JPH0674216B2 - Internal olefin manufacturing method - Google Patents

Internal olefin manufacturing method

Info

Publication number
JPH0674216B2
JPH0674216B2 JP62028580A JP2858087A JPH0674216B2 JP H0674216 B2 JPH0674216 B2 JP H0674216B2 JP 62028580 A JP62028580 A JP 62028580A JP 2858087 A JP2858087 A JP 2858087A JP H0674216 B2 JPH0674216 B2 JP H0674216B2
Authority
JP
Japan
Prior art keywords
alumina
catalyst
methyl
pentene
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62028580A
Other languages
Japanese (ja)
Other versions
JPS63196527A (en
Inventor
剛夫 鈴鴨
正美 深尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP62028580A priority Critical patent/JPH0674216B2/en
Publication of JPS63196527A publication Critical patent/JPS63196527A/en
Publication of JPH0674216B2 publication Critical patent/JPH0674216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内部オレフィンの製造法に関し、詳しくは特定
の触媒の存在下にオレフィンを異性化せしめてより安定
な内部オレフィンを製造する方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing an internal olefin, and more particularly to a method for producing a more stable internal olefin by isomerizing an olefin in the presence of a specific catalyst. Is.

〈従来の技術,発明が解決しようとする問題点〉 オレフィンを異性化してより安定な内部オレフィンに異
性化する方法は種々知られている。しかしながら一般に
公知方法ではオレフィンの分解を伴ったり、不必要なオ
レフィンの重合物を与えたりまたランダム化する等の望
まざる要素を多分にもったものが多く、経済的に不利な
限定を受けている。
<Problems to be Solved by Prior Art and Invention> Various methods for isomerizing an olefin to a more stable internal olefin are known. However, generally, in the known methods, there are many undesired factors such as decomposition of olefin, giving unnecessary olefin polymer, and randomization, which are economically disadvantageous. .

かかる異性化反応の触媒として、液状の塩基、例えばア
ルカリ金属水酸化物と非プロトン性有機溶媒、アルカリ
金属アミドとアミン類あるいは有機アルカリ金属と脂肪
族アミンなどの混合物が知られている。しかしながら、
このような液状の塩基試剤を用いる方法では、触媒活性
が充分でなく、高価な試剤を多量必要とするということ
の他に、該試剤の反応マスからの分離回収が難事であ
り、繁雑な分離回収工程を必要とするのみならず多量の
エネルギーを消費するという問題がある。
As a catalyst for such an isomerization reaction, a liquid base such as a mixture of an alkali metal hydroxide and an aprotic organic solvent, an alkali metal amide and an amine, or an organic alkali metal and an aliphatic amine is known. However,
In the method using such a liquid base reagent, the catalytic activity is not sufficient and a large amount of expensive reagent is required, and it is difficult to separate and collect the reagent from the reaction mass, and a complicated separation is required. There is a problem that not only a recovery process is required but also a large amount of energy is consumed.

また固体状の異性化触媒としては、アルカリ金属を表面
積の大きい担体、例えば活性炭、シリカゲル、アルミナ
等に分散せしめた触媒が知られている(J.Am.Chem.Soc.
82 387(1960))。
Further, as a solid isomerization catalyst, a catalyst in which an alkali metal is dispersed in a carrier having a large surface area, such as activated carbon, silica gel, or alumina, is known (J. Am. Chem. Soc.
82 387 (1960)).

しかしながらかかる固体触媒はアルカリ金属それ自体が
単に担体上に微細分散されているものであり、空気と接
触すると発火して失活するため、操作性、安全性の面で
大きな問題があった。また異性化能力も不満足なもので
あった。
However, in such a solid catalyst, the alkali metal itself is simply finely dispersed on the carrier, and when contacted with air, it is ignited and deactivated, so that there is a big problem in terms of operability and safety. The isomerization ability was also unsatisfactory.

本発明者らは異性化触媒のかかる諸問題点のない、効率
的な触媒として、既にアルミナ、アルカリ金属水酸化
物、アルカリ金属を原料とした新規な触媒および含水ア
ルミナ、アルカリ金属を原料とした新規な触媒を見い出
すとともに、これらの固体塩基触媒は空気中でも発火な
どの危険を伴わず、より安全でありオレフィンの内部オ
レフィンへの異性化触媒として優れたものであることを
見い出している(特公昭57-21378号、特公昭55-29055
号、特公昭54-41562号、特公昭55-29056号、特公昭55-2
9058号公報)。
The present inventors have already used alumina, an alkali metal hydroxide, a novel catalyst using an alkali metal as a raw material, and a hydrous alumina and an alkali metal as a raw material, as an efficient catalyst that does not have such problems of an isomerization catalyst. In addition to finding new catalysts, they have found that these solid base catalysts are safer without danger of ignition in the air and are excellent catalysts for isomerizing olefins into internal olefins (Japanese Patent Publication No. 57-21378, Japanese Examined Sho 55-29055
No. 54-41562, Sho-55-29056, Sho-55-2
9058 publication).

本発明者らはかかる固体塩基触媒を用いた内部オレフィ
ンの製造について、より工業的に優れた方法を見い出す
べく更に検討を重ねた結果、触媒の原料である含水アル
ミナとアルカリ金属とを加熱作用せしめる温度が特に重
要であり、特定の温度下に調製すれば触媒活性が著しく
向上し、少ない触媒量で効率良く異性化が進行すること
を見い出し、さらに種々の検討を加え本発明を完成し
た。
The present inventors have further studied the production of internal olefins using such a solid base catalyst in order to find a more industrially excellent method, and as a result, heat the hydrous alumina and the alkali metal that are the raw materials of the catalyst. The temperature is particularly important, and it was found that the catalyst activity was remarkably improved if prepared under a specific temperature, and the isomerization proceeded efficiently with a small amount of catalyst, and the present invention was completed by further various studies.

〈問題を解決するための手段〉 すなわち、本発明はオレフィンの二重結合を異性化せし
め、より安定な内部オレフィンを製造するにあたり、含
水アルミナと該アルミナの水分モル量に対して当量を越
えた量のアルカリ金属とを不活性ガス雰囲気中、180乃
至350℃の温度下で加熱作用せしめた固体塩基触媒を用
いることを特徴とする工業的に極めて優れた内部オレフ
ィンの製造法を提供するものである。
<Means for Solving the Problem> That is, in the present invention, in isomerizing the double bond of the olefin to produce a more stable internal olefin, the equivalent amount is exceeded with respect to the water-containing alumina and the water molar amount of the alumina. To provide an industrially excellent method for producing an internal olefin, which is characterized by using a solid base catalyst obtained by heating an amount of an alkali metal in an inert gas atmosphere at a temperature of 180 to 350 ° C. is there.

本発明における固体塩基触媒の原料である含水アルミナ
としてはα−アルミナ以外の種々の形態の含水アルミナ
が使用される。
As the hydrous alumina which is a raw material of the solid base catalyst in the present invention, various forms of hydrous alumina other than α-alumina are used.

アルミナは通常、水酸化アルミニウムの焼成により製造
されるが、焼成温度と焼成時間によって種々の準安定構
造をとるとともにそれに含まれる水分の量も異なり種々
の形態のアルミナが存在することが知られている。本発
明ではこのようなアルミナが主として用いられる。特に
γ−,χ−,ρ−型のような高表面積のアルミナが好ま
しく用いられる。またアルミナ含有物の含水体、例えば
カオリン、アルミナシリケート等の含水体も使用できる
が前記アルミナが特に好ましい。またアルミナは焼成温
度の上昇に従って最終的にはα−アルミナに転じ、アル
ミナの加熱減量がなくなるとされている。アルミナに含
まれる水の量を測定することはそう容易ではないが、初
めの各種形態のアルミナからα−アルミナに転じるまで
の加熱減量で表すことができる。含水アルミナの水分含
量は通常1.3乃至10重量%が好ましくは2乃至7重量%
の範囲である。
Alumina is usually produced by calcining aluminum hydroxide, but it is known that various metastable structures are taken depending on the calcining temperature and calcining time, and the amount of water contained in it also varies, so that there are various forms of alumina. There is. In the present invention, such alumina is mainly used. In particular, high surface area alumina such as γ-, χ-, and ρ-type is preferably used. Further, a hydrated substance containing an alumina, for example, a hydrated substance such as kaolin or alumina silicate can be used, but the above-mentioned alumina is particularly preferable. Further, it is said that the alumina eventually turns into α-alumina as the firing temperature rises, and the heating loss of the alumina disappears. Although it is not so easy to measure the amount of water contained in alumina, it can be represented by the weight loss on heating from the initial various forms of alumina to the conversion to α-alumina. The water content of hydrated alumina is usually 1.3 to 10% by weight, preferably 2 to 7% by weight.
Is the range.

また本発明に用いられる触媒のもう一つの原料であるア
ルカリ金属としては周期律表第一族のナトリウム、カリ
ウム、ルビジウムなどが挙げられる。これ等のアルカリ
金属を2種以上用いても差し支えないし、これ等の合
金、例えばナトリウムとカリウムとの合金を用いても良
い。
Examples of the alkali metal which is another raw material of the catalyst used in the present invention include sodium, potassium and rubidium of the 1st group of the periodic table. Two or more kinds of these alkali metals may be used, or an alloy thereof, for example, an alloy of sodium and potassium may be used.

かかるアルカリ金属の使用量は含水アルミナの水分モル
量に対して当量を越えた量が必要であり好ましくは水分
に対して1.01乃至2倍当量である。
The amount of the alkali metal used is required to be more than the amount equivalent to the molar amount of water contained in the hydrated alumina, and preferably 1.01 to 2 times the amount equivalent to the amount of water.

含水アルミナにアルカリ金属を作用せしるめに当たって
は所定量のアルカリ金属を一度に加えても良いし、含水
アルミナの水分と当量程度加え充分反応せしめた後、更
に残りのアルカリ金属を加えても良い。後者の場合は先
に加えるアルカリ金属と後に加えるアルカリ金属が異な
っていても差し支えない。
When the alkali metal is allowed to act on the hydrated alumina, a predetermined amount of the alkali metal may be added at once, or after addition of the equivalent amount of the moisture of the hydrated alumina and sufficient reaction, the remaining alkali metal may be added. good. In the latter case, the alkali metal added first and the alkali metal added later may be different.

本発明に使用される触媒は不活性ガス雰囲気中で前記の
ような含水アルミナとアルカリ金属とを特定の温度下に
作用せしめて触媒を調製するものであるが、不活性ガス
としては窒素、ヘリウム、アルゴン等が例示される。
The catalyst used in the present invention is a catalyst prepared by allowing the above-mentioned hydrous alumina and alkali metal to act at a specific temperature in an inert gas atmosphere, and the inert gas is nitrogen or helium. , Argon, etc. are exemplified.

本発明で使用される触媒はその調製温度、すなわち含水
アルミナとアルカリ金属とを作用せしめる温度が極めて
重要であり、触媒活性に著しい影響を及ぼす。触媒調製
温度は180乃至350℃であり、より好ましくは200乃至330
℃である。かかる温度下に触媒を調製すれば、これまで
にない著しく活性の高い触媒が得られ、少ない触媒量で
効率良く目的反応を完結することができる。
The preparation temperature of the catalyst used in the present invention, that is, the temperature at which the hydrous alumina and the alkali metal are allowed to act on each other is extremely important, and the catalyst activity is significantly affected. The catalyst preparation temperature is 180 to 350 ℃, more preferably 200 to 330
℃. If the catalyst is prepared at such a temperature, a catalyst having a remarkably high activity which has never been obtained can be obtained, and the target reaction can be efficiently completed with a small amount of the catalyst.

加熱時間は選定する温度条件等により異なるが通常15分
乃至10時間で充分である。
The heating time varies depending on the selected temperature conditions and the like, but 15 minutes to 10 hours is usually sufficient.

かくして、公知の固体塩基触媒に比し発火等の危険を伴
わず安全で、しかも著しく活性の高い触媒が得られる。
Thus, as compared with the known solid base catalyst, a safer and highly active catalyst can be obtained without danger of ignition.

本発明はかかる固体塩基触媒を用いてオレフィンをより
安定な内部オレフィンに異性化せしめるものであるが、
かかる原料オレフィンとしては、例えば1−ブテン、1
−ペンテン、1−ヘキセン、1−ヘプテン、1−ノネ
ン、1−デセン、2−メチル−1−ブテン、3−メチル
−1−ブテン、4−メチル−1−ペンテン、3−メチル
−1−ペンテン、2−メチル−1−ペンテン、2,3−ジ
メチル−1−ブテン等の鎖状化合物、アリルベンゼン、
アリルトルエン等の芳香族化合物、2−イソプロペニル
ノルボルナン、5−イソプロペニル−2−ノルボルネ
ン、6−メチル−5−ビニルノルボルネン等の架橋環化
合物(但し、5−ビニル−2−ノルボルネンを除く)、
メチレンシクロペンタン、メチレンシクロヘキサン等の
環状化合物、1,4−ペンタジエン、1,5−ヘキサジエン、
2,5−ジメチル−1,4−ヘキサジエン、2,5−ジメチル−
1,5−ヘキサジエン等の非共役オレフィンなどの末端オ
レフィン化合物、4−メチル−2−ペンテン、5−(2
−プロペニル)−2−ノルボルネン等の末端以外に二重
結合を有し、より安定な位置に異性化し得る化合物が挙
げられる。
Although the present invention uses such a solid base catalyst to isomerize an olefin into a more stable internal olefin,
Examples of the raw material olefin include 1-butene and 1
-Pentene, 1-hexene, 1-heptene, 1-nonene, 1-decene, 2-methyl-1-butene, 3-methyl-1-butene, 4-methyl-1-pentene, 3-methyl-1-pentene Chain compounds such as 2-methyl-1-pentene and 2,3-dimethyl-1-butene, allylbenzene,
Aromatic compounds such as allyltoluene, cross-linked ring compounds such as 2-isopropenylnorbornane, 5-isopropenyl-2-norbornene, 6-methyl-5-vinylnorbornene (however, 5-vinyl-2-norbornene is excluded),
Cyclic compounds such as methylenecyclopentane and methylenecyclohexane, 1,4-pentadiene, 1,5-hexadiene,
2,5-dimethyl-1,4-hexadiene, 2,5-dimethyl-
Terminal olefin compounds such as non-conjugated olefins such as 1,5-hexadiene, 4-methyl-2-pentene, 5- (2
Examples thereof include compounds having a double bond other than the terminal such as -propenyl) -2-norbornene and capable of isomerizing at a more stable position.

また内部オレフィンを製造するに当り、使用する固体塩
基触媒の使用量は、原料に対し、通常1/3000乃至1/50重
量であり、好ましくは1/2000乃至1/100重量である。ま
た異性化の温度については常温下でも充分反応が進行す
るので特に加温する必要はないが、目的によっては加温
しても良い。通常−30乃至120℃好ましくは−10乃至100
℃の温度範囲で実施される。
The amount of the solid base catalyst used in producing the internal olefin is usually 1/3000 to 1/50 weight, preferably 1/2000 to 1/100 weight, relative to the raw material. Regarding the isomerization temperature, the reaction proceeds sufficiently even at room temperature, so that it is not particularly necessary to heat it, but it may be heated depending on the purpose. Usually -30 to 120 ° C, preferably -10 to 100
It is carried out in the temperature range of ° C.

必要に応じ不活性媒体、例えばペンタン、ヘキサン、ヘ
プタン、ドデカンなどの炭化水素等で希釈して反応を行
うこともできるが無媒体で充分である。本発明方法はバ
ッチ法でも連続法でも実施例でき、異性化にあたって
は、あらかじめ原料をアルミナ等の乾燥剤で前処理する
ことも有効である。より安全に確実に異性化を行うため
には不活性ガス雰囲気下に行えば良い。
If necessary, the reaction can be carried out by diluting it with an inert medium, for example, hydrocarbons such as pentane, hexane, heptane, dodecane, etc., but no medium is sufficient. The method of the present invention can be carried out by a batch method or a continuous method, and it is also effective to pretreat the raw material with a desiccant such as alumina in advance for isomerization. In order to carry out isomerization more safely and surely, it may be carried out under an inert gas atmosphere.

異性化反応生成物はガスクロマトグラフイー等の既知の
方法によって分析され、瀘過などにより触媒と分離され
る。
The isomerization reaction product is analyzed by a known method such as gas chromatography and separated from the catalyst by filtration or the like.

〈発明の効果〉 かくして本発明の目的物であるより安定な位置に異性化
した内部オレフィンが得られるが、本発明方法によれば
公知方法に比べ著しく少ない触媒量でも極めて効率良く
オレフィンの異性化反応を完結せしめることができ、重
合物等の副生物を伴うことなく高収率で内部オレフィン
が得られる。しかも、発火等の危険をともなうこともな
く安全に反応を進行せしめることができるので、内部オ
レフィンの工業的製造方法として極めて有用である。
<Effect of the Invention> Thus, the internal olefin isomerized to a more stable position, which is the object of the present invention, can be obtained, but according to the method of the present invention, the olefin isomerization is extremely efficiently performed even with a significantly small amount of catalyst as compared with the known method. The reaction can be completed, and an internal olefin can be obtained in high yield without accompanying byproducts such as a polymer. In addition, since the reaction can be safely proceeded without danger of ignition and the like, it is extremely useful as a method for industrially producing an internal olefin.

〈実施例〉 以下の実施例によって、本発明をより詳細に説明する
が、本発明は実施例のみに限定されるものではない。
<Example> The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the examples.

参考例1 水分を2.2重量%含有するγ−アルミナ30.0gを100mlの
フラスコに入れ、窒素ガス流通下に攪拌しながら300℃
に加熱した。金属ナトリウムを1.2g導入し、1時間同温
度で攪拌したのち放冷した。灰青色の触媒30.9gを得
た。
Reference Example 1 30.0 g of γ-alumina containing 2.2% by weight of water was placed in a 100 ml flask and stirred at 300 ° C. under nitrogen gas flow.
Heated to. 1.2 g of metallic sodium was introduced, and the mixture was stirred at the same temperature for 1 hour and allowed to cool. 30.9 g of an off-blue catalyst was obtained.

参考例2 水分を2.0重量%含有するγ−アルミナ30.0gを100mlの
フラスコに入れ、窒素ガス流通下に攪拌しながら260℃
に加熱した。金属ナトリウムを0.75gと金属カリウム0.4
5gを加え1時間攪拌した後放冷した。灰青色の触媒31.0
gを得た。
Reference Example 2 30.0 g of γ-alumina containing 2.0% by weight of water was placed in a 100 ml flask and stirred at 260 ° C. under a nitrogen gas flow.
Heated to. 0.75 g of metallic sodium and 0.4 of metallic potassium
After adding 5 g and stirring for 1 hour, the mixture was allowed to cool. Gray-blue catalyst 31.0
got g.

参考例3 水分を2.2重量%含有するγ−アルミナ30.0gを100mlの
フラスコに入れ、窒素ガス流通下に攪拌しながら210℃
に加熱した。金属ナトリウムを1.2g導入し、1時間同温
度で攪拌したのち放冷した。灰青色の触媒30.8gを得
た。
Reference Example 3 30.0 g of γ-alumina containing 2.2% by weight of water was placed in a 100 ml flask and stirred at 210 ° C. under nitrogen gas flow.
Heated to. 1.2 g of metallic sodium was introduced, and the mixture was stirred at the same temperature for 1 hour and allowed to cool. 30.8 g of an off-blue catalyst was obtained.

参考例4 水分を2.2重量%含有するγ−アルミナ30.0gを100mlの
フラスコに入れ、窒素ガス流通下に攪拌しながら400℃
に加熱した。金属ナトリウムを1.2g導入し、1時間同温
度で攪拌したのち放冷した。灰青色の触媒30.9gを得
た。
Reference Example 4 30.0 g of γ-alumina containing 2.2% by weight of water was placed in a 100 ml flask and stirred at 400 ° C. under nitrogen gas flow.
Heated to. 1.2 g of metallic sodium was introduced, and the mixture was stirred at the same temperature for 1 hour and allowed to cool. 30.9 g of an off-blue catalyst was obtained.

実施例1 100mlフラスコに窒素雰囲気下で参考例1で調製した固
体塩基0.25gと4−メチル−1−ペンテン(組成:4メチ
ル−1−ペンテン98.9%、4−メチル−2−ペンテン1.
1%)22.2gを加え15〜20℃で16時間攪拌した後反応液を
分析したところ、4−メチル−1−ペンテン0.4%、4
−メチル−2−ペンテン10.8%、2−メチル−2−ペン
テン88.8%であった。
Example 1 In a 100 ml flask under a nitrogen atmosphere, 0.25 g of the solid base prepared in Reference Example 1 and 4-methyl-1-pentene (composition: 4-methyl-1-pentene 98.9%, 4-methyl-2-pentene 1.
1%) 22.2 g was added and the mixture was stirred at 15 to 20 ° C. for 16 hours, and then the reaction solution was analyzed. As a result, 4-methyl-1-pentene 0.4% and 4%
-Methyl-2-pentene 10.8% and 2-methyl-2-pentene 88.8%.

実施例2 100mlフラスコに窒素雰囲気下で参考例2で調製した固
体塩基0.20gと4−メチル−1−ペンテン(組成:実施
例1と同じ)28.0gを加え15〜20℃で16時間攪拌した後
反応液を分析したところ、4−メチル−1−ペンテン0.
4%、4−メチル−2−ペンテン9.0%、2−メチル−2
−ペンテン90.6%であった。
Example 2 To a 100 ml flask, under a nitrogen atmosphere, 0.20 g of the solid base prepared in Reference Example 2 and 28.0 g of 4-methyl-1-pentene (composition: the same as in Example 1) were added and stirred at 15 to 20 ° C for 16 hours. The post-reaction liquid was analyzed and found to be 4-methyl-1-pentene.
4%, 4-methyl-2-pentene 9.0%, 2-methyl-2
-Pentene 90.6%.

実施例3 100mlフラスコに窒素雰囲気下で参考例3で調製した固
体塩基0.23gと4−メチル−1−ペンテン(組成:実施
例1と同じ)20.7gを加え15〜20℃で16時間攪拌した後
反応液を分析したところ、4−メチル−1−ペンテン0.
6%、4−メチル−2−ペンテン37.8%、2−メチル−
2−ペンテン61.6%であった。
Example 3 To a 100 ml flask, under a nitrogen atmosphere, 0.23 g of the solid base prepared in Reference Example 3 and 20.7 g of 4-methyl-1-pentene (composition: same as in Example 1) were added and stirred at 15 to 20 ° C. for 16 hours. The post-reaction liquid was analyzed and found to be 4-methyl-1-pentene.
6%, 4-methyl-2-pentene 37.8%, 2-methyl-
The content of 2-pentene was 61.6%.

比較例1 100mlフラスコに窒素雰囲気下で参考例4で調製した固
体塩基0.25gと4−メチル−1−ペンテン(組成:実施
例1と同じ)22.2gを加え15〜20℃で16時間攪拌した後
反応液を分析したところ、4−メチル−1−ペンテン1.
5%、4−メチル−2−ペンテン53.2%、2−メチル−
2−ペンテン45.3%であった。
Comparative Example 1 0.25 g of the solid base prepared in Reference Example 4 and 22.2 g of 4-methyl-1-pentene (composition: the same as in Example 1) were added to a 100 ml flask under a nitrogen atmosphere and stirred at 15 to 20 ° C. for 16 hours. When the post-reaction liquid was analyzed, 4-methyl-1-pentene was 1.
5%, 4-methyl-2-pentene 53.2%, 2-methyl-
2-pentene was 45.3%.

実施例4 100mlフラスコに窒素雰囲気下で参考例1で調製した固
体塩基0.25gと2,3−ジメチル−1−ブテン(組成:2,3−
ジメチル−1−ブテン99.4%、2,3−ジメチル−2−ブ
テン0.6%)45.0gを加え、15〜20℃で24時間攪拌した。
反応後濾過によって、触媒を分離し、43.3gの反応液を
得た。このものをガスクロマトグラフィーで分析したと
ころ、 2,3−ジメチル−1−ブテン8.0%、2,3−ジメチル−2
−ブテン92.0%であった。
Example 4 0.25 g of the solid base prepared in Reference Example 1 and 2,3-dimethyl-1-butene (composition: 2,3-
Dimethyl-1-butene 99.4% and 2,3-dimethyl-2-butene 0.6%) 45.0 g were added, and the mixture was stirred at 15 to 20 ° C. for 24 hours.
After the reaction, the catalyst was separated by filtration to obtain 43.3 g of a reaction liquid. This was analyzed by gas chromatography to find that 2,3-dimethyl-1-butene 8.0%, 2,3-dimethyl-2
-Butene was 92.0%.

比較例2 100mlフラスコに窒素雰囲気下で参考例4で調製した固
体塩基0.24gと実施例4で用いた2,3−ジメチル−1−ブ
テン43.2gを加え、15〜20℃で24時間攪拌した。反応
後、濾過によって触媒を分離し、41.5gの反応液を得
た。このものをガスクロマトグラフィーで分析したとこ
ろ、2,3−ジメチル−1−ブテン34.8%、2,3−ジメチル
−2−ブテン65.2%であった。
Comparative Example 2 Under a nitrogen atmosphere, 0.24 g of the solid base prepared in Reference Example 4 and 43.2 g of 2,3-dimethyl-1-butene used in Example 4 were added to a 100 ml flask and stirred at 15 to 20 ° C. for 24 hours. . After the reaction, the catalyst was separated by filtration to obtain 41.5 g of a reaction solution. When this product was analyzed by gas chromatography, it was found that 2,3-dimethyl-1-butene was 34.8% and 2,3-dimethyl-2-butene was 65.2%.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】オレフィンを異性化して安定な内部オレフ
ィンを製造するにあたり、含水アルミナと該アルミナの
水分モル量に対して当量を越えた量のアルカリ金属とを
不活性ガス雰囲気中、180乃至350℃の温度下で加熱作用
せしめた固体塩基触媒を用いることを特徴とする内部オ
レフィンの製造法。
1. When isomerizing an olefin to produce a stable internal olefin, hydrous alumina and an amount of alkali metal in an amount exceeding the equivalent amount to the molar amount of water of the alumina are contained in an inert gas atmosphere at 180 to 350. A method for producing an internal olefin, which comprises using a solid base catalyst heated at a temperature of ℃.
JP62028580A 1987-02-10 1987-02-10 Internal olefin manufacturing method Expired - Lifetime JPH0674216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028580A JPH0674216B2 (en) 1987-02-10 1987-02-10 Internal olefin manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028580A JPH0674216B2 (en) 1987-02-10 1987-02-10 Internal olefin manufacturing method

Publications (2)

Publication Number Publication Date
JPS63196527A JPS63196527A (en) 1988-08-15
JPH0674216B2 true JPH0674216B2 (en) 1994-09-21

Family

ID=12252537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028580A Expired - Lifetime JPH0674216B2 (en) 1987-02-10 1987-02-10 Internal olefin manufacturing method

Country Status (1)

Country Link
JP (1) JPH0674216B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2988207B2 (en) * 1993-03-04 1999-12-13 住友化学工業株式会社 Production of 2,3-dimethyl-2-butene
WO2019118230A1 (en) 2017-12-14 2019-06-20 Exxonmobil Chemical Patents Inc. Processes for isomerizing alpha olefins
US11332420B2 (en) 2017-12-14 2022-05-17 Exxonmobil Chemical Patents Inc. Processes for isomerizing alpha olefins

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529055A (en) * 1978-08-22 1980-03-01 Mitsubishi Electric Corp Enclosed type compressor equipped with oil cooler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529055A (en) * 1978-08-22 1980-03-01 Mitsubishi Electric Corp Enclosed type compressor equipped with oil cooler

Also Published As

Publication number Publication date
JPS63196527A (en) 1988-08-15

Similar Documents

Publication Publication Date Title
US4992612A (en) Solid base, process for producing the same and process of preparing internal olefins
EP0279397B1 (en) Solid base, process for preparing the same and use of the same in preparation of internal olefins
US4720601A (en) Process for preparing 5-ethylidene-2-norbornene
US4786626A (en) Solid base
EP0230025B1 (en) Process for peparing 5-ethylidene-2-norbornene with high quality
JPH0674216B2 (en) Internal olefin manufacturing method
US4877918A (en) Process for preparing internal olefins
JPH07121882B2 (en) Internal olefin manufacturing method
KR940011891B1 (en) Process for preparing solid base
JPH0581570B2 (en)
JPH0684318B2 (en) Internal olefin production method
JPH0686395B2 (en) Internal olefin production method
JP2522354B2 (en) Method for producing solid base
KR950003114B1 (en) Process for preparing 5-ethylidene-2-norbornene
JPH0769937A (en) Production of internal olefin
JPH0434977B2 (en)
JPH06200B2 (en) Method for producing solid base catalyst
JPH0683786B2 (en) Method for producing solid base
JPH067919B2 (en) Method for producing solid base catalyst
JPH0551341B2 (en)
JPH0674221B2 (en) Alkenyl norbornene isomerization method
JPH0674220B2 (en) Alkenyl norbornene isomerization method
JPS62155227A (en) Production of high-quality 5-ethylidene-2-norbornene
JPH0134A (en) Internal olefin production method