JPH0434977B2 - - Google Patents

Info

Publication number
JPH0434977B2
JPH0434977B2 JP60262283A JP26228385A JPH0434977B2 JP H0434977 B2 JPH0434977 B2 JP H0434977B2 JP 60262283 A JP60262283 A JP 60262283A JP 26228385 A JP26228385 A JP 26228385A JP H0434977 B2 JPH0434977 B2 JP H0434977B2
Authority
JP
Japan
Prior art keywords
alumina
catalyst
alkali metal
temperature
norbornene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60262283A
Other languages
Japanese (ja)
Other versions
JPS62123139A (en
Inventor
Takeo Suzukamo
Masami Fukao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP60262283A priority Critical patent/JPS62123139A/en
Priority to EP86111278A priority patent/EP0219637B1/en
Priority to DE8686111278T priority patent/DE3675327D1/en
Priority to MX003459A priority patent/MX167987B/en
Priority to US06/896,959 priority patent/US4720601A/en
Priority to CA000516079A priority patent/CA1267161A/en
Publication of JPS62123139A publication Critical patent/JPS62123139A/en
Publication of JPH0434977B2 publication Critical patent/JPH0434977B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は5−エチリデン−2−ノルボルネンの
製造法に関し、詳しくは特定の触媒の存在下に5
−ビニル−2−ノルボルネン(以下VNBと略称
する)を異性化せしめることを特徴とする5−エ
チリデン−2−ノルボルネン(以下、ENBと略
称する)の製造法に関するものである。 ENBは合成ゴムであるエチレン・プロピレ
ン・ジエンモノマー三元共重合体、いわゆる
EPDMの第三成分として極めて有用な化合物で
あり、通常1,3−ブタジエンとシクロペンタジ
エンの反応により得られるVNBを触媒の存在下
に異性化せしめて製造される。 かかる異性化反応の触媒として、液状の塩基、
例えばアルカリ金属水酸化物と非プロトン性有機
溶媒、アルカリ金属アミドとアミン類あるいは有
機アルカリ金属と脂肪族アミンなど混合物が知ら
れている。しかしながら、このような液情の塩基
試剤を用いる方法では、触媒活性が充分でなく、
高価な試剤を多量必要とするということの他に、
該試剤の反応マスからの分離回収が難事であり、
繁雑な分離回収工程を必要とするのみならず多量
のエネルギーを削費するという問題がある。 また固体状の異性化触媒としては、アルカリ金
属を表面積の大きい担体、例えば活性炭、シリカ
ゲル、アルミナ等に分散せしめた触媒が知られて
いる(J.Am.Chem.Soc.82 387(1960))。しかし
ながらかかる固体触媒はアルカリ金属それ自体が
単に担体上に微細分散されているものであり、空
気と接触すると発火して失活するため、操作性、
安全性の面で大きな難点があつた。また異性化能
力も不満足なものであつた。 本発明者らは異性化触媒のかかる諸問題点のな
い、効率的な触媒として、既にアルミナ、アルカ
リ金属水酸化物、アルカリ金属を原料として新規
な触媒および含水アルミナ、アルカリ金属を原料
とした新規な触媒を見い出すとともに、これらの
固体塩基触媒は空気中でも発火などの危険を伴わ
ず、より安全でありVNB等のオレフイン類の異
性化触媒として工業的に優れたものであることを
見い出している(特公昭50−3274号公報、特公昭
57−21378号0報)。 本発明者らは、かかる固体塩基触媒を用いた
VNBの異性化について、さらに研究を進めたと
ころ、原料である含水アルミナとアルカリ金属と
を加熱作用せしめる温度が特に重要であり、特定
の温度下に調整すれば触媒活性が著しく向上し、
少ない触媒量で効率良くVNBの異性化が進行す
ることを見い出し、さらに種々の検討を加えて本
発明を完成した。 すなわち、本発明は不活性ガス雰囲気中、触媒
の存在下に5−ビニル−2−ノルボルネンを異性
化せしめて5−エチリデン−2−ノルボルネンを
製造するにあたり、触媒として、含水アルミナに
該アルミナの水分モル量に対して1.01乃至2倍当
量のアルカリ金属を作用せしめた固体塩基であつ
て、該アルミナの水分モル量に対して当量を越え
た量のアルカリ金属を作用せしめた温度が180乃
至350℃である固体塩基を用いることを特徴とす
る5−エチリデン−2−ノルボルネンの製造法を
提供するものである。 本発明における固体塩基触媒の原料である含水
アルミナとしてはα−アルミナ以外の種々の形態
の含水アルミナが使用される。 アルミナは通常、水酸化アルミニウムの焼成に
より製造されるが、焼成温度と焼成時間によつて
種々の準安定構造をとるとともにそれに含まれる
水分の量も異なり種々の形態のアルミナが存在す
ることが知られている。本発明ではこのようなア
ルミナが主として用いられる。特にγ−,χ−,
ρ−型のような高表面積の含水アルミナが好まし
く用いられる。またアルミナ含有物の含水体、例
えばカオリン、アルミナシリケート等の含水体も
使用できるが前記アルミナが特に好ましい。また
アルミナは焼成温度の上昇に従つて最終的にはα
−アルミナに転じ、アルミナの加熱減量がなくな
るとされている。アルミナに含まれる水の量を測
定することはそう容易ではないが、初めの各種形
態のアルミナからα−アルミナに転じるまでの加
熱減量で表わすことができる。含水アルミナの水
分含量は通常1.3乃至10重量%好ましくは2乃至
7重量%の範囲である。 また本発明に用いられる触媒のもう一方の原料
であるアルカリ金属としては周期律表第一族のナ
トリウム、カリウム、ルビジウムなどが挙げられ
る。これ等のアルカリ金属を2種以上用いても差
支えないし、これ等の合金、例えばナトリウムと
カリウムとの合金を用いても良い。 かかるアルカリ金属は含水アルミナの水分モル
量に対して1.01乃至2倍当量使用される。 本発明で使用される触媒はその調整温度、すな
わち含水アルミナとアルカリ金属とを作用せしめ
る温度が極めて重要であり、とりわけ含水アルミ
ナの水分モル量に対し、当量を越えた量のアルカ
リ金属を作用せしめる温度が、触媒活性に著しい
影響を及ぼす。該温度は180乃至350℃であり、よ
り好ましくは200乃至330℃である。かかる温度下
に触媒を調整すれば、これ迄にない著しく活性の
高い触媒が得られ、少ない触媒量で効率良く目的
反応を完結することができる。 含水アルミナにアルカリ金属を作用せしめるに
当つては所定量のアルカリ金属を一度に加えても
良いし、含水アルミナの水分と当量程度加え充分
反応せしめた後に、更に残りのアルカリ金属を加
えても良い。 後者の場合は先に加えるアルカリ金属と後に加
えるアルカリ金属が異なつていても差支えない。
また後者の場合、先の温度と後の温度は異なつて
いても良く、この場合の先の温度も好ましくは
180乃至350℃の範囲である。 本発明に使用される触媒は不活性ガス雰囲気中
で前記のような含水アルミナとアルカリ金属とを
特定の温度下に作用せしめて触媒を調整するもの
であるが、不活性ガスとしては窒素、ヘリウム、
アルゴン等が例示される。 加熱時間は選定する温度条件により異なるが、
通常15分乃至10時間で充分である。 かくして、公知の固体塩基触媒に比し発火等の
危険を伴わず安全で、しかも著しく活性の高い触
媒が得られる。 本発明はかかる固体塩基触媒を用いてVNBを
ENBに異性化せしめるものであるが、かかる固
体塩基触媒の使用量はVNBに対し、通常1/
3000乃至1/50重量であり、好ましくは1/2000
乃至1/100重量である。また異性化の温度につ
いては常温下でも充分反応が進行するので特に加
温する必要はないが、目的によつては加温しても
良い。通常−30乃至120℃、好ましくは−10乃至
100℃の温度範囲で実施される。必要に応じ不活
性媒体、例えばペンタン、ヘキサン、ヘプタン、
ドデカンなどの炭化水素等で希釈して反応を行う
こともできるが、無媒体で充分である。 本発明方法はバツチ法でも連続法でも実施で
き、異性化にあたつては、あらかじめVNBをア
ルミナ等の乾燥剤で前処理することも有効であ
る。より安全に確実に異性化を行うためには不活
性ガス雰囲気下に行えば良い。 異性化反応生成物等はガスクロマトグラフイー
等の既知の方法によつて分析され、濾過などによ
り触媒と分離される。 かくして本発明の目的物であるENBが得られ
るが、本発明方法によれば公知方法に比べ著しく
少ない触媒量でも極めて効率良くVNBの異性化
反応を完結せしめることができ、重合物等の副生
物を殆ど伴うことなく高収率でENBが得られる。
しかも発火等の危険をともなうことなく安全に反
応を進行せしめることができるのでENBの工業
的製造法として極めて有利である。 以下、実施例によつて本発明をより詳細に説明
するが、本発明は実施例のみに限定されるもので
はない。 参考例 1 水分を2.2重量%を含有するγ−アルミナ30.0g
を100mlのフラスコに入れ、窒素ガス流通下に攪
拌しながら300℃に加熱した。金属ナトリウムを
1.2g導入し、1時間同温度で攪拌したのち放冷し
た。灰青色の触媒30.9gを得た。 実施例 1 窒素雰囲気下で200mlのフラスコに参考例1で
調整した固体塩基0.25gを入れ、これに5−ビニ
ル−2−ノルボルネン(以下VNBという)64.5g
を加え15〜20℃で8時間攪拌した。 反応後触媒を濾去し、63.9gの反応液が得られ
た。 このものをガスクロマトグラフイーで分析した
ところ、VNB0.4%、5−エチリデン−2−ノル
ボルネン(以下ENBという)99.5%であつた。 参考例 2〜10 表−1に示した条件以外は参考例1と同様にし
て行ない表−1に示した固体塩基触媒を得た。 実施例2〜6、比較例1〜4 参考例2〜10で調整した固体塩基触媒を用いて
表−2に示した条件以外は実施例1と同様にして
VNBの異性化を行つた。その結果を表−2に示
した。 参考例 11 100mlのフラスコに含水率6.0%のγ型を主とす
るアルミナ50gを入れ、窒素雰囲気中攪拌しなが
ら200℃にした。 同温度で金属ナトリウム4.0gを小片にして20分
で加えた。 1時間攪拌を続けた後、徐々に加熱して300℃
に設定した。 300℃でさらに金属ナトリウム1.9gを小片にし
て10分で加え、同温度で3.5時間攪拌を続けて調
整した。 こうして54.2gの固体塩基を得た。 参考例 12 100mlのフラスコに含水率6.0%のγ型を主とす
るアルミナ50gを入れ、窒素雰囲気中攪拌しなが
ら200℃にした。 同温度で金属ナトリウム4.0gを小片にして20分
で加えた。1時間攪拌を続けた後、徐々に加熱し
て400℃に設定した。 400℃でさらに金属ナトリウム1.9gを小片にし
て10分で加え同温度で3.5時間攪拌を続けて調整
した。 こうして54.1gの固体塩基を得た。 実施例 7 窒素雰囲気下で200mlのフラスコに参考例−11
で調整した固体塩基0.25gを入れ、これに
VNB62.5gを加え、15〜20℃で8時間攪拌した。 反応後触媒を濾去し62.0gの反応液が得られた。
このものをガスクロマトグラフイーで分析したと
ころVNB0.3%、ENB99.5%であつた。 比較例 5 窒素雰囲気下で200mlのフラスコに参考例−12
で調整した固体塩基0.25gを入れ、これに
VNB62.5gを加え15〜20℃で8時間攪拌した。 反応後触媒を濾去し61.9gの反応液が得られた。
このものをガスクロマトグラフイーで分析したと
ころVNB40.1%、ENB59.8%であつた。
The present invention relates to a method for producing 5-ethylidene-2-norbornene, and more specifically, a method for producing 5-ethylidene-2-norbornene in the presence of a specific catalyst.
The present invention relates to a method for producing 5-ethylidene-2-norbornene (hereinafter referred to as ENB), which is characterized by isomerizing vinyl-2-norbornene (hereinafter referred to as VNB). ENB is a synthetic rubber ethylene-propylene-diene monomer terpolymer, so-called
It is a very useful compound as the third component of EPDM, and is usually produced by isomerizing VNB obtained by the reaction of 1,3-butadiene and cyclopentadiene in the presence of a catalyst. As a catalyst for such an isomerization reaction, a liquid base,
For example, mixtures of alkali metal hydroxides and aprotic organic solvents, alkali metal amides and amines, or organic alkali metals and aliphatic amines are known. However, in the method using such a liquid base reagent, the catalytic activity is insufficient,
In addition to requiring large quantities of expensive reagents,
It is difficult to separate and recover the reagent from the reaction mass;
There is a problem that not only a complicated separation and recovery process is required but also a large amount of energy is saved. As solid isomerization catalysts, catalysts in which alkali metals are dispersed in carriers with large surface areas, such as activated carbon, silica gel, alumina, etc., are known (J.Am.Chem.Soc. 82 387 (1960)). . However, in such a solid catalyst, the alkali metal itself is simply finely dispersed on a carrier, and when it comes into contact with air, it ignites and becomes deactivated, so it is difficult to operate.
There were major problems in terms of safety. Also, the isomerization ability was unsatisfactory. The present inventors have already developed a new catalyst using alumina, alkali metal hydroxide, and an alkali metal as raw materials, and a new catalyst using hydrous alumina and an alkali metal as raw materials, as efficient catalysts that do not have the problems of isomerization catalysts. In addition, we discovered that these solid base catalysts are safer even in the air without the risk of ignition, and are industrially superior as catalysts for the isomerization of olefins such as VNB. Special Publication No. 50-3274, Special Publication Sho
57-21378 No. 0). The present inventors used such a solid base catalyst.
Further research into the isomerization of VNB revealed that the temperature at which the raw material, hydrated alumina, and the alkali metal are heated is particularly important, and if adjusted to a specific temperature, the catalytic activity can be significantly improved.
They discovered that the isomerization of VNB proceeds efficiently with a small amount of catalyst, and completed the present invention after further various studies. That is, in the present invention, when producing 5-ethylidene-2-norbornene by isomerizing 5-vinyl-2-norbornene in the presence of a catalyst in an inert gas atmosphere, the present invention uses water-containing alumina as a catalyst to produce 5-ethylidene-2-norbornene. A solid base on which an alkali metal is reacted in an amount of 1.01 to 2 times the molar amount, and the temperature at which the alkali metal is reacted with the alkali metal in an amount exceeding the equivalent amount relative to the molar amount of water in the alumina is 180 to 350°C. The present invention provides a method for producing 5-ethylidene-2-norbornene, which is characterized by using a solid base. As the hydrated alumina that is the raw material for the solid base catalyst in the present invention, various forms of hydrated alumina other than α-alumina are used. Alumina is usually produced by firing aluminum hydroxide, but it is known that alumina exists in various forms, taking various metastable structures and varying amounts of water depending on the firing temperature and time. It is being In the present invention, such alumina is mainly used. Especially γ−, χ−,
High surface area hydrated alumina such as ρ-type is preferably used. Hydrous materials containing alumina, such as kaolin and alumina silicate, can also be used, but the alumina is particularly preferred. Furthermore, as the firing temperature increases, alumina will eventually reach α
- It is said that the weight loss on heating of alumina is eliminated by switching to alumina. Although it is not so easy to measure the amount of water contained in alumina, it can be expressed by the loss of water on heating until the initial various forms of alumina are converted to α-alumina. The water content of the hydrated alumina is usually in the range of 1.3 to 10% by weight, preferably 2 to 7% by weight. Further, examples of the alkali metal which is the other raw material of the catalyst used in the present invention include sodium, potassium, rubidium, etc. of Group 1 of the periodic table. Two or more of these alkali metals may be used, or an alloy thereof, such as an alloy of sodium and potassium, may be used. The alkali metal is used in an amount of 1.01 to 2 times the molar amount of water in the hydrated alumina. The adjustment temperature of the catalyst used in the present invention, that is, the temperature at which the hydrated alumina and the alkali metal are made to interact with each other, is extremely important.In particular, the amount of the alkali metal that exceeds the equivalent amount of water in the hydrated alumina is made to act on the catalyst. Temperature has a significant effect on catalyst activity. The temperature is 180 to 350°C, more preferably 200 to 330°C. By adjusting the catalyst to such a temperature, a catalyst with extremely high activity never seen before can be obtained, and the desired reaction can be efficiently completed with a small amount of catalyst. When making an alkali metal act on hydrated alumina, a predetermined amount of the alkali metal may be added at once, or the remaining alkali metal may be added after adding an amount equivalent to the water content of the hydrated alumina and causing a sufficient reaction. . In the latter case, the alkali metal added first and the alkali metal added later may be different.
In the latter case, the first temperature and the second temperature may be different, and the first temperature in this case is also preferably
The temperature ranges from 180 to 350°C. The catalyst used in the present invention is prepared by making the above-mentioned hydrated alumina and alkali metal interact with each other at a specific temperature in an inert gas atmosphere. ,
Examples include argon. Heating time varies depending on the selected temperature conditions, but
Usually 15 minutes to 10 hours is sufficient. In this way, a catalyst can be obtained which is safer than known solid base catalysts without the risk of ignition, and has significantly higher activity. The present invention uses such a solid base catalyst to produce VNB.
The amount of solid base catalyst used is usually 1/1 of VNB.
3000 to 1/50 weight, preferably 1/2000
The weight is 1/100 to 1/100. Regarding the isomerization temperature, there is no need to particularly heat the reaction because the reaction proceeds sufficiently at room temperature, but heating may be used depending on the purpose. Usually -30 to 120℃, preferably -10 to 120℃
Performed in a temperature range of 100°C. If necessary an inert medium such as pentane, hexane, heptane,
Although the reaction can be carried out by diluting with a hydrocarbon such as dodecane, it is sufficient to use no medium. The method of the present invention can be carried out in either a batch method or a continuous method, and it is also effective to pre-treat VNB with a desiccant such as alumina in advance for isomerization. In order to carry out isomerization more safely and reliably, it may be carried out under an inert gas atmosphere. The isomerization reaction products and the like are analyzed by known methods such as gas chromatography, and separated from the catalyst by filtration or the like. In this way, ENB, which is the object of the present invention, is obtained. According to the method of the present invention, the isomerization reaction of VNB can be completed extremely efficiently even with a significantly smaller amount of catalyst than in known methods, and by-products such as polymers can be completed. ENB can be obtained in high yield with almost no oxidation.
Furthermore, the reaction can proceed safely without any dangers such as ignition, so it is extremely advantageous as an industrial manufacturing method for ENB. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to examples, but the present invention is not limited only to the examples. Reference example 1 30.0g of γ-alumina containing 2.2% water by weight
was placed in a 100 ml flask and heated to 300°C while stirring under nitrogen gas flow. metallic sodium
1.2g was introduced, stirred at the same temperature for 1 hour, and then allowed to cool. 30.9 g of a gray-blue catalyst was obtained. Example 1 0.25 g of the solid base prepared in Reference Example 1 was placed in a 200 ml flask under a nitrogen atmosphere, and 64.5 g of 5-vinyl-2-norbornene (hereinafter referred to as VNB) was added to this.
was added and stirred at 15-20°C for 8 hours. After the reaction, the catalyst was removed by filtration to obtain 63.9 g of reaction solution. When this product was analyzed by gas chromatography, it was found to be 0.4% VNB and 99.5% 5-ethylidene-2-norbornene (hereinafter referred to as ENB). Reference Examples 2 to 10 The solid base catalysts shown in Table 1 were obtained in the same manner as in Reference Example 1 except for the conditions shown in Table 1. Examples 2 to 6, Comparative Examples 1 to 4 Using the solid base catalysts prepared in Reference Examples 2 to 10, the same procedure as in Example 1 was performed except for the conditions shown in Table 2.
Isomerization of VNB was performed. The results are shown in Table-2. Reference Example 11 50 g of γ-type alumina with a water content of 6.0% was placed in a 100 ml flask and heated to 200° C. with stirring in a nitrogen atmosphere. At the same temperature, 4.0 g of metallic sodium was added in small pieces over 20 minutes. After stirring for 1 hour, gradually heat to 300℃.
It was set to At 300°C, 1.9 g of metallic sodium was further added in small pieces over 10 minutes, and the mixture was stirred at the same temperature for 3.5 hours. Thus 54.2 g of solid base was obtained. Reference Example 12 50 g of γ-type alumina with a moisture content of 6.0% was placed in a 100 ml flask and heated to 200° C. with stirring in a nitrogen atmosphere. At the same temperature, 4.0 g of metallic sodium was added in small pieces over 20 minutes. After continuing stirring for 1 hour, the mixture was gradually heated to 400°C. At 400°C, 1.9 g of metallic sodium was added in small pieces over 10 minutes, and stirring was continued for 3.5 hours at the same temperature. Thus 54.1 g of solid base was obtained. Example 7 Reference Example-11 in a 200ml flask under nitrogen atmosphere
Add 0.25g of solid base prepared in
62.5 g of VNB was added and stirred at 15-20°C for 8 hours. After the reaction, the catalyst was removed by filtration to obtain 62.0 g of reaction solution.
When this product was analyzed by gas chromatography, it was found to be 0.3% VNB and 99.5% ENB. Comparative Example 5 Reference Example-12 in a 200ml flask under nitrogen atmosphere
Add 0.25g of solid base prepared in
62.5g of VNB was added and stirred at 15-20°C for 8 hours. After the reaction, the catalyst was removed by filtration to obtain 61.9 g of reaction solution.
When this product was analyzed by gas chromatography, it was found that VNB was 40.1% and ENB was 59.8%.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 不活性ガス雰囲気中、触媒の存在下に5−ビ
ニル−2−ノルボルネンを異性化せしめて5−エ
チリデン−2−ノルボルネンを製造するにあた
り、触媒として、含水アルミナに該アルミナの水
分モル量に対して1.01乃至2倍当量のアルカリ金
属を作用せしめた固体塩基であつて、該アルミナ
の水分モル量に対して当量を越えた量のアルカリ
金属を作用せしめた温度が180乃至350℃である固
体塩基を用いることを特徴とする5−エチリデン
−2−ノルボルネンの製造法。
1 In producing 5-ethylidene-2-norbornene by isomerizing 5-vinyl-2-norbornene in the presence of a catalyst in an inert gas atmosphere, a catalyst is added to hydrated alumina based on the molar amount of water in the alumina. A solid base on which 1.01 to 2 equivalents of alkali metal is reacted at a temperature of 180 to 350°C at which the alkali metal is reacted in an amount exceeding the equivalent amount relative to the molar amount of water in the alumina. A method for producing 5-ethylidene-2-norbornene, characterized by using.
JP60262283A 1985-10-21 1985-11-21 Production of 5-ethylidene-2-norbornene Granted JPS62123139A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60262283A JPS62123139A (en) 1985-11-21 1985-11-21 Production of 5-ethylidene-2-norbornene
EP86111278A EP0219637B1 (en) 1985-10-21 1986-08-14 Process for preparing 5-ethylidene-2-norbornene
DE8686111278T DE3675327D1 (en) 1985-10-21 1986-08-14 METHOD FOR PRODUCING 5-AETHYLIDEN-2-NORBORN.
MX003459A MX167987B (en) 1985-10-21 1986-08-15 PROCEDURE FOR PREPARING 5-ETILIDEN-2-NORBORNENE
US06/896,959 US4720601A (en) 1985-10-21 1986-08-15 Process for preparing 5-ethylidene-2-norbornene
CA000516079A CA1267161A (en) 1985-10-21 1986-08-15 Process for preparing 5-ethylidene-2-norbornene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262283A JPS62123139A (en) 1985-11-21 1985-11-21 Production of 5-ethylidene-2-norbornene

Publications (2)

Publication Number Publication Date
JPS62123139A JPS62123139A (en) 1987-06-04
JPH0434977B2 true JPH0434977B2 (en) 1992-06-09

Family

ID=17373636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262283A Granted JPS62123139A (en) 1985-10-21 1985-11-21 Production of 5-ethylidene-2-norbornene

Country Status (1)

Country Link
JP (1) JPS62123139A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035075A (en) * 1973-08-01 1975-04-03
JPS5529058A (en) * 1978-08-22 1980-03-01 Suzuki Motor Co Ltd Choke device for carburetor
JPS5721378A (en) * 1980-07-15 1982-02-04 Yamanouchi Pharmaceut Co Ltd Aminophenyl ether derivative

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035075A (en) * 1973-08-01 1975-04-03
JPS5529058A (en) * 1978-08-22 1980-03-01 Suzuki Motor Co Ltd Choke device for carburetor
JPS5721378A (en) * 1980-07-15 1982-02-04 Yamanouchi Pharmaceut Co Ltd Aminophenyl ether derivative

Also Published As

Publication number Publication date
JPS62123139A (en) 1987-06-04

Similar Documents

Publication Publication Date Title
EP0219637B1 (en) Process for preparing 5-ethylidene-2-norbornene
CA1259298A (en) Dimerization process and catalysts therefor
US4822764A (en) Solid base catalyst for the preparation of internal olefins and process for preparing the catalyst
US4987114A (en) Solid base and process for producing the same for preparing internal olefins
KR950006520B1 (en) Process for preparing 5-ethylene-2-norbornene with high quality
JPH0434977B2 (en)
EP0320570B1 (en) Process for preparing internal olefins
JPH0674216B2 (en) Internal olefin manufacturing method
SU338087A1 (en) Method of preparing alkylidene substituted norbornenones
JPS63196526A (en) Production of inner olefin
KR950003114B1 (en) Process for preparing 5-ethylidene-2-norbornene
JP2522354B2 (en) Method for producing solid base
JPH0684318B2 (en) Internal olefin production method
JPS62155227A (en) Production of high-quality 5-ethylidene-2-norbornene
JPH02138228A (en) Preparation of inner olefin
JP2543339B2 (en) Method for producing high-quality 5-ethylidene-2-norbornene
JPH0581570B2 (en)
JPH0674221B2 (en) Alkenyl norbornene isomerization method
JPH0769937A (en) Production of internal olefin
KR940011891B1 (en) Process for preparing solid base
JPH0551341B2 (en)
JPH0683786B2 (en) Method for producing solid base
JPH06200B2 (en) Method for producing solid base catalyst
JPH0674220B2 (en) Alkenyl norbornene isomerization method
JPH067919B2 (en) Method for producing solid base catalyst