought that the hydroxide power of sium wraps the entire zinc active material, reducing the reactivity of the active material and causing early deterioration.

(ト)発明の効果 本発明のg!遣方法により得られた亜鉛極を用いること
で、アルカリ電解液お反応し生成し之水酸化カルシウム
が、亜鉛酸イオンを亜鉛酸カルシウムの形で固定するの
で充放1サイクルの進行に伴う亜鉛極の変形や樹枝状亜
鉛の生長を抑制することができる。また、亜沿極裂造時
においては、亜鉛酸カルシウムが生成されないので、亜
鉛活物質ペーストの硬化が抑制され、芯体と活物質との
密着性が向上し、グルコン酸カルシウムのff11M作
用により活物質ペースト中の単位含水量を低下させるこ
とができ亜鉛極の充填密度が同上する等、種々の効果を
奏し長期に亘るサイクルが可能となるものであってその
工業的価値はきわめて大きい。
(g) Effect of the invention g! By using the zinc electrode obtained by the charging method, the calcium hydroxide produced by the reaction with the alkaline electrolyte fixes zincate ions in the form of calcium zincate, so that the zinc electrode is deformation and growth of dendritic zinc. In addition, during subpolar fissure formation, calcium zincate is not produced, so the hardening of the zinc active material paste is suppressed, the adhesion between the core and the active material is improved, and the ff11M effect of calcium gluconate makes it more active. It has various effects such as lowering the unit water content in the material paste and increasing the packing density of the zinc electrode, and enables long-term cycles, so its industrial value is extremely large.

【図面の簡単な説明】 第1図は本発明電池の縦断面図、第2、第3図はサイク
ル特性比較図である。 A・・・本発明電池、  B%C・・・比較電池、1・
・・ニック/I/極、2・・・亜鉛極、3・・・多層セ
パレータ、4・・・電池缶、5・・・封口体、6・・・
絶縁バッキング。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of the battery of the present invention, and FIGS. 2 and 3 are comparison diagrams of cycle characteristics. A...Battery of the present invention, B%C...Comparison battery, 1.
... Nick/I/pole, 2... Zinc electrode, 3... Multilayer separator, 4... Battery can, 5... Sealing body, 6...
Insulated backing.

Claims (2)

【特許請求の範囲】[Claims] (1)グルコン酸カルシウムを添加した亜鉛活物質ペー
ストを極板芯体に塗着、乾燥してなるアルカリ蓄電池用
亜鉛極の製造方法。
(1) A method for producing a zinc electrode for an alkaline storage battery, in which a zinc active material paste containing calcium gluconate is applied to an electrode plate core and dried.
(2)前記グルコン酸カルシウムの添加量が亜鉛活物質
に対して10〜20重量%であることを特徴とする特許
請求の範囲第(1)項記載のアルカリ蓄電池用亜鉛極の
製造方法。
(2) The method for manufacturing a zinc electrode for an alkaline storage battery according to claim (1), wherein the amount of calcium gluconate added is 10 to 20% by weight based on the zinc active material.
JP61163956A 1986-07-11 1986-07-11 Manufacture of zinc electrode for alkaline storage battery Pending JPS6319767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61163956A JPS6319767A (en) 1986-07-11 1986-07-11 Manufacture of zinc electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61163956A JPS6319767A (en) 1986-07-11 1986-07-11 Manufacture of zinc electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS6319767A true JPS6319767A (en) 1988-01-27

Family

ID=15784016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61163956A Pending JPS6319767A (en) 1986-07-11 1986-07-11 Manufacture of zinc electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6319767A (en)

Similar Documents

Publication Publication Date Title
JP3560187B2 (en) Method for producing hydrogen storage electrode
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JPS6319767A (en) Manufacture of zinc electrode for alkaline storage battery
JPS5983347A (en) Sealed nickel-cadmium storage battery
JP2913482B2 (en) Lead storage battery
JP2001102085A (en) Formation method of airtight type nickel-hydrogen storage battery
JPS63126163A (en) Alkaline storage battery
JPH1012233A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JPH0232750B2 (en)
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JPS63158749A (en) Zinc electrode for alkaline storage battery
JP3827023B2 (en) Hydrogen storage electrode and method for manufacturing the same
JPH05190175A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery
JPH0410181B2 (en)
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JPH0724216B2 (en) Non-sintered cadmium cathode for alkaline storage batteries
JP2966497B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JPS59196562A (en) Alkaline zinc secondary battery
JPS58137963A (en) Alkaline zinc storage battery
JPS62241262A (en) Zinc electrode for alkaline storage battery
JP2002075348A (en) Hydrogen storage alloy powder for electrode, manufacturing method for the alloy powder, hydrogen storage alloy electrode, and alkaline storage battery
JPS5971265A (en) Alkali zinc lead storage battery