JPS62155227A - Production of high-quality 5-ethylidene-2-norbornene - Google Patents

Production of high-quality 5-ethylidene-2-norbornene

Info

Publication number
JPS62155227A
JPS62155227A JP60297274A JP29727485A JPS62155227A JP S62155227 A JPS62155227 A JP S62155227A JP 60297274 A JP60297274 A JP 60297274A JP 29727485 A JP29727485 A JP 29727485A JP S62155227 A JPS62155227 A JP S62155227A
Authority
JP
Japan
Prior art keywords
norbornene
alumina
alkali metal
ethylidene
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60297274A
Other languages
Japanese (ja)
Other versions
JP2543340B2 (en
Inventor
Takeo Suzukamo
鈴鴨 剛夫
Masami Fukao
正美 深尾
Fujio Masuko
増子 藤男
Masahiro Usui
碓氷 昌宏
Kazuo Kimura
和男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP60297274A priority Critical patent/JP2543340B2/en
Priority to MX004694A priority patent/MX169136B/en
Priority to US06/943,067 priority patent/US4727204A/en
Priority to CA000525737A priority patent/CA1267162A/en
Priority to DE8686117794T priority patent/DE3667271D1/en
Priority to EP86117794A priority patent/EP0230025B1/en
Priority to KR1019860011021A priority patent/KR950006520B1/en
Publication of JPS62155227A publication Critical patent/JPS62155227A/en
Application granted granted Critical
Publication of JP2543340B2 publication Critical patent/JP2543340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound, by isomerizing 5-vinyl-2norbornene containing restricted amount of 4-vinylcyclohexene using a solid basic catalyst prepared by heating hydrated alumina and a specific amount of an alkali metal in an inert gas. CONSTITUTION:A high-quality 5-ethylidene-2-norbornene can be produced by isomerizing 5-vinyl-2-norbornene containing 1ppm-0.5wt%, practically 5ppm-0.1 wt% 4-vinylcyclohexene in the presence of a solid basic catalyst prepared by heating hydrated alumina and an alkali metal (e.g. Na, K, etc.) in an inert gas atmosphere (e.g. N2, He, etc.) at 180-500 deg.C, especially 200-330 deg.C. The amount of the alkali metal is >=1 equivalent, preferably 1.01-2 equivalent based on the molar amount of water in the hydrated alumina. USE:A third component of EPDM.

Description

【発明の詳細な説明】 本発明は高品位5−エチリデン−2−ノルボルネンの製
造法に関し、詳しくは特定の触媒の存在下に4−ビニル
シクロヘキセン(以下、VCHと略称する)の含量を特
定範囲に抑制した5−ビニル−2−ノルボルネン(以下
vNBと略称する)を異性化せしめることを特徴とする
5−エチリデン−2−ノルボルネン(以下、ENBと略
称する)の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-grade 5-ethylidene-2-norbornene, and more specifically, the present invention relates to a method for producing high-grade 5-ethylidene-2-norbornene. The present invention relates to a method for producing 5-ethylidene-2-norbornene (hereinafter abbreviated as ENB), which is characterized by isomerizing 5-vinyl-2-norbornene (hereinafter abbreviated as vNB) which has been suppressed to 5-vinyl-2-norbornene.

ENBは合成ゴムであるエチレン・プロピレン・ジエン
モノマー三元共重合体、いわゆるEPDMの第三成分と
して極めて有用な化合物であり、通常1.8−ブタジェ
ンとシクロペンタジェンの反応により得られるV N 
Bを、触媒の存在下に異性化せしめて製造される。
ENB is an extremely useful compound as the third component of the synthetic rubber ethylene-propylene-diene monomer terpolymer, so-called EPDM, and is usually obtained by the reaction of 1,8-butadiene and cyclopentadiene.
It is produced by isomerizing B in the presence of a catalyst.

かかる異性化反応の触媒として、液状の゛塩基、例えば
アルカリ金属水酸化物と非プロトン性有機溶媒、アルカ
リ金属アミドとアミン類あるいは有機アルカリ金属と脂
肪族アミンなど混合物が知られている。しかしながら、
このような液状の塩基試剤を用いる方法では、触媒活性
が充分でなく、高価な試剤を多鳳必要とするということ
の他に、該試剤の反応マスからの分離回収に繁雑な分離
回収工程を必要とするのみならず未反応VNBと生成物
ENBとの分離も難事であり、多量のエネールギーを削
費するという問題がある。
As catalysts for such isomerization reactions, liquid bases such as mixtures of alkali metal hydroxides and aprotic organic solvents, alkali metal amides and amines, or organic alkali metals and aliphatic amines are known. however,
Methods using such liquid base reagents do not have sufficient catalytic activity, require a large number of expensive reagents, and require a complicated separation and recovery process to separate and recover the reagents from the reaction mass. The problem is that separation of unreacted VNB and product ENB is not only necessary, but also difficult and consumes a large amount of energy.

また固体状の異性化触媒としては、アルカリ金属を表面
積の大きい担体、例えば活性炭、シリカゲル、アルミナ
等に分散せしめた触媒が知られティる( J、 Am、
 Chem、 Soc、 82887(1960)。し
かしながらかかる固体触媒はアルカリ金属それ自体が単
に担体上に微細分散されているものであり、空気と接触
すると発火して失活するため、操作性、安全性の面で大
きな難点があった。また異性化能力も不満足なものであ
った。
Also, as solid isomerization catalysts, catalysts in which alkali metals are dispersed in carriers with large surface areas, such as activated carbon, silica gel, alumina, etc., are known (J, Am,
Chem, Soc, 82887 (1960). However, in such a solid catalyst, the alkali metal itself is merely finely dispersed on a carrier, and when it comes into contact with air, it ignites and becomes deactivated, so there are major drawbacks in terms of operability and safety. Also, the isomerization ability was unsatisfactory.

本発明者らは異性化触媒のかかる諸間頭点のない、効率
的な触媒として、既にアルミナ、アルカリ金属水酸化物
、アルカリ金属を原料とした新規な触媒および含水アル
ミナ、アルカリ金属を原料とした新規な触媒を見い出す
とともに、これらの固体塩基触媒は空気中でも発火など
の危険を伴わず、より安全でありVNB等のオレフィン
類の異性化触媒として工業的に優れたものであることを
見い出している(特公昭57−21878号公報)。
The present inventors have already developed new catalysts using alumina, alkali metal hydroxides, and alkali metals as raw materials and hydrous alumina and alkali metals as raw materials, as efficient catalysts that do not have to deal with the problems of isomerization catalysts. In addition, we discovered that these solid base catalysts are safer and industrially superior as catalysts for the isomerization of olefins such as VNB without the risk of ignition even in the air. (Special Publication No. 57-21878).

ところが、かかる固体塩基触媒によるVNBの異性化に
ついて工業用VNBを用いて検討を続けたところ、場合
によっては品位の低下したENBが得られることが判明
した。そしてかかるENBをEPDMの第三成分とした
場合は重合の触媒効率が低下するとともに、EPDMの
分子量分布に変化を与えるなどの好ましくない作用を示
すこともわかった。
However, when we continued to study the isomerization of VNB using such a solid base catalyst using industrial VNB, it was found that in some cases, ENB of lower quality could be obtained. It has also been found that when such ENB is used as the third component of EPDM, it exhibits undesirable effects such as lowering the catalyst efficiency of polymerization and changing the molecular weight distribution of EPDM.

そこで本発明者らはENBの品位安定化について鋭意検
討を重ねた結果、ENBの品位低下の主原因は原料VN
B中のVCHであることを見い出すとともに、VCHの
含量が特定範囲のVNBを用いれば、ENBの品位が向
上し、異性化反応後に触媒を分離するのみでそのままE
PDMの第三成分として十分使用可能な高品位のENB
が効率良く得られることを見い出し、さらに種々の検討
を加えて本発明を完成した。
Therefore, the inventors of the present invention have conducted extensive studies on stabilizing the quality of ENB, and have found that the main cause of the decline in the quality of ENB is the raw material VN.
By discovering that VCH is VCH in B and using VNB with a specific VCH content, the quality of ENB can be improved, and ENB can be directly converted into ENB by simply separating the catalyst after the isomerization reaction.
High-quality ENB that can be used as the third component of PDM
They found that this can be efficiently obtained, and after further various studies, they completed the present invention.

すなわち、本発明は5−ビニル−2−ノルボルネンを異
性化せしめて5−エチリデン−2−ノルボルネンを製造
するにあたり、含水アルミナと該アルミナの水分モル量
に対して当量を越えた量のアルカリ金属とを不活性ガス
雰囲気中、180乃至500℃の温度下で加熱作用せし
めた固体塩基触媒の存在下に、4−ビニルシクロヘキセ
ンの含量を1 ppm乃至0.5重量%に抑制した5−
ビニル−2−ノルボルネンを異性化せしめることを特徴
とする高品位5−エチリデン−2−ノルボルネンの効率
的な製造法を提供するものである。
That is, in producing 5-ethylidene-2-norbornene by isomerizing 5-vinyl-2-norbornene, the present invention uses hydrated alumina and an alkali metal in an amount exceeding the equivalent amount to the molar amount of water in the alumina. 5-vinylcyclohexene content is suppressed to 1 ppm to 0.5% by weight in the presence of a solid base catalyst which is heated at a temperature of 180 to 500°C in an inert gas atmosphere.
The present invention provides an efficient method for producing high-grade 5-ethylidene-2-norbornene, which is characterized by isomerizing vinyl-2-norbornene.

本発明に用いられる固体塩基触媒は含水アルミナと特定
量のアルカリ金属とを特定の温度下で加熱作用せしめて
調製されるが、含水アル史すとしてはα−アルミナ以外
の種々の形態の含水アルミナが使用される。
The solid base catalyst used in the present invention is prepared by heating hydrated alumina and a specific amount of alkali metal at a specific temperature. is used.

アルミナは通常、水酸化アルミニウムの焼成により製造
され、焼成温度と焼成時間によって種々の準安定構造を
とるとともにそれに含まれろ水分の量も異なり種々の形
態のアルミナが存在することが知られている。本発明で
はこのようなアルミナが主として用いられる。特にγ−
2χ−9ρ−型のような高表面積の含水アルミナが好ま
しく用いられる。またアルミナ含有物の含水体、例えば
カオリン、アルミナシリケート等の含水体も使用できる
が前記アルミナが特に好ましい。またアル主すは焼成温
度の上昇に従って最終的にはα−アルミナに転じ、アル
ミナの加熱減量がなくなるとされている。アルミナに含
まれる水の量を測定することはそう容易ではないが、初
めの各皿形態のアルミナからα−アルミナに転じるまで
の加熱減量で表わすことができる。含水アルミナの水分
含量は通常1.3乃至10!危%好ましくは2乃至7重
量%の範囲である。
Alumina is usually produced by firing aluminum hydroxide, and it is known that alumina exists in various forms, taking various metastable structures depending on the firing temperature and firing time, and the amount of water contained therein also differs. In the present invention, such alumina is mainly used. Especially γ-
High surface area hydrated alumina such as 2χ-9ρ-type is preferably used. Hydrous materials containing alumina, such as kaolin and alumina silicate, can also be used, but the alumina is particularly preferred. It is also said that as the firing temperature increases, the alumina will eventually turn into α-alumina, and the loss of alumina on heating will disappear. Although it is not so easy to measure the amount of water contained in alumina, it can be expressed as the loss of water on heating until the initial plate-shaped alumina is converted to α-alumina. The moisture content of hydrated alumina is usually 1.3 to 10! The percentage is preferably in the range of 2 to 7% by weight.

また本発明に用いられる触媒のもう一方の原料であるア
ルカリ金属としては周期律表第−族のナトリウム、カリ
ウム、ルビジウムなどが挙げられる。これ等のアルカリ
金屑を2沖以上用いても差支えないし、これ等の合金、
例えばナトリウムとカリウムとの合金を用いても良い。
Examples of the alkali metal, which is another raw material for the catalyst used in the present invention, include sodium, potassium, rubidium, etc. from Group 1 of the periodic table. It is no problem to use more than 20% of these alkali metal scraps, and these alloys,
For example, an alloy of sodium and potassium may be used.

かかるアルカリ金属の使用量は含水アルミナの水分モル
量に対して当量を越えた塁が必要であり、好ましくは水
分に対して1.01乃至2倍当肌である。
The amount of the alkali metal used must exceed the molar amount of water in the hydrated alumina, preferably 1.01 to 2 times the molar amount of water.

含水アルミナにアルカリ金属を作用せしめるに当っては
所定量のアルカリ金属を一度に加えても良いし、含水ア
ルミナの水分と当社程度加え充分反応せしめた後、更に
残りのアルカリ金属を加えても良い。後者の場合は先に
加えるアルカリ金属と後に加えるアルカリ金属が異なっ
ていても差支えない。
When alkali metal is made to act on hydrated alumina, a predetermined amount of alkali metal may be added at once, or the remaining amount of alkali metal may be added after adding the amount of water in hydrated alumina to our company's level and allowing a sufficient reaction. . In the latter case, the alkali metal added first and the alkali metal added later may be different.

本発明に使用される触媒は不活性ガス雰囲気中で前記の
ような含水アル宅すとアルカリ金属とを特定の温度下に
作用せしめて触媒を調製するものであるが、不活性ガス
としては窒素、ヘリウム、アルゴン等が例示される。
The catalyst used in the present invention is prepared by reacting the above-mentioned hydrated alkali with an alkali metal at a specific temperature in an inert gas atmosphere, but nitrogen is used as the inert gas. , helium, argon, etc.

本発明で使用される触媒はその調製温度、すなわち含水
アルミナとアルカリ金属とを作用せしめる温度が極めて
重要であり、通常180乃至500℃である。とりわけ
180乃至86011c、より好ましくは200乃至8
80℃の温度下に触媒を調製すれば、これ迄にない著し
く活性の高い触媒が得られ、少ない触媒量で効率良く目
的反応を完結することができる。
The preparation temperature of the catalyst used in the present invention, that is, the temperature at which hydrated alumina and alkali metal are allowed to interact with each other, is extremely important, and is usually 180 to 500°C. Especially 180 to 86011c, more preferably 200 to 8
If the catalyst is prepared at a temperature of 80° C., a catalyst with extremely high activity never seen before can be obtained, and the desired reaction can be efficiently completed with a small amount of catalyst.

加熱時間は選定する温度条件により異なるが、通常15
分至10時間で充分である。
Heating time varies depending on the temperature conditions selected, but is usually 15
Minutes to 10 hours is sufficient.

本発明はかくして得られる固体塩基触媒を用いてVNB
をENBに異性化せしめるものであるが、VNBとして
はVCHの含量がt ppm乃至0.5重量%、より実
用的には51)1)m乃至0.1重量%のものが使用さ
れる。かかるVNBはブタジェンとシクロペンタジェン
との反応物を例えば蒸留することにより得ることができ
る。
The present invention utilizes the thus obtained solid base catalyst to produce VNB
is isomerized to ENB, and the VNB used has a VCH content of t ppm to 0.5% by weight, more practically 51)1)m to 0.1% by weight. Such VNB can be obtained, for example, by distilling a reaction product of butadiene and cyclopentadiene.

ここでVNB中にVCHが0.5重量%以上存在すると
品位の低下したENBが得られ、このものは触媒を分離
するのみではEPDMの第三成分として使用し得す、複
雑で効率の悪い精留等により精製する必要がある。この
ようにVCH含量を抑制したVNBを原料とすることは
高品位F、NBを得るための重要な要素である。
If more than 0.5% by weight of VCH is present in the VNB, ENB with reduced quality is obtained, which cannot be used as the third component of EPDM only by separating the catalyst, which is complicated and inefficient. It is necessary to purify it by distillation etc. Using VNB with suppressed VCH content as a raw material is an important factor for obtaining high-quality F and NB.

VNB中のVCHがENB品位に及ぼす影響については
、vCHが存在した場合の異性化後の反応液中に2−エ
チリデンノルボルナン、エチルベンゼン等が検出される
ので、VCHは異性化脱水素してエチルベンゼンに変化
するとともにこの時発生する水素がENB等の2重結合
を飽和せしめる等の副反応を引き起こし、その結果製品
ENBの純度が低下しEPDMの第三成分として好まし
からざる品位のものとなると考えられる。
Regarding the influence of VCH in VNB on ENB quality, 2-ethylidenenorbornane, ethylbenzene, etc. are detected in the reaction solution after isomerization when vCH is present, so VCH is isomerized and dehydrogenated to ethylbenzene. It is thought that the hydrogen generated at this time causes side reactions such as saturating the double bonds of ENB, etc., and as a result, the purity of the product ENB decreases, making it undesirable as a third component of EPDM.

本発明は上記のような特定のVNBを前記した特定の固
体塩基触媒の存在下に異性化せしめるものであるが、固
体塩基触媒のVNBに対する使用量は、通常1/2,0
00乃至115重量であり、好ましくは1/1,000
乃至1/20重量である。
The present invention isomerizes the above-mentioned specific VNB in the presence of the above-mentioned specific solid base catalyst, but the amount of the solid base catalyst used relative to the VNB is usually 1/2,0.
00 to 115 weight, preferably 1/1,000
The weight is 1/20 to 1/20.

また異性化温度については常温下でも充分反応が進行す
るので特に加温する必要ないが、目的によっては加温し
ても良い。通常−80乃至120℃、好ましくは−10
乃至100”Cの温度範囲で実施される。
Regarding the isomerization temperature, since the reaction proceeds satisfactorily even at room temperature, there is no particular need for heating, but heating may be used depending on the purpose. Usually -80 to 120℃, preferably -10℃
The temperature range is from 100" to 100"C.

必要に応じ不活性媒体、例えばペンタン、ヘキサン、ヘ
プタン、ドデカンなどの炭化水素等で希釈して反応を行
うこともできるが無媒体で充分である。本発明方法はバ
ッチ法でも連続法でも実施でき、異性化にあたっては、
あらかじめVNBをアルミナ等の乾燥剤で前処理するこ
とも有効である。より安全に確実に異性化を行うために
は不活性ガス雰囲気下に行えば良い。
If necessary, the reaction can be carried out by diluting with an inert medium such as a hydrocarbon such as pentane, hexane, heptane, dodecane, etc., but no medium is sufficient. The method of the present invention can be carried out either batchwise or continuously, and for isomerization,
It is also effective to pre-treat VNB with a desiccant such as alumina. In order to carry out isomerization more safely and reliably, it may be carried out under an inert gas atmosphere.

異性化反応生成物はガスクロマトグラフィー等の既知の
方法によって分析され、濾過などにより触媒と分離され
る。
The isomerization reaction product is analyzed by a known method such as gas chromatography and separated from the catalyst by filtration or the like.

かくして得られるENBはそのままでも高品位であり、
EPDM等の第三成分として充分使用できる。
The ENB obtained in this way is of high quality as it is,
It can be fully used as a third component of EPDM, etc.

本発明の方法によれば、異性化反応後、単に触媒を分離
するのみで、精留等の効率の悪い精製工程に処すること
なしに高品位のENBが得られ、ENBの工業的規模で
の生産に極めて有利である。
According to the method of the present invention, high-quality ENB can be obtained by simply separating the catalyst after the isomerization reaction without undergoing inefficient purification steps such as rectification, and ENB can be produced on an industrial scale. Extremely advantageous for production.

以下実施例によって、本発明をより詳細に説明するが、
本発明は実施例のみに限定されるものではない。
The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited only to the examples.

参考例1 100 mlフラスコに水分を2.0重屋%を含有する
γ−アルミナg o、 o yを入れ窒素ガス気流中で
撹拌しながら、290〜800℃に加熱した。
Reference Example 1 γ-Alumina go, oy containing 2.0% moisture was placed in a 100 ml flask and heated to 290 to 800°C while stirring in a nitrogen gas stream.

このものに金属ナトリウム0.9gを導入し同温度で1
時間撹拌したのち、室温まで放冷した。かくして、80
.7Fの触媒を得た。
0.9 g of metallic sodium was introduced into this material, and at the same temperature
After stirring for an hour, the mixture was allowed to cool to room temperature. Thus, 80
.. A 7F catalyst was obtained.

参考例2 100 mlフラスコに水分を2.2fl%を含有する
r−アルミナgo、oyを入れ窒素ガス気流中で撹拌し
ながら、810〜820℃に加熱した。
Reference Example 2 R-alumina go, oy containing 2.2 fl % of water was placed in a 100 ml flask and heated to 810 to 820°C while stirring in a nitrogen gas stream.

このものに金属ナトリウム1.2gを導入し同温度で1
時間撹拌したのち、室温まで放冷した。かくして、Bo
、7flの触媒を得た。
1.2g of metallic sodium was introduced into this material and 1.2g of sodium was introduced at the same temperature.
After stirring for an hour, the mixture was allowed to cool to room temperature. Thus, Bo
, 7 fl of catalyst was obtained.

参考例8 100 mlフラスコに水分を2.2重量%を含有する
γ−アルミナso、oyを入れ窒素ガス気流中で撹拌し
ながら、400〜410℃に加熱した。
Reference Example 8 γ-Alumina so, oy containing 2.2% by weight of water was placed in a 100 ml flask and heated to 400 to 410° C. while stirring in a nitrogen gas stream.

このものに金属ナトリウム1.21を導入し同温度で1
時間撹拌したのち、室温まで放冷した。かくして、80
.61の触媒を得た。
1.21% of metallic sodium was introduced into this material, and at the same temperature
After stirring for an hour, the mixture was allowed to cool to room temperature. Thus, 80
.. 61 catalysts were obtained.

実施例1 窒素雰囲気下で100 mlフラスコに参考例1で調製
した触媒0.18 fを入れ、これに47ビニルシクロ
ヘキセン20 ppmを含む5−ビニル−2−ノルボル
ネン(純度99.9%)87、71を加え、20℃で8
時間撹拌した。
Example 1 0.18 f of the catalyst prepared in Reference Example 1 was placed in a 100 ml flask under a nitrogen atmosphere, and 5-vinyl-2-norbornene (purity 99.9%) 87, containing 20 ppm of 47 vinylcyclohexene, was added. Add 71 and 8 at 20℃
Stir for hours.

反応後、触媒を濾去すると、87. Of (収率98
%)の反応液が得られた。このものをガスクロマトグラ
フィーで分析すると4−ビニルシクロヘキセン不検出、
エチルベンゼン0.002%、5−ビニル−2−ノルボ
ルネン0.89%、5−エチリデン−2−ノルボルネン
99.47%、2−エチリデンノルボルナン0.002
%、1−ビニルノルトリサイクレン0.088%であっ
た。
After the reaction, when the catalyst is filtered off, 87. Of (yield 98
%) of the reaction solution was obtained. When this material was analyzed by gas chromatography, 4-vinylcyclohexene was not detected.
Ethylbenzene 0.002%, 5-vinyl-2-norbornene 0.89%, 5-ethylidene-2-norbornene 99.47%, 2-ethylidenenorbornane 0.002
%, 1-vinylnortricyclene 0.088%.

実施例2 窒素雰囲気下で100 mlのフラスコに参考例2でm
Wした触媒0.241を入れ、これに4−ビニルシクロ
ヘキセン0.4%ヲ含& 5−ビニル−2−ノルボルネ
ン59.01M[99,5%)を加え、15℃で8時間
撹拌した。
Example 2 In a 100 ml flask under a nitrogen atmosphere,
0.241% of the W-treated catalyst was added thereto, and 59.01M [99.5%] of 5-vinyl-2-norbornene containing 0.4% of 4-vinylcyclohexene was added thereto, and the mixture was stirred at 15°C for 8 hours.

反応後、触媒を濾去すると、58.31収率99%)の
反応液が得られた。このものをガスクロマトグラフィー
で分析すると4−ビニルシクロヘキセン不検出、エチル
ベンゼン0.89%、5−ビニル−2−ノルボルネン0
.49%、5−エチリデン−2−ノルボルネン98.5
9%、2−エチリデンノルボルナン0.82%、1−ビ
ニルノルトリサイクレン0.082%であった。
After the reaction, the catalyst was removed by filtration to obtain a reaction solution with a yield of 58.31% (99%). When this product was analyzed by gas chromatography, 4-vinylcyclohexene was not detected, ethylbenzene was 0.89%, and 5-vinyl-2-norbornene was 0.
.. 49%, 5-ethylidene-2-norbornene 98.5
9%, 2-ethylidenenorbornane 0.82%, and 1-vinylnortricyclene 0.082%.

実施例8 窒素雰囲気下で100m1フラスコに参考例1で調製し
た触媒0.20 fを入れ、これに4−ビニルシクロヘ
キセン20 ppmを含む5−ビニル−2−ノルボルネ
ン(純度99.9%)40.6Fを加え、50℃で5時
間撹拌した。
Example 8 0.20 f of the catalyst prepared in Reference Example 1 was placed in a 100 ml flask under a nitrogen atmosphere, and 40.0 g of 5-vinyl-2-norbornene (purity 99.9%) containing 20 ppm of 4-vinylcyclohexene was added. 6F was added and stirred at 50°C for 5 hours.

反応後、室温まで冷却し、触媒を濾去すると、89.8
F(収率98%)の反応液が得られた。
After the reaction, the catalyst was cooled to room temperature and the catalyst was filtered off.
A reaction solution of F (yield 98%) was obtained.

このものをガスクロマトグラフィーで分析したところ4
−ビニルシクロヘキセン不検出、エチルベンゼン0.0
02%、5−ビニル−2一ノルボルネン0.15%、5
−エチリデン−2−ノルボルネン99.48%、2−エ
チリデンノルボルナン0.002%、1−ビニルノルト
リサイクレン0.040%であった。
When this substance was analyzed by gas chromatography, 4
-No vinylcyclohexene detected, ethylbenzene 0.0
02%, 5-vinyl-2-norbornene 0.15%, 5
-ethylidene-2-norbornene 99.48%, 2-ethylidene norbornane 0.002%, and 1-vinylnortricyclene 0.040%.

実施例4 窒素雰囲気下で100g/のフラスコに参考例3で調製
した触媒0.521を入れ、これに4−ビニルシクロヘ
キセン20 ppmを含む5−ビニル−2−ノルボルネ
ン68.8flt1度99.9%)を加え、20℃で8
時間撹拌した。
Example 4 0.521 of the catalyst prepared in Reference Example 3 was placed in a 100 g flask under a nitrogen atmosphere, and 68.8 flt of 5-vinyl-2-norbornene containing 20 ppm of 4-vinylcyclohexene was added to the flask at a concentration of 99.9%. ) and heat at 20°C.
Stir for hours.

反応後、触媒を濾去すると、62.6F(収率99%)
の反応液が得られた。このものをガスクロマトグラフィ
ーで分析したところ4−ビニルシクロヘキセン不検出、
エチルベンゼン0.002%、6−ピニルー2−ノルボ
ルネン0.28%、5−エチリデン−2−ノルボルナン
99.56%、2−エチリデン−ノルボルナン0.00
2%、1−ビニルノルトリサイクレン0.034%であ
った。
After the reaction, when the catalyst was filtered off, 62.6F (yield 99%)
A reaction solution was obtained. When this material was analyzed by gas chromatography, 4-vinylcyclohexene was not detected.
Ethylbenzene 0.002%, 6-pinylene-2-norbornene 0.28%, 5-ethylidene-2-norbornane 99.56%, 2-ethylidene-norbornane 0.00
2%, and 1-vinylnortricyclene 0.034%.

比較例 窒累雰囲気下で100 mlのフラスコに参考例1で調
製した触媒0.251を入れ、これに4−ビニルシクロ
ヘキセン1.3%を含む5−ビニル−2−ノルボルネン
(純度9a、g%)46.9ノを加え、20℃で8時間
撹拌した。
Comparative Example 0.251 of the catalyst prepared in Reference Example 1 was placed in a 100 ml flask under a nitrogen atmosphere, and 5-vinyl-2-norbornene (purity 9a, g%) containing 1.3% of 4-vinylcyclohexene was added to the flask. ) was added thereto, and the mixture was stirred at 20°C for 8 hours.

反応後触媒を濾去すると46.8f(収率99%)の反
応液が得られた。ξのものをガスクロマトグラフィーで
分析すると4−ビニルシクロヘキセン不検出、エチルベ
ンゼン1.24%、5−ビニル−2−ノルボルネン0.
82%、5−エチリデン−2−ノルボルネン96.91
%、2−エチリデン−ノルボルナン1.20%、1−ビ
ニルノルトリサイクレン0.084%であった。
After the reaction, the catalyst was removed by filtration to obtain 46.8 f (yield: 99%) of the reaction solution. When ξ was analyzed by gas chromatography, 4-vinylcyclohexene was not detected, ethylbenzene was 1.24%, and 5-vinyl-2-norbornene was 0.
82%, 5-ethylidene-2-norbornene 96.91
%, 2-ethylidene-norbornane 1.20%, and 1-vinylnortricyclene 0.084%.

Claims (1)

【特許請求の範囲】[Claims] 5−ビニル−2−ノルボルネンを異性化せしめて5−エ
チリデン−2−ノルボルネンを製造するにあたり、含水
アルミナと該アルミナの水分モル量に対して当量を越え
た量のアルカリ金属とを不活性ガス雰囲気中、180乃
至500℃の温度下で調製した固体塩基触媒の存在下に
4−ビニルシクロヘキセンの含量を1ppm乃至0.5
重量%に抑制した5−ビニル−2−ノルボルネンを異性
化せしめることを特徴とする高品位5−エチリデン−2
−ノルボルネンの製造法。
In producing 5-ethylidene-2-norbornene by isomerizing 5-vinyl-2-norbornene, hydrated alumina and an alkali metal in an amount equivalent to the molar amount of water in the alumina are heated in an inert gas atmosphere. The content of 4-vinylcyclohexene was 1 ppm to 0.5 in the presence of a solid base catalyst prepared at a temperature of 180 to 500°C.
High-grade 5-ethylidene-2 characterized by isomerizing 5-vinyl-2-norbornene in a controlled amount by weight%
-Production method of norbornene.
JP60297274A 1985-12-20 1985-12-27 Method for producing high-quality 5-ethylidene-2-norbornene Expired - Lifetime JP2543340B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60297274A JP2543340B2 (en) 1985-12-27 1985-12-27 Method for producing high-quality 5-ethylidene-2-norbornene
MX004694A MX169136B (en) 1985-12-20 1986-12-17 PROCEDURE FOR PREPARING HIGH QUALITY 5-ETILIDEN-2-NORBORNENE
CA000525737A CA1267162A (en) 1985-12-20 1986-12-18 Process for preparing 5-ethylidene-2-norbornene of high quality
US06/943,067 US4727204A (en) 1985-12-20 1986-12-18 Process for preparing 5-ethylidene-2-norbornene with high quality
DE8686117794T DE3667271D1 (en) 1985-12-20 1986-12-19 METHOD FOR PRODUCING HIGH QUALITY 5-ETHYLIDEN-2-NORBORN.
EP86117794A EP0230025B1 (en) 1985-12-20 1986-12-19 Process for peparing 5-ethylidene-2-norbornene with high quality
KR1019860011021A KR950006520B1 (en) 1985-12-20 1986-12-20 Process for preparing 5-ethylene-2-norbornene with high quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60297274A JP2543340B2 (en) 1985-12-27 1985-12-27 Method for producing high-quality 5-ethylidene-2-norbornene

Publications (2)

Publication Number Publication Date
JPS62155227A true JPS62155227A (en) 1987-07-10
JP2543340B2 JP2543340B2 (en) 1996-10-16

Family

ID=17844400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60297274A Expired - Lifetime JP2543340B2 (en) 1985-12-20 1985-12-27 Method for producing high-quality 5-ethylidene-2-norbornene

Country Status (1)

Country Link
JP (1) JP2543340B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328426A (en) * 1976-08-27 1978-03-16 Fuji Photo Film Co Ltd Color photographic processing method
JPS5721378A (en) * 1980-07-15 1982-02-04 Yamanouchi Pharmaceut Co Ltd Aminophenyl ether derivative

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328426A (en) * 1976-08-27 1978-03-16 Fuji Photo Film Co Ltd Color photographic processing method
JPS5721378A (en) * 1980-07-15 1982-02-04 Yamanouchi Pharmaceut Co Ltd Aminophenyl ether derivative

Also Published As

Publication number Publication date
JP2543340B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
EP0219637B1 (en) Process for preparing 5-ethylidene-2-norbornene
EP0230025B1 (en) Process for peparing 5-ethylidene-2-norbornene with high quality
JPS62155227A (en) Production of high-quality 5-ethylidene-2-norbornene
JP2543339B2 (en) Method for producing high-quality 5-ethylidene-2-norbornene
US4795730A (en) Dehydration of alcohols
JPS63196527A (en) Production of inner olefin
JPH0581570B2 (en)
JP2980759B2 (en) Process for producing alkenylbenzene and derivatives thereof
US3767716A (en) Process for the production of 1,3-cyclooctadiene
JPS62123139A (en) Production of 5-ethylidene-2-norbornene
JPH07121882B2 (en) Internal olefin manufacturing method
JPS63215646A (en) Isomerization of alkenylnorbornene
JPH05112476A (en) Production of alkenylbenzene and its derivative
WO2000018710A1 (en) Isomerization of olefins
KR950003114B1 (en) Process for preparing 5-ethylidene-2-norbornene
JPH05246909A (en) Production of alkenylbenzene and its derivative
RU2126783C1 (en) Dimethylnaphthalene production process
JPH0133A (en) Method for producing internal olefins
JPH0684318B2 (en) Internal olefin production method
JPH05140005A (en) Production of alkenyl benzene and its derivative
JPS63215645A (en) Isomerization of alkenylnorbornene
JPH06200B2 (en) Method for producing solid base catalyst
JPH05213791A (en) Alkenylbenzene and production of its derivative
JPH05163172A (en) Production of alkenylbenzene and its derivative
JPS58210038A (en) Production of trialkylhydroquinone