JPH0581570B2 - - Google Patents

Info

Publication number
JPH0581570B2
JPH0581570B2 JP87318181A JP31818187A JPH0581570B2 JP H0581570 B2 JPH0581570 B2 JP H0581570B2 JP 87318181 A JP87318181 A JP 87318181A JP 31818187 A JP31818187 A JP 31818187A JP H0581570 B2 JPH0581570 B2 JP H0581570B2
Authority
JP
Japan
Prior art keywords
alkali metal
methyl
pentene
alumina
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP87318181A
Other languages
Japanese (ja)
Other versions
JPS6433A (en
JPH0133A (en
Inventor
Takeo Suzukamo
Masami Fukao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP62-318181A priority Critical patent/JPH0133A/en
Priority claimed from JP62-318181A external-priority patent/JPH0133A/en
Publication of JPS6433A publication Critical patent/JPS6433A/en
Publication of JPH0133A publication Critical patent/JPH0133A/en
Publication of JPH0581570B2 publication Critical patent/JPH0581570B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明は内部オレフインの製造方法に関し、詳
しくは特定の触媒の存在下にオレフインを異性化
せしめてより安定な内部オレフインを製造する方
法に関するものである。 〈従来の技術、発明が解決しようとする問題点〉 オレフインを異性化してより安定な内部オレフ
インに異性化する方法は種々知られている。しか
しながら、一般に公知方法ではオレフインの分解
を伴つたり、不必要なオレフインの重合物を与え
たり、またランダム化する等の望まざる要素を多
分にもつたものが多く、経済的に不利な限定を受
けている。 かかる異性化反応の触媒として、液状の塩基、
例えばアルカリ金属水酸化物と非プロトン性有機
溶媒、アルカリ金属アミドとアミン類あるいは有
機アルカリ金属と脂肪族アミンなどの混合物が知
られている。しかしながら、このような液状の塩
基試剤を用いる方法では、触媒活性が充分でな
く、高価な試剤を多量必要とするということの他
に、該試剤の反応マスからの分離回収が難事であ
り、繁雑な分離回収工程を必要とするのみならず
多量のエネルギーを消費するという問題がある。 また固体状の異性化触媒としては、アルカリ金
属を表面積の大きい担体、例えば活性炭、シリカ
ゲル、アルミナ等に分散せしめた触媒が知られて
いる(J.Am.Chem.Soc.82 887(1960))。しかし
ながらかかる固体触媒はアルカリ金属それ自体が
単に担体上に微細分散されているものであり、空
気と接触すると発火して失活するため、操作性、
安定性の面で大きな問題があつた。また異性化能
力も不満足なものであつた。 本発明者らは異性化触媒のかかる諸問題点のな
い、効率的な触媒として、既にアルミナ、アルカ
リ金属水酸化物、アルカリ金属を原料とした新規
な触媒を見い出すとともに、このものは空気中で
も発火などの危険を伴わず、より安全であり異性
化触媒として工業的に優れたものであることを見
い出している(特公昭50−3274号公報)。しかし
原料としてアルカリ金属を用いる点、異性化能力
の点で必ずしも充分満足し得るものではない。 またアルカリ金属水素化物を担体に担持した固
体触媒とアンモニアもしくはヒドラジンとを併用
する方法も知られている(特開昭53−121753号公
報、特開昭59−134736号公報)。しかしながら、
この本法では助剤としてアンモニア、ヒドラジン
等を用いるため、該助剤を反応マスから分離回収
せねばならず、分離回収のための装置を必要とす
るのみならず操作も繁雑であるという問題点を有
している。 本発明者らは上記公知方法の諸問題点を解決す
べく鋭意検討を重ねた結果、特定の温度下でアル
ミナとアルカリ金属水酸化物とアルカリ金属水素
化物とを加熱作用せしめた固体塩基が、それ単独
でも著しく高い異性化能力を示すことを見い出
し、さらに種々の検討を加えて本発明を完成し
た。 〈問題点を解決するための手段〉 すなわち本発明はオレフインの二重結合を異性
化せしめて、より安定な内部オレフインを製造す
るにあたり、触媒として、不活性ガス雰囲気中
200乃至500℃下で、アルミナとアルカリ金属水酸
化物を加熱作用せしめ次でアルカリ金属水素化物
を加熱作用せしめて得られる固体塩基を用いるこ
とを特徴とする工業的に極めて優れた内部オレフ
インの製造方法を提供するものである。 本発明における固体塩基の原料であるアルカリ
金属水酸化物としては水酸化リチウム、水酸化ナ
トリウム、水酸化カリウム、水酸化ルビジウム、
水酸化セシウム等が用いられ、その形態は固体で
あつても、液体であつても水溶液であつても良
い。アルカリ金属水素化物としては周期律表第
族のナトリウム、カリウム、リチウムなどの水素
化物が挙げられる。アルカリ金属水素化物は2種
以上用いることもできる。 アルカリ金属水酸化物とアルカリ金属水素化物
の組み合わせについては、アルカリ金属水酸化物
とそれに対応するアルカリ金属水素化物、たとえ
ば水酸化ナトリウムと水素化ナトリウム、水酸化
カリウムと水素化カリウム等でもあつても良い
し、アルカリ金属水酸化物とそれと対応しない別
のアルカリ金属水素化物、たとえば水酸化カリウ
ムと水素化ナトリウム、水酸化ナトリウム水素化
カリウム等の組み合わせでもあつても良い。通常
は水酸化ナトリウム、水素化ナトリウムの組合わ
せが使用される。 かかるアルカリ金属水素化物およびアルカリ金
属水酸化物の使用量はアルミナに対してそれぞれ
2乃至10重量%、5乃至40重量%が触媒活性の点
で好ましい。 アルミナとしては表面積の大きい種々の形態の
アルミナが通常使用されるが、特に100乃至300メ
ツシユのγ−アルミナ、χ−アルミナなどを使用
することが触媒活性の点で好ましい。またアルミ
ナはアルカリ金属水酸化物およびアルカリ金属水
素化物と互に作用しあつてある種の新しい結合を
形成するとともに、担体の役目を果しているの
で、アルミナ以外に例えばカオリン、アルミナシ
リケート等のアルミナ含有物も使用することがで
きるが上記のアルミナが好ましい。 本発明に使用される固体塩基は不活性ガス雰囲
気中で、上記のようなアルミナ、アルカリ金属水
酸化物およびアルカリ金属水素化物を特定の温度
下に加熱作用せしめて得られるものであるが、加
熱作用せしめる順序としては、先ずアルミナにア
ルカリ金属水酸化物を、次でアルカリ金属水素化
物を作用せしめたものが最も好ましい、また不活
性ガスとしては窒素、ヘリウム、アルゴン等が例
示される。 本発明に使用される固体塩基はその調製時の温
度が極めて重要であり、とりわけアルカリ金属水
素化物を加熱作用させる温度は触媒の活性に著し
い影響を及ぼす。 アルミナとアルカリ金属水酸化物を加熱作用せ
しめる温度は200乃至500℃、より好ましくは250
乃至450℃であり、アルカリ金属水素化物を加熱
作用せしめる温度は200乃至500℃、好ましくは
250乃至450℃である。かかる温度下に塩基を調製
することにより、これ迄にない触媒活性の高い固
体塩基が得られ、少ない触媒量で効率良く、目的
反応を完結することができる。 加熱時間は選定する温度条件等により異なる
が、アルカリ金属水酸化物を加熱作用せしめる工
程は通常0.5乃至10時間で充分であり、アルカリ
金属水素化物を加熱作用せしめる工程は通常10乃
至300分で充分である。 かくして本発明に用いられる固体塩基が製造さ
れる。該固体塩基はアルミナとアルカリ金属水酸
化物およびアルカリ金属水素化物とが加熱下に作
用し合つて、新しい活性種を生成していると考え
られ、公知の触媒に比し著しく活性が高く、アン
モニヤやヒドラジン等の助剤なしでしかも少量で
も目的反応を完結できる。 本発明はかかる固体塩基を用い、オレフインを
より安定な内部オレフインに異性化せしめるもの
であるが、かかる原料オレフインとしては、例え
ば1−ブテン、1−ペンテン、1−ヘキセン、1
−ヘプテン、1−ノネン、1−デセン、2−メチ
ル−1−ブテン、3−メチル−1−ブテン、4−
メチル−1−ペンテン、3−メチル−1−ペンテ
ン、2−メチル−1−ペンテン、2,3−ジメチ
ル−1−ブテン等の鎖状化合物、アリルベンゼ
ン、アリルトルエン等の芳香族化合物、2−イソ
プロペニルノルボルナン、5−イソプロペニル−
2−ノルボルネン、5−ビニル−2−ノルボルネ
ン、6−メチル−5−ビニルノルボルネン等の架
橋環化合物、メチレンシクロペンタン、メチレン
シクロヘキサン等の環状化合物、1,4−ペンタ
ジエン、1,5−ヘキサジエン、2,5−ジメチ
ル−1,4−ヘキサジエン、2,5−ジメチル−
1,5−ヘキサジエン等の非共役オレフインなど
の末端オレフイン化合物、4−メチル−2−ペン
テン、5−(2−プロペニル)−2−ノルボルネン
等の末端以外に二重結合を有し、より安定な位置
に異性化し得る化合物が挙げられる。 また内部オレフインを製造するに当り、使用す
る固体塩基触媒の使用量は、原料に対し、通常1/
3000乃至1/20重量であり、1/2000乃至1/100重量
でも十分である。また異性化温度については常温
下でも充分反応が進行するので特に加温する必要
はないが、目的によつては加温しても良い。通常
−30乃至120℃、好ましくは−10乃至100℃の温度
範囲で実施される。 必要に応じ不活性媒体、例えばペンタン、ヘキ
サン、ヘプタン、ドデカンなどの炭化水素等で希
釈して反応を行うこともできるが無媒体で充分で
ある。本発明方法はバツチ法でも連続法でも実施
でき、異性化にあたつては、あらかじめ原料をア
ルミナ等の乾燥剤で前処理することも有効であ
る。より安全に確実に異性化を行うためには不活
性ガス雰囲気下に行えば良い。 異性化反応生成物等はガスクロマトグラフイー
等の既知の方法によつて分析され、過、デカン
テーシヨンなどにより容易に触媒と分離される。 〈発明の効果〉 かくして、本発明の目的物であるより安定な位
置に異性化した内部オレフインが得られるが、本
発明方法によれば、触媒原料として取扱い容易で
入手し易いアルカリ金属水素化物を使用でき、し
かも得られる触媒はアンモニアやヒドラジン等の
助剤なしでも異性化能力が著しく高く、少ない触
媒量でも極めて効率良くオレフインの異性化反応
を完結せしめることができ、重合物等の副生物を
伴うことなく高収率で内部オレフインが得られ
る。そのうえ、発火等の危険をともなうこともな
く安全に反応を進行せしめることができるので、
内部オレフインの工業的製造方法として極めて有
用である。 〈実施例〉 以下具体的実施例に従つて本発明を説明する
が、本発明はこれ等に限定されるものではない。 参考例 1 γ−アルミナ26.6gを100mlのフラスコに入れ、
窒素ガス流通下に500℃に昇温し、同温度で1時
間攪拌した。その後330℃に降温し、水酸化ナト
リウム2.5gを加え同温度で3時間攪拌した後放
冷した。 次いで水素化ナトリウム(市販品を窒素雰囲気
下でヘキサンを加えて過洗浄し、鉱油を除去し
たのち、乾燥したものを使用)1.28gを加え攪拌
しながら330℃に昇温し、同温度で1時間攪拌し
た後放冷し、27.8gの固体塩基を得た。 参考例 2〜8 表−1に示す以外は参考例1と同様にして、表
−1に示した固体塩基を得た。 実施例 1 200mlのフラスコに窒素雰囲気下で参考例1で
調製した固体塩基0.19gを入れ、これに5−ビニ
ル−2−ノルボルネン(純度99.9%)97.1gを加
え15〜20℃で20時間攪拌した。 反応後、反応液をガスクロマトグラフイーによ
り分析したところ、5−ビニル−2−ノルボルネ
ン(VNB)0.5%、5−エチリデン−2−ノルボ
ルネン(ENB)99.4%であつた。触媒を別し
て96.2gの生成物を得た。 実施例2〜5、比較例1〜3 表−2に示す以外は実施例1と同様にして5−
ビニル−2−ノルボルネンの異性化を行つた。そ
の結果を表−2に示した。
<Industrial Application Field> The present invention relates to a method for producing an internal olefin, and more particularly to a method for producing a more stable internal olefin by isomerizing an olefin in the presence of a specific catalyst. <Prior Art and Problems to be Solved by the Invention> Various methods are known for isomerizing olefins into more stable internal olefins. However, generally known methods often involve decomposition of olefins, give unnecessary olefin polymers, and have many undesirable factors such as randomization, and have economically disadvantageous limitations. is recieving. As a catalyst for such an isomerization reaction, a liquid base,
For example, mixtures of alkali metal hydroxides and aprotic organic solvents, alkali metal amides and amines, or organic alkali metals and aliphatic amines are known. However, methods using such liquid base reagents do not have sufficient catalytic activity and require a large amount of expensive reagents, and it is difficult and complicated to separate and recover the reagents from the reaction mass. There is a problem in that not only does it require a separate and recovery process, but it also consumes a large amount of energy. As solid isomerization catalysts, catalysts in which alkali metals are dispersed in carriers with large surface areas, such as activated carbon, silica gel, alumina, etc., are known (J.Am.Chem.Soc. 82 887 (1960)). . However, in such a solid catalyst, the alkali metal itself is simply finely dispersed on a carrier, and when it comes into contact with air, it ignites and becomes deactivated, so it is difficult to operate.
There was a big problem with stability. Also, the isomerization ability was unsatisfactory. The present inventors have already discovered a new catalyst made from alumina, alkali metal hydroxide, and alkali metal as raw materials as an efficient catalyst that does not have the problems of isomerization catalysts, and this catalyst also ignites even in the air. It has been discovered that it is safer and industrially superior as an isomerization catalyst without the dangers of . However, it is not always fully satisfactory in terms of the use of alkali metals as raw materials and the isomerization ability. Also known is a method in which a solid catalyst having an alkali metal hydride supported on a carrier is used in combination with ammonia or hydrazine (JP-A-53-121753, JP-A-59-134736). however,
Since this method uses ammonia, hydrazine, etc. as auxiliaries, the auxiliaries must be separated and recovered from the reaction mass, which not only requires equipment for separation and recovery, but also requires complicated operations. have. The present inventors have made extensive studies to solve the problems of the above-mentioned known methods. As a result, a solid base obtained by heating alumina, an alkali metal hydroxide, and an alkali metal hydride at a specific temperature is It was discovered that it alone exhibits extremely high isomerization ability, and the present invention was completed after further various studies. <Means for Solving the Problems> That is, the present invention isomerizes the double bonds of olefins to produce more stable internal olefins.
Production of an industrially excellent internal olefin characterized by using a solid base obtained by heating alumina and an alkali metal hydroxide and then heating an alkali metal hydride at 200 to 500°C. The present invention provides a method. Examples of the alkali metal hydroxides that are raw materials for the solid base in the present invention include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide,
Cesium hydroxide or the like is used, and its form may be solid, liquid, or aqueous solution. Examples of the alkali metal hydrides include hydrides of sodium, potassium, lithium, etc. in group 3 of the periodic table. Two or more types of alkali metal hydrides can also be used. Regarding the combination of alkali metal hydroxide and alkali metal hydride, even if it is an alkali metal hydroxide and the corresponding alkali metal hydride, such as sodium hydroxide and sodium hydride, potassium hydroxide and potassium hydride, etc. Alternatively, a combination of an alkali metal hydroxide and another alkali metal hydride not corresponding thereto, such as potassium hydroxide and sodium hydride, sodium hydroxide potassium hydride, etc., may also be used. Usually a combination of sodium hydroxide and sodium hydride is used. The amount of alkali metal hydride and alkali metal hydroxide used is preferably 2 to 10% by weight and 5 to 40% by weight, respectively, based on the alumina, from the viewpoint of catalytic activity. As the alumina, various forms of alumina having a large surface area are usually used, but it is particularly preferable to use 100 to 300 mesh γ-alumina, χ-alumina, etc. from the viewpoint of catalytic activity. In addition, alumina interacts with alkali metal hydroxides and alkali metal hydrides to form certain new bonds and also plays the role of a carrier. Although alumina can also be used, the above-mentioned alumina is preferred. The solid base used in the present invention is obtained by heating alumina, alkali metal hydroxide, and alkali metal hydride as described above at a specific temperature in an inert gas atmosphere. As for the order in which the alumina is reacted, it is most preferable to first react the alkali metal hydroxide and then the alkali metal hydride. Examples of the inert gas include nitrogen, helium, and argon. The temperature at which the solid base used in the present invention is prepared is extremely important, and in particular, the temperature at which the alkali metal hydride is heated has a significant effect on the activity of the catalyst. The temperature at which the alumina and alkali metal hydroxide are heated is 200 to 500°C, more preferably 250°C.
The temperature at which the alkali metal hydride is heated is 200 to 500°C, preferably 450°C to 450°C.
The temperature is 250 to 450°C. By preparing the base at such a temperature, a solid base with unprecedentedly high catalytic activity can be obtained, and the desired reaction can be efficiently completed with a small amount of catalyst. The heating time varies depending on the selected temperature conditions, etc., but 0.5 to 10 hours is usually sufficient for the process of heating the alkali metal hydroxide, and 10 to 300 minutes is usually sufficient for the process of heating the alkali metal hydride. It is. In this way, the solid base used in the present invention is produced. It is thought that the solid base is generated by the interaction of alumina, alkali metal hydroxide, and alkali metal hydride under heating to generate new active species, and has significantly higher activity than known catalysts, and is highly active in ammonia. The desired reaction can be completed without the use of auxiliary agents such as hydrazine or hydrazine, and even in small amounts. The present invention uses such a solid base to isomerize olefins into more stable internal olefins. Examples of such raw material olefins include 1-butene, 1-pentene, 1-hexene, and 1-hexene.
-heptene, 1-nonene, 1-decene, 2-methyl-1-butene, 3-methyl-1-butene, 4-
Chain compounds such as methyl-1-pentene, 3-methyl-1-pentene, 2-methyl-1-pentene, 2,3-dimethyl-1-butene, aromatic compounds such as allylbenzene and allyltoluene, 2- Isopropenyl norbornane, 5-isopropenyl-
Bridged ring compounds such as 2-norbornene, 5-vinyl-2-norbornene, 6-methyl-5-vinylnorbornene, cyclic compounds such as methylenecyclopentane, methylenecyclohexane, 1,4-pentadiene, 1,5-hexadiene, 2 , 5-dimethyl-1,4-hexadiene, 2,5-dimethyl-
Terminal olefin compounds such as non-conjugated olefins such as 1,5-hexadiene, 4-methyl-2-pentene, 5-(2-propenyl)-2-norbornene, etc. have a double bond other than the terminal and are more stable. Examples include compounds that can be positionally isomerized. In addition, when producing internal olefins, the amount of solid base catalyst used is usually 1/1/2 of the raw material.
It is 3000 to 1/20 weight, and 1/2000 to 1/100 weight is also sufficient. Regarding the isomerization temperature, since the reaction proceeds sufficiently even at room temperature, there is no particular need to heat it, but it may be heated depending on the purpose. It is usually carried out at a temperature range of -30 to 120°C, preferably -10 to 100°C. If necessary, the reaction can be carried out by diluting with an inert medium such as a hydrocarbon such as pentane, hexane, heptane, dodecane, etc., but no medium is sufficient. The method of the present invention can be carried out in either a batch method or a continuous method, and in isomerization, it is also effective to pre-treat the raw material with a desiccant such as alumina. In order to carry out isomerization more safely and reliably, it may be carried out under an inert gas atmosphere. The isomerization reaction products are analyzed by known methods such as gas chromatography, and easily separated from the catalyst by filtration, decantation, etc. <Effects of the Invention> In this way, an internal olefin isomerized to a more stable position, which is the object of the present invention, can be obtained, but according to the method of the present invention, an alkali metal hydride, which is easy to handle and easily obtained, can be used as a catalyst raw material. The catalyst that can be used and obtained has extremely high isomerization ability even without auxiliary agents such as ammonia or hydrazine, and can complete the isomerization reaction of olefins extremely efficiently even with a small amount of catalyst, and can eliminate by-products such as polymers. Internal olefins can be obtained in high yields without any accompaniment. Moreover, the reaction can proceed safely without any dangers such as ignition.
This method is extremely useful as an industrial method for producing internal olefins. <Examples> The present invention will be described below with reference to specific examples, but the present invention is not limited thereto. Reference example 1 Put 26.6g of γ-alumina into a 100ml flask,
The temperature was raised to 500°C under nitrogen gas flow, and the mixture was stirred at the same temperature for 1 hour. Thereafter, the temperature was lowered to 330°C, 2.5 g of sodium hydroxide was added, the mixture was stirred at the same temperature for 3 hours, and then allowed to cool. Next, 1.28 g of sodium hydride (a commercially available product was washed with hexane under a nitrogen atmosphere to remove mineral oil, then dried) was added, and the temperature was raised to 330°C with stirring, and at the same temperature it was heated to 330°C. After stirring for an hour, the mixture was allowed to cool to obtain 27.8 g of a solid base. Reference Examples 2 to 8 The solid bases shown in Table 1 were obtained in the same manner as in Reference Example 1 except as shown in Table 1. Example 1 0.19 g of the solid base prepared in Reference Example 1 was placed in a 200 ml flask under a nitrogen atmosphere, and 97.1 g of 5-vinyl-2-norbornene (purity 99.9%) was added thereto and stirred at 15 to 20°C for 20 hours. did. After the reaction, the reaction solution was analyzed by gas chromatography and found to be 0.5% 5-vinyl-2-norbornene (VNB) and 99.4% 5-ethylidene-2-norbornene (ENB). After removing the catalyst, 96.2 g of product was obtained. Examples 2 to 5, Comparative Examples 1 to 3 5-
Isomerization of vinyl-2-norbornene was carried out. The results are shown in Table-2.

【表】【table】

【表】 実施例 6 100mlのフラスコに窒素雰囲気下で参考例1で
調製した固体塩基0.22gを入れ、これに5−イソ
プロペニル−2−ノルボルネン(エキソ体10.1
%、エンド体89.9%)26.4gを加え15〜20℃で16
時間攪拌した。 反応後、反応液をガスクロマトグラフイーによ
り分析したところ、エキソ−5−イソプロペニル
−2−ノルボルネン0.3%、エンド−5−イソプ
ロペニル−2−ノルボルネン0%、5−イソプロ
ピリデン−2−ノルボルネン99.2%であつた。 実施例 7 内径5mmφ、長さ100mmの外套管付ガラス製の
管に、窒素雰囲気下で参考例1で調製した固体塩
基0.94gを充填した。 外套管に15〜20℃の冷却水を流し、内管上部よ
り3.4g/hrの流速でVNB(純度99.9%)を流入し
た。 反応装置の下部より流出した反応液の組成は以
下の通りであつた。 時間(hr) VNB(%) ENB(%) 15 0.3 99.5 25 0.3 99.5 35 0.3 99.5 45 0.3 99.4 全流出量150.9g、ENB平均純度は99.5%であ
つた。 実施例 8 100mlのフラスコに窒素雰囲気下、参考例1で
調製した固体塩基0.25gを入れこれに4−メチル
−1−ペンテン20.1gを加え、15〜20℃で、16時
間反応した。 反応後、反応液をガスクロマトグラフイにより
分析したところ、4−メチル−1−ペンテン0.4
%、4−メチル−2−ペンテン8.8%、2−メチ
ル−2−ペンテン90.6%であつた。 実施例 9 200mlのフラスコに窒素雰囲気下、参考例3で
調製した固体塩基0.25gを入れこれに4−メチル
−1−ペンテン37.7gを加え、15〜20℃で、8時
間反応した。 反応後、反応液をガスクロマトグラフイにより
分析したところ、4−メチル−1−ペンテン0.3
%、4−メチル−2−ペンテン9.3%、2−メチ
ル−2−ペンテン90.2%であつた。 比較例 4 100mlのフラスコに窒素雰囲気下、参考例7で
調製した固体塩基0.30gを入れこれに4−メチル
−1−ペンテン7.0gを加え、15〜20℃で、48時
間反応した。 反応後、反応液をガスクロマトグラフイにより
分析したところ、4−メチル−1−ペンテン90.2
%、4−メチル−2−ペンテン6.2%、2−メチ
ル−2−ペンテン3.6%であつた。 比較例 5 100mlのフラスコに窒素雰囲気下、参考例8で
調製した固体塩基0.31gを入れ、これに4−メチ
ル−1−ペンテン15.5gを加え、15〜20℃で、48
時間反応した。 反応後、反応液をガスクロマトグラフイにより
分析したところ、4−メチル−1−ペンテン0.7
%、4−メチル−2−ペンテン31.2%、2−メチ
ル−2−ペンテン68.0%であつた。
[Table] Example 6 0.22 g of the solid base prepared in Reference Example 1 was placed in a 100 ml flask under a nitrogen atmosphere, and 5-isopropenyl-2-norbornene (exo form 10.1
%, endo form 89.9%) and 16.4g at 15-20℃.
Stir for hours. After the reaction, the reaction solution was analyzed by gas chromatography and found to be 0.3% exo-5-isopropenyl-2-norbornene, 0% endo-5-isopropenyl-2-norbornene, and 99.2% 5-isopropylidene-2-norbornene. It was hot. Example 7 A glass tube with an outer jacket having an inner diameter of 5 mmφ and a length of 100 mm was filled with 0.94 g of the solid base prepared in Reference Example 1 under a nitrogen atmosphere. Cooling water at 15 to 20°C was flowed through the outer tube, and VNB (purity 99.9%) was introduced from the upper part of the inner tube at a flow rate of 3.4 g/hr. The composition of the reaction liquid flowing out from the bottom of the reactor was as follows. Time (hr) VNB (%) ENB (%) 15 0.3 99.5 25 0.3 99.5 35 0.3 99.5 45 0.3 99.4 The total flow rate was 150.9 g, and the average purity of ENB was 99.5%. Example 8 0.25 g of the solid base prepared in Reference Example 1 was placed in a 100 ml flask under a nitrogen atmosphere, 20.1 g of 4-methyl-1-pentene was added thereto, and the mixture was reacted at 15 to 20° C. for 16 hours. After the reaction, the reaction solution was analyzed by gas chromatography, and it was found that 4-methyl-1-pentene was 0.4
%, 4-methyl-2-pentene 8.8%, and 2-methyl-2-pentene 90.6%. Example 9 0.25 g of the solid base prepared in Reference Example 3 was placed in a 200 ml flask under a nitrogen atmosphere, 37.7 g of 4-methyl-1-pentene was added thereto, and the mixture was reacted at 15 to 20°C for 8 hours. After the reaction, the reaction solution was analyzed by gas chromatography, and it was found that 4-methyl-1-pentene was 0.3
%, 4-methyl-2-pentene 9.3%, and 2-methyl-2-pentene 90.2%. Comparative Example 4 0.30 g of the solid base prepared in Reference Example 7 was placed in a 100 ml flask under a nitrogen atmosphere, 7.0 g of 4-methyl-1-pentene was added thereto, and the mixture was reacted at 15 to 20°C for 48 hours. After the reaction, the reaction solution was analyzed by gas chromatography, and it was found that 4-methyl-1-pentene was 90.2
%, 4-methyl-2-pentene 6.2%, and 2-methyl-2-pentene 3.6%. Comparative Example 5 0.31 g of the solid base prepared in Reference Example 8 was placed in a 100 ml flask under a nitrogen atmosphere, 15.5 g of 4-methyl-1-pentene was added thereto, and the mixture was heated at 15 to 20°C at 48°C.
Time reacted. After the reaction, the reaction solution was analyzed by gas chromatography, and it was found that 4-methyl-1-pentene was 0.7
%, 4-methyl-2-pentene 31.2%, and 2-methyl-2-pentene 68.0%.

Claims (1)

【特許請求の範囲】[Claims] 1 オレフインを異性化して安定な内部オレフイ
ンを製造するにあたり、触媒として、不活性ガス
雰囲気中200乃至500℃下で、アルミナとアルカリ
金属水酸化物を加熱作用せしめ、次でアルカリ金
属水素化物を加熱作用せしめて得られる固体塩基
を用いることを特徴とする内部オレフインの製造
方法。
1. In producing stable internal olefins by isomerizing olefins, alumina and alkali metal hydroxides are heated as a catalyst at 200 to 500°C in an inert gas atmosphere, and then the alkali metal hydrides are heated. A method for producing an internal olefin, characterized by using a solid base obtained by the reaction.
JP62-318181A 1987-02-16 1987-12-15 Method for producing internal olefins Granted JPH0133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62-318181A JPH0133A (en) 1987-02-16 1987-12-15 Method for producing internal olefins

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP62-32790 1987-02-16
JP3279087 1987-02-16
JP62-32792 1987-02-16
JP62-318181A JPH0133A (en) 1987-02-16 1987-12-15 Method for producing internal olefins

Publications (3)

Publication Number Publication Date
JPS6433A JPS6433A (en) 1989-01-05
JPH0133A JPH0133A (en) 1989-01-05
JPH0581570B2 true JPH0581570B2 (en) 1993-11-15

Family

ID=

Also Published As

Publication number Publication date
JPS6433A (en) 1989-01-05

Similar Documents

Publication Publication Date Title
EP0354584B1 (en) Solid base, process for producing the same and its use in preparing internal olefins
US4822764A (en) Solid base catalyst for the preparation of internal olefins and process for preparing the catalyst
CA1259298A (en) Dimerization process and catalysts therefor
EP0219637B1 (en) Process for preparing 5-ethylidene-2-norbornene
EP0230025B1 (en) Process for peparing 5-ethylidene-2-norbornene with high quality
JPH0581570B2 (en)
US4877918A (en) Process for preparing internal olefins
JPH07121882B2 (en) Internal olefin manufacturing method
JPS63196527A (en) Production of inner olefin
JPH0133A (en) Method for producing internal olefins
JPH02138228A (en) Preparation of inner olefin
JPH0684318B2 (en) Internal olefin production method
JPH0769937A (en) Production of internal olefin
JP2522354B2 (en) Method for producing solid base
JPH0662454B2 (en) Method for producing 5-ethylidene-2-norbornene
JPH0674221B2 (en) Alkenyl norbornene isomerization method
JPH0551341B2 (en)
JPS62123139A (en) Production of 5-ethylidene-2-norbornene
JPH0134A (en) Internal olefin production method
JP2543339B2 (en) Method for producing high-quality 5-ethylidene-2-norbornene
JPH0674220B2 (en) Alkenyl norbornene isomerization method
JPS62155227A (en) Production of high-quality 5-ethylidene-2-norbornene
KR940011891B1 (en) Process for preparing solid base
JPH06200B2 (en) Method for producing solid base catalyst
JPH0683786B2 (en) Method for producing solid base

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees