JPS63196527A - Production of inner olefin - Google Patents

Production of inner olefin

Info

Publication number
JPS63196527A
JPS63196527A JP62028580A JP2858087A JPS63196527A JP S63196527 A JPS63196527 A JP S63196527A JP 62028580 A JP62028580 A JP 62028580A JP 2858087 A JP2858087 A JP 2858087A JP S63196527 A JPS63196527 A JP S63196527A
Authority
JP
Japan
Prior art keywords
alumina
catalyst
alkali metal
olefin
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62028580A
Other languages
Japanese (ja)
Other versions
JPH0674216B2 (en
Inventor
Takeo Suzukamo
鈴鴨 剛夫
Masami Fukao
正美 深尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP62028580A priority Critical patent/JPH0674216B2/en
Publication of JPS63196527A publication Critical patent/JPS63196527A/en
Publication of JPH0674216B2 publication Critical patent/JPH0674216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To improve catalytic activity and to obtain the aimed compound with a small amount of catalyst and efficiently in producing a stable inner olefin, by isomerizing an olefin, by using a solid basic catalyst obtained by treating alumina with an alkali metal at a specific temperature. CONSTITUTION:In producing a stable inner olefin by isomerizing the double bond of olefin, hydrous alumina especially hydrous alumina of gamma-, x- rho-type having large surface area is heat-treated with >=equivalent based on water mol amount of the alumina, preferably 1.01-2 equivalents based on the alumina of an alkali metal in an inert gas atmosphere at 180-350 deg.C, preferably 200-300 deg.C to give a solid basic catalyst. The solid basic catalyst is used and the aimed compound is obtained with an extremely smaller amount of catalyst than by a conventional procedure, in a remarkably high efficiency, in high yield, safely, industrially and advantageously without causing by-products such as polymers, etc., and danger such as ignition, etc.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内部オレフィンの製造法に関し、詳しくは特定
の触媒の存在下にオレフィンを異性化せしめてより安定
な内部オレフィンを製造する方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for producing internal olefins, and more particularly to a method for producing more stable internal olefins by isomerizing olefins in the presence of a specific catalyst. It is.

〈従来の技術1発明が解決しようとする問題点〉オレフ
ィンを異性化してより安定な内部オレフィンに異性化す
る方法は種々知られている。しかしながら一般に公知方
法ではオレフィンの分解を伴ったり、不必要なオレフィ
ンの重合物を与えたりまたランダム化する等の望まざる
要素を多分にもったものが多く、経済的に不利な限定を
受けている。
<Prior Art 1: Problems to be Solved by the Invention> Various methods are known for isomerizing olefins into more stable internal olefins. However, generally known methods often have many undesirable elements such as decomposition of olefins, formation of unnecessary olefin polymers, and randomization, and are economically disadvantageous and limited. .

かかる異性化反応の触媒として、液状の塩基、例えばア
ルカリ金属水酸化物と非プロトン性有機溶媒、アルカリ
金属アミドとアミン類あるいは有機アルカリ金属と脂肪
族アミンなどの混合物が知られている。しかしながら、
このような液状の塩基試剤を用いる方法では、触媒活性
が充分でなく、高価な試剤を多量必要とするということ
の他に、該試剤の反応マスからの分離回収が難事であり
、繁雑な分離回収工程を必要とするのみならず多量のエ
ネルギーを消費するという問題がある。
As catalysts for such isomerization reactions, liquid bases such as mixtures of alkali metal hydroxides and aprotic organic solvents, alkali metal amides and amines, or organic alkali metals and aliphatic amines are known. however,
Methods using such liquid base reagents do not have sufficient catalytic activity, require large amounts of expensive reagents, and are difficult to separate and recover from the reaction mass, requiring complicated separation. There is a problem that not only a recovery process is required but also a large amount of energy is consumed.

また固体状の異性化触媒としては、アルカリ金属を表面
積の大きい担体、例えば活性炭、シリカゲル、アルミナ
等に分散せしめた触媒が知られている( J 、 Am
、 Chew、 Soc、 82387(1960) 
 ) 。
Also, as solid isomerization catalysts, catalysts in which alkali metals are dispersed in carriers with large surface areas, such as activated carbon, silica gel, alumina, etc., are known (J, Am
, Chew, Soc, 82387 (1960)
).

しかしながらかかる固体触媒はアルカリ金属それ自体が
単に担体上に微細分散されているものであリ、空気と接
触すると発火して失活するため、操作性、安全性の面で
大きな難点があった。また異性化能力も不満足なもので
あった。
However, in such solid catalysts, the alkali metal itself is simply finely dispersed on a carrier, and when it comes into contact with air, it ignites and becomes deactivated, so there are major drawbacks in terms of operability and safety. Also, the isomerization ability was unsatisfactory.

本発明者らは異性化触媒のかかる諸問題点のない、効率
的な触媒として、既にアルミナ、アルカリ金属水酸化物
、アルカリ金属を原料とした新規な触媒および含水アル
ミナ、アルカリ金属を原料とした新規な触媒を見い出す
とともに、これらの、  固体塩基触媒は空気中でも発
火などの危険を伴わず、より安全でありオレフィンの内
部オレフィンへの異性化触媒として優れたものであるこ
とを見い出している(特公昭57−21378号、特公
昭55−29055号、特公昭54−41562号、特
公昭55−29056号、特公昭55−29058号公
報)。
The present inventors have already developed a new catalyst using alumina, alkali metal hydroxide, and an alkali metal as raw materials and a new catalyst using hydrous alumina and an alkali metal as raw materials as efficient catalysts that do not have the problems of isomerization catalysts. In addition to discovering new catalysts, we also discovered that these solid base catalysts are safer and are excellent as catalysts for the isomerization of olefins to internal olefins, without the risk of ignition even in the air. (Japanese Patent Publication No. 57-21378, Japanese Patent Publication No. 55-29055, Japanese Patent Publication No. 41562-1982, Japanese Patent Publication No. 55-29056, Japanese Patent Publication No. 55-29058).

本発明者らはかかる固体塩基触媒を用いた内部オレフィ
ンの製造について、より工業的に優れた方法を見い出す
べく更に検討を重ねた結果、触媒の原料である含水アル
ミナとアルカ′り金属とを加熱作用せしめる温度が特に
重要であり、特定の温度下に調製すれば触媒活性が著し
く向上し、少ない触媒量で効率良く異性化が進行するこ
とを見い出し、さらに種々の検討を加え本発明を完成し
た。
The present inventors conducted further studies in order to find a more industrially superior method for producing internal olefins using such solid base catalysts, and as a result, they heated hydrous alumina and an alkali metal, which are raw materials for the catalyst. They discovered that the temperature at which the catalyst is activated is particularly important, and that if the catalyst is prepared at a specific temperature, the catalytic activity can be significantly improved, and isomerization can proceed efficiently with a small amount of catalyst.After further various studies, the present invention was completed. .

く問題を解決するための手段〉 すなわち、本発明はオレフィンの二重結合を異性化せし
め、より安定な内部オレフィンを製造するにあたり、含
水アルミナと該アルミナの水分モル量に対して当量を越
えた量のアルカリ金属とを不活性ガス雰囲気中、180
乃至350 ’Cの温度下で加熱作用せしめた固体塩基
触媒を用いることを特徴とする工業的に極めて優れた内
部オレフィンの製造法を提供するものである。
In other words, the present invention isomerizes the double bonds of olefins and produces more stable internal olefins by isomerizing the double bonds of olefins. amount of alkali metal in an inert gas atmosphere, 180
The present invention provides an industrially excellent method for producing internal olefins, which is characterized by using a solid base catalyst heated at a temperature of 350' to 350'C.

本発明における固体塩基触媒の原料である含水アルミナ
としてはα−アルミナ以外の種々の形態の含水アルミナ
が使用される。
As the hydrated alumina that is the raw material for the solid base catalyst in the present invention, various forms of hydrated alumina other than α-alumina are used.

アルミナは通常、水酸化アルミニウムの焼成により製造
されるが、焼成温度と焼成時間によって種々の準安定構
造をとるとともにそれに含まれる水分の量も異なり種々
の形態のアルミナが存在することが知られている。本発
明ではこのようなアルミナが主として用いられる。特に
r −、χ−1ρ−型のような高表面積の含水アルミナ
が好ましく用いられる。またアルミナ含有物の含水体、
例えばカオリン、アルミナシリケート等の含水体も使用
できるが前記アルミナが特に好ましい、またアルミナは
焼成温度の上昇に従って最終的にはα−アルミナに転じ
、アルミナの加熱減量がなくなるとされている。アルミ
ナに含まれる水の量を測定することはそう容易ではない
が、初めの各種形態のアルミナからα−アルミナに転じ
るまでの加熱減量で表すことができる。含水アルミナの
水分含量は通常1.3乃至10重量%好ましくは2乃至
7重量%の範囲である。
Alumina is usually produced by firing aluminum hydroxide, but it is known that alumina exists in various forms, taking various metastable structures and varying amounts of water depending on the firing temperature and time. There is. In the present invention, such alumina is mainly used. In particular, hydrous alumina with a high surface area such as r-type and χ-1ρ-type is preferably used. Also, hydrated bodies of alumina-containing materials,
For example, water-containing substances such as kaolin and alumina silicate can be used, but the alumina mentioned above is particularly preferred, and it is said that as the firing temperature increases, alumina will eventually convert to α-alumina, and the loss of alumina on heating will disappear. Although it is not so easy to measure the amount of water contained in alumina, it can be expressed as the amount of water lost by heating until the initial various forms of alumina are converted to α-alumina. The water content of the hydrated alumina is usually in the range of 1.3 to 10% by weight, preferably 2 to 7% by weight.

また本発明に用いられる触媒のもう一方の原料であるア
ルカリ金属としては周期律表第一族のナトリウム、カリ
ウム、ルビジウムなどが挙げられる。これ等のアルカリ
金属を2種以上用いても差し支えないし、これ等の合金
、例えばナトリウムとカリウムとの合金を用いても良い
Further, examples of the alkali metal which is the other raw material of the catalyst used in the present invention include sodium, potassium, rubidium, etc. of Group 1 of the periodic table. Two or more of these alkali metals may be used, or an alloy thereof, such as an alloy of sodium and potassium, may be used.

かかるアルカリ金属の使用量は含水アルミナの水分モル
量に対して当量を越えた量が必要であり好ましくは水分
に対して1.Ol乃至2倍当量である。
The amount of the alkali metal to be used must be more than an equivalent to the molar amount of water in the hydrated alumina, and preferably 1. It is 1 to 2 times equivalent.

含水アルミナにアルカリ金属を作用せしめるに当たって
は所定量のアルカリ金属を一度に加えても良いし、含水
アルミナの水分と当量程度加え充分反応せしめた後、更
に残りのアルカリ金属を加えても良い。後者の場合は先
に加えるアルカリ金属と後に加えるアルカリ金属が異な
っていても差し支えない。
When making the alkali metal act on the hydrated alumina, a predetermined amount of the alkali metal may be added at once, or an amount equivalent to the water content of the hydrated alumina may be added to cause a sufficient reaction, and then the remaining alkali metal may be added. In the latter case, the alkali metal added first and the alkali metal added later may be different.

本発明に使用される触媒は不活性ガス雰囲気中で前記の
ような含水アルミナとアルカリ金属とを特定の温度下に
作用せしめて触媒を調製するものであるが、不活性ガス
としては窒素、ヘリウム、アルゴン等が例示される。
The catalyst used in the present invention is prepared by making the above-mentioned hydrated alumina and alkali metal interact with each other at a specific temperature in an inert gas atmosphere. , argon, etc.

本発明で使用される触媒はその調製温度、すなわち含水
アルミナとアルカリ金属とを作用せしめる温度が極めて
重要であり、触媒活性に著しい影響を及ぼす、触媒調製
温度は180乃至350 ”Cであり、より好ましくは
200乃至330℃である。かかる温度下に触媒を調製
すれば、これまでにない著しく活性の高い触媒が得られ
、少ない触媒量で効率良く目的反応を完結することがで
きる。
For the catalyst used in the present invention, the preparation temperature, that is, the temperature at which hydrated alumina and alkali metal are allowed to interact with each other, is extremely important.The catalyst preparation temperature is 180 to 350"C, which has a significant effect on the catalytic activity. Preferably, the temperature is 200 to 330° C. If the catalyst is prepared at such a temperature, a catalyst with extremely high activity never seen before can be obtained, and the desired reaction can be efficiently completed with a small amount of catalyst.

加熱時間は選定する温度条件等により異なるが通常15
分乃至10時間で充分である。
The heating time varies depending on the selected temperature conditions, etc., but is usually 15 minutes.
Minutes to 10 hours is sufficient.

かくして、公知の固体塩基触媒に比し発火等の危険を伴
わず安全で、しかも著しく活性の高い触媒が得られる。
In this way, a catalyst can be obtained which is safer than known solid base catalysts without the risk of ignition, and has significantly higher activity.

本発明はかかる固体塩基触媒を用いてオレフィンをより
安定な内部オレフィンに異性化せしめるものであるが、
かかる原料オレフィンとしては、例えば1−ブテン、1
−ペンテン、1−ヘキセン、■−へブテン、l−ノネン
、■−デセン、2−メチル−1−ブテン、3−メチル−
1−ブテン、4−メチル−1−ペンテン、3−メチル−
1−ペンテン、2−メチル−1−ペンテン、2.3−ジ
メチル−1−ブテン等の°鎖状化合物、アリルベンゼン
、アリルトルエン等の芳香族化合物、2−イソプロペニ
ルノルボルナン、5−イソプロペニル−2−ノルボルネ
ン、6−メチル−5−ビニルノルボルネン等の架橋環化
合物(但し、5〜ビニル−2−ノルボルネンを除<)、
メチレンシクロペンクン、メチレンシクロヘキサン等の
環状化合物、1.4−ペンタジェン、1.5−へキサジ
エン、2,5−ジメチル−1,4−へキサジエン、2.
5−ジメチル−1,5−へキサジエン等の非共役オレフ
ィンなどの末端オレフィン化合物、4−メチル−2−ペ
ンテン、5−(2−プロペニル)−2−ノルボルネン等
の末端以外に二重結合を有し、より安定な位置に異性化
し得る化合物が挙げられる。
The present invention uses such a solid base catalyst to isomerize olefins to more stable internal olefins,
Such raw material olefins include, for example, 1-butene, 1
-Pentene, 1-hexene, ■-hebutene, l-nonene, ■-decene, 2-methyl-1-butene, 3-methyl-
1-butene, 4-methyl-1-pentene, 3-methyl-
Chain compounds such as 1-pentene, 2-methyl-1-pentene, 2,3-dimethyl-1-butene, aromatic compounds such as allylbenzene, allyltoluene, 2-isopropenylnorbornane, 5-isopropenyl- Bridged ring compounds such as 2-norbornene and 6-methyl-5-vinylnorbornene (excluding 5-vinyl-2-norbornene),
Cyclic compounds such as methylenecyclopenkune and methylenecyclohexane, 1,4-pentadiene, 1,5-hexadiene, 2,5-dimethyl-1,4-hexadiene, 2.
Terminal olefin compounds such as non-conjugated olefins such as 5-dimethyl-1,5-hexadiene, 4-methyl-2-pentene, 5-(2-propenyl)-2-norbornene, etc. having a double bond other than the terminal However, examples include compounds that can be isomerized to a more stable position.

また内部オレフィンを製造するに当り、使用する固体塩
基触媒の使用量は、原料に対し、通常1/3000乃至
1150重量であり、好ましくはl/2000乃至1/
100重量である。また異性化の温度については常温下
でも充分反応が進行するので特に加温する必要はないが
、目的によっては加温しても良い0通常−30乃至12
0 ”C好ましくは−10乃至100℃の温度範囲で実
施される。
In producing internal olefins, the amount of solid base catalyst used is usually 1/3000 to 1150 liters, preferably 1/2000 to 1/2000 liters, of the weight of the raw material.
100 weight. Regarding the temperature of isomerization, there is no need to particularly heat the reaction as the reaction proceeds sufficiently at room temperature, but depending on the purpose it may be heated.
0''C Preferably carried out at a temperature range of -10 to 100°C.

必要に応じ不活性媒体、例えばペンタン、ヘキサン、ヘ
プタン、ドデカンなどの炭化水素等で希釈して反応を行
うこともできるが無媒体で充分である0本発明方法はバ
ッチ法でも連続法でも実施でき、異性化にあたっては、
あらかじめ原料をアルミナ等の乾燥剤で前処理すること
も有効である。
If necessary, the reaction can be carried out by diluting with an inert medium, for example, a hydrocarbon such as pentane, hexane, heptane, dodecane, etc., but no medium is sufficient.The method of the present invention can be carried out by either a batch method or a continuous method. , for isomerization,
It is also effective to pre-treat the raw material with a desiccant such as alumina.

より安全に確実に異性化を行うためには不活性ガス雰囲
気下に行えば良い。
In order to carry out isomerization more safely and reliably, it may be carried out under an inert gas atmosphere.

異性化反応生成物はガスクロマトグラフィー等の既知の
方法によって分析され、濾過などにより触媒と分離され
る。
The isomerization reaction product is analyzed by a known method such as gas chromatography and separated from the catalyst by filtration or the like.

〈発明の効果〉 か(して本発明の目的物であるより安定な位置に異性化
した内部オレフィンが得られるが、本発明方法によれば
公知方法に比べ著しく少ない触媒量でも極めて効率良く
オレフィンの異性化反応を完結せしめることができ、重
合物等の副生物を伴うことなく高収率で内部オレフィン
が得られる。
<Effects of the Invention> In this way, an internal olefin isomerized to a more stable position, which is the object of the present invention, can be obtained, but according to the method of the present invention, olefins can be produced extremely efficiently even with a significantly smaller amount of catalyst than in the known method. The isomerization reaction can be completed, and internal olefins can be obtained in high yield without producing by-products such as polymers.

しかも、発火等の危険をともなうこともなく安全に反応
を進行せしめることができるので、内部オレフィンの工
業的製造方法として極めて有用である。
In addition, the reaction can proceed safely without any risk of ignition, so it is extremely useful as an industrial method for producing internal olefins.

〈実施例〉 以下の実施例によって、本発明をより詳細に説明するが
、本発明は実施例のみに限定されるものではない。
<Examples> The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited only to the examples.

参考例1 水分を2.2重量%含有するγ−アルミナ30.0gを
100dのフラスコに入れ、窒素ガス流通下に撹拌しな
がら300℃に加熱した。金属ナトリウムを1.2g導
入し、1時間同温度で撹拌したのち放冷した。灰青色の
触媒30.9gを得た。
Reference Example 1 30.0 g of γ-alumina containing 2.2% by weight of water was placed in a 100 d flask and heated to 300° C. while stirring under nitrogen gas flow. 1.2 g of metallic sodium was introduced, stirred at the same temperature for 1 hour, and then allowed to cool. 30.9 g of a gray-blue catalyst was obtained.

参考例2 水分を2.0重量%含有するγ−アルミナ30.0gを
100−のフラスコに入れ、窒素ガス流通下に撹拌しな
から260℃に加熱した。金属ナトリウムを0.75g
と金属カリウム0.45gを加え1時間撹拌した後放冷
した。灰青色の触媒31.0gを得た。
Reference Example 2 30.0 g of γ-alumina containing 2.0% by weight of water was placed in a 100-mm flask and heated to 260° C. while stirring under nitrogen gas flow. 0.75g of metallic sodium
After adding 0.45 g of metallic potassium and stirring for 1 hour, the mixture was allowed to cool. 31.0 g of a gray-blue catalyst was obtained.

参考例3 水分を2.2重量%含有するγ−アルミナ30.0gを
100m1のフラスコに入れ、窒素ガス流通下に撹拌し
ながら210 ’Cに加熱した。金属ナトリウムを1.
2g導入し、1時間同温度で撹拌したのち放冷した。灰
青色の触媒30.8gを得た。
Reference Example 3 30.0 g of γ-alumina containing 2.2% by weight of water was placed in a 100 ml flask and heated to 210'C while stirring under nitrogen gas flow. Metallic sodium 1.
2g of the mixture was introduced, stirred at the same temperature for 1 hour, and then allowed to cool. 30.8 g of a gray-blue catalyst was obtained.

参考例4 水分を2.21g量%含有するT−アルミナ30.0g
を100jdのフラスコに入れ、窒素ガス流通下に撹拌
しながら400℃に加熱した。金属ナトリウムを1.2
g導入し、1時間同温度で撹拌したのち放冷した。灰青
色の触媒30.9gを得た。
Reference example 4 30.0 g of T-alumina containing 2.21 g% water
The mixture was placed in a 100-jd flask and heated to 400° C. with stirring under nitrogen gas flow. Metallic sodium 1.2
After stirring at the same temperature for 1 hour, the mixture was allowed to cool. 30.9 g of a gray-blue catalyst was obtained.

実施例1 100mフラスコに窒素雰囲気下で参考例1で調製した
固体塩基0.25gと4−メチル−1−ペンテン(&[
l成:4メチル−1−ペンテン98゜9%、4−メチル
−2−ペンテン1.1%)22゜2gを加え15〜20
℃で16時間撹拌した後反応液を分析したところ、4−
メチル−1−ペンテン0.4%、4−メチル−2−ペン
テン10.8%、2−メチル−2−ペンテン88.8%
であった。
Example 1 0.25 g of the solid base prepared in Reference Example 1 and 4-methyl-1-pentene (&[
l composition: 4-methyl-1-pentene 98.9%, 4-methyl-2-pentene 1.1%) 22.2g was added and 15-20%
After stirring at °C for 16 hours, the reaction solution was analyzed and found that 4-
Methyl-1-pentene 0.4%, 4-methyl-2-pentene 10.8%, 2-methyl-2-pentene 88.8%
Met.

実施例2 100Idフラスコに窒素雰囲気下で参考例2で調製し
た固体塩基0.20gと4−メチル−1−ペンテン(&
l成:実施例1と同じ)28.0gを加え15〜20℃
で16時間撹拌した後反応液を)ン分析したところ、4
−メチル−1−ペンテン0/・鉢 澗%、4−メチル−2−ペンテン9.0%、2−メチル
−2−ペンテン90.6%であった。。
Example 2 0.20 g of the solid base prepared in Reference Example 2 and 4-methyl-1-pentene (&
Formation: Add 28.0g (same as Example 1) and mix at 15-20℃
After stirring for 16 hours, the reaction solution was analyzed and found to be 4.
-Methyl-1-pentene 0/.%, 4-methyl-2-pentene 9.0%, and 2-methyl-2-pentene 90.6%. .

実施例3 10(ldフラスコに窒素雰囲気下で参考例3で調製し
た固体塩基0.23gと4−メチル−1−ペンテン(組
成:実施例1と同じ)20.7gを加え15〜20℃で
16時間撹拌した後反応液、を分析したところ、4−メ
チル−1−ペンテン0.6%、4−メチル−2−ペンテ
ン37.8%、2−メチル−2−ペンテン61.6%で
あった。
Example 3 10 (0.23 g of the solid base prepared in Reference Example 3 and 20.7 g of 4-methyl-1-pentene (composition: same as Example 1) were added to an LD flask under a nitrogen atmosphere at 15 to 20°C. After stirring for 16 hours, the reaction solution was analyzed and found to be 0.6% of 4-methyl-1-pentene, 37.8% of 4-methyl-2-pentene, and 61.6% of 2-methyl-2-pentene. Ta.

比較例1 100dフラスコに窒素雰囲気下で参考例4で調製した
固体塩基0.25gと4−メチル−l−ペンテン(&l
成:実施例1と同じ)22.2gを加え15〜20℃で
16時間撹拌した後反応液を分析したところ、4−メチ
ル−1−ペンテン1.5%、4−メチル−2−ペンテン
53.2%、2−メチル−2−ペンテン45.3%であ
った。
Comparative Example 1 0.25 g of the solid base prepared in Reference Example 4 and 4-methyl-l-pentene (&l
After addition of 22.2 g (same composition as in Example 1) and stirring at 15 to 20°C for 16 hours, analysis of the reaction solution revealed that 1.5% of 4-methyl-1-pentene and 53% of 4-methyl-2-pentene were added. .2% and 2-methyl-2-pentene 45.3%.

実施例4 100adフラスコに窒素雰囲気下で参考例1で調製し
た固体塩基0.25gと2,3−ジメチル−1−ブテン
(組成:2.3−ジメチル−1−ブテン99.4%、2
,3−ジメチル−2−ブテン0.6%)45.0gを加
え、15〜20℃で24時間撹拌した0反応後濾過によ
って、触媒を分離し、43.3gの反応液を得た。この
ものをガスクロマトグラフィーで分析したところ、2.
3−ジメチル−1−ブテン8.0%、2.3−ジメチル
−2−ブテン92.0%であった。
Example 4 0.25 g of the solid base prepared in Reference Example 1 and 2,3-dimethyl-1-butene (composition: 2,3-dimethyl-1-butene 99.4%, 2
, 3-dimethyl-2-butene (0.6%)) and stirred at 15 to 20° C. for 24 hours. After the reaction, the catalyst was separated by filtration to obtain 43.3 g of a reaction solution. When this product was analyzed by gas chromatography, 2.
3-dimethyl-1-butene was 8.0% and 2.3-dimethyl-2-butene was 92.0%.

比較例2 100jdフラスコに窒素雰囲気下で参考例4で調製し
た固体塩基0.24gと実施例4で用いた2、3−ジメ
チル−1−ブテン43.2gを加え、15〜20℃で2
4時間撹拌した0反応後、濾過によって触媒を分離し、
41.5gの反応液を得た。このものをガスクロマトグ
ラフィーで分析したところ、2.3−ジメチル−1−ブ
テン34.8%、2.3−ジメチル−2−ブテン65.
2%であった。
Comparative Example 2 0.24 g of the solid base prepared in Reference Example 4 and 43.2 g of 2,3-dimethyl-1-butene used in Example 4 were added to a 100 jd flask under a nitrogen atmosphere, and the mixture was heated at 15 to 20°C.
After the reaction was stirred for 4 hours, the catalyst was separated by filtration.
41.5 g of reaction solution was obtained. When this product was analyzed by gas chromatography, 2.3-dimethyl-1-butene was 34.8% and 2.3-dimethyl-2-butene was 65%.
It was 2%.

Claims (1)

【特許請求の範囲】[Claims]  オレフィンを異性化して安定な内部オレフィンを製造
するにあたり、含水アルミナと該アルミナの水分モル量
に対して当量を越えた量のアルカリ金属とを不活性ガス
雰囲気中、180乃至350℃の温度下で加熱作用せし
めた固体塩基触媒を用いることを特徴とする内部オレフ
ィンの製造法。
In producing stable internal olefins by isomerizing olefins, hydrated alumina and an alkali metal in an amount exceeding the equivalent amount to the molar amount of water in the alumina are mixed in an inert gas atmosphere at a temperature of 180 to 350°C. A method for producing internal olefins, characterized by using a solid base catalyst subjected to heating action.
JP62028580A 1987-02-10 1987-02-10 Internal olefin manufacturing method Expired - Lifetime JPH0674216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028580A JPH0674216B2 (en) 1987-02-10 1987-02-10 Internal olefin manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028580A JPH0674216B2 (en) 1987-02-10 1987-02-10 Internal olefin manufacturing method

Publications (2)

Publication Number Publication Date
JPS63196527A true JPS63196527A (en) 1988-08-15
JPH0674216B2 JPH0674216B2 (en) 1994-09-21

Family

ID=12252537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028580A Expired - Lifetime JPH0674216B2 (en) 1987-02-10 1987-02-10 Internal olefin manufacturing method

Country Status (1)

Country Link
JP (1) JPH0674216B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910618A (en) * 1993-03-04 1999-06-08 Sumitomo Chemical Company, Limited Process for preparing 2,3-dimethyl-2-butene
US11261141B2 (en) 2017-12-14 2022-03-01 Exxonmobil Chemical Patents Inc. Processes for isomerizing alpha olefins
US11332420B2 (en) 2017-12-14 2022-05-17 Exxonmobil Chemical Patents Inc. Processes for isomerizing alpha olefins

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529055A (en) * 1978-08-22 1980-03-01 Mitsubishi Electric Corp Enclosed type compressor equipped with oil cooler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529055A (en) * 1978-08-22 1980-03-01 Mitsubishi Electric Corp Enclosed type compressor equipped with oil cooler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910618A (en) * 1993-03-04 1999-06-08 Sumitomo Chemical Company, Limited Process for preparing 2,3-dimethyl-2-butene
US11261141B2 (en) 2017-12-14 2022-03-01 Exxonmobil Chemical Patents Inc. Processes for isomerizing alpha olefins
US11332420B2 (en) 2017-12-14 2022-05-17 Exxonmobil Chemical Patents Inc. Processes for isomerizing alpha olefins

Also Published As

Publication number Publication date
JPH0674216B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
US4786626A (en) Solid base
US4822764A (en) Solid base catalyst for the preparation of internal olefins and process for preparing the catalyst
EP0354584B1 (en) Solid base, process for producing the same and its use in preparing internal olefins
EP0219637B1 (en) Process for preparing 5-ethylidene-2-norbornene
KR950006520B1 (en) Process for preparing 5-ethylene-2-norbornene with high quality
JPS63196527A (en) Production of inner olefin
US4877918A (en) Process for preparing internal olefins
JPS63196526A (en) Production of inner olefin
JPH0581570B2 (en)
JPH02138228A (en) Preparation of inner olefin
JPH0840944A (en) Production of inner olefin
JP2522354B2 (en) Method for producing solid base
JPH0434977B2 (en)
KR940011891B1 (en) Process for preparing solid base
JPH0133A (en) Method for producing internal olefins
JPH0769937A (en) Production of internal olefin
JPH06200B2 (en) Method for producing solid base catalyst
JPH0684318B2 (en) Internal olefin production method
JPH0551341B2 (en)
KR950003114B1 (en) Process for preparing 5-ethylidene-2-norbornene
JPS62155227A (en) Production of high-quality 5-ethylidene-2-norbornene
JPH0134A (en) Internal olefin production method
JPH0683786B2 (en) Method for producing solid base
JPH02138231A (en) Production of alkyl-substituted aromatic hydrocarbon
JPS62129145A (en) Preparation of solid base catalyst