JPS6319550Y2 - - Google Patents

Info

Publication number
JPS6319550Y2
JPS6319550Y2 JP1981172518U JP17251881U JPS6319550Y2 JP S6319550 Y2 JPS6319550 Y2 JP S6319550Y2 JP 1981172518 U JP1981172518 U JP 1981172518U JP 17251881 U JP17251881 U JP 17251881U JP S6319550 Y2 JPS6319550 Y2 JP S6319550Y2
Authority
JP
Japan
Prior art keywords
intake
opening
path
intake air
main passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981172518U
Other languages
Japanese (ja)
Other versions
JPS5877128U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17251881U priority Critical patent/JPS5877128U/en
Publication of JPS5877128U publication Critical patent/JPS5877128U/en
Application granted granted Critical
Publication of JPS6319550Y2 publication Critical patent/JPS6319550Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【考案の詳細な説明】 この考案は直接噴射式デーゼルエンジンに多用
される可変スワール生成の可能な内燃機関の吸気
装置に関する。
[Detailed Description of the Invention] This invention relates to an intake system for an internal combustion engine capable of variable swirl generation, which is often used in direct injection diesel engines.

直接噴射式デーゼルエンジンは燃焼室内への空
気の吸い込みの際の吸入うず流(以後単にスワー
ルと記す)を利用し、混合気生成を短時間で行
い、燃焼速度を早めるよう構成されるものが多
い。しかし、スワール生成のために吸気ポートの
流路断面を吸入口手前でしぼり吸気の流速を早め
るというようなスワールの生成法は、同時に、吸
気に流動抵抗を与えることとなり、燃焼室の吸入
効率を低下させてしまう。このため、高負荷運転
時には、スワール生成のための手段は出力低減を
招くことになる。これを解決するため、低負荷運
転時にはスワール生成を計り、燃焼速度を早めて
適正出力を得ると共に、高速運転時にはスワール
生成は押え、吸気に対する流動抵抗の低減を計
り、出力を上げることのできる可変スワール生成
手段が知られている。たとえば、第1図に示すよ
うに、各気筒ごとの吸入口1に達する吸気の制御
を吸気ポート2の流路3にそれぞれ取付けられた
バタフライ弁(以後単にバタ弁と記す)4で行な
うものがある。各バタ弁4にはリンク5が取付け
られ、このリンク5の操作により、全部のバタ弁
4を同時に操作している。このバタ弁4は低負荷
運転時に作動し、流路3の断面をしぼり(第2図
参照)、かつ、吸気に方向性を持たせる。これに
より、燃焼室6に流入した吸気が効果的にスワー
ルを生成するよう作用する。更に、高負荷運転時
には流路3の吸気に対しバタ弁4が流動抵抗を与
えないよう、バタ弁を流れ方向に整列させ、流路
3の断面積を最大限大きく保ち、吸入効率を増加
させ、出力増大を計る。しかし、このような従来
の可変スワール生成手段を用いた多気筒デーゼル
エンジンでは各吸気ポートのバタ弁4の制御をリ
ンク5等を用いて連動させねばならず、可動部分
が多くの個所に分散し構造が複雑である。しか
も、各吸気ポート2を流動する吸気は第3図に示
すように、瞬時にして強大な流速Vの吸気が脈動
するため、バタ弁4は加振され、その信頼性、耐
久性が低いという欠点がある。
Direct-injection diesel engines are often configured to use the suction swirl (hereinafter simply referred to as swirl) when air is drawn into the combustion chamber to generate a mixture in a short time and accelerate the combustion rate. . However, the method of generating a swirl, which involves narrowing the cross section of the intake port's flow path in front of the intake port to increase the flow velocity of the intake air, also creates flow resistance to the intake air, reducing the intake efficiency of the combustion chamber. It will lower it. Therefore, during high-load operation, the means for generating swirl causes a reduction in output. To solve this problem, during low-load operation, we measure swirl generation and accelerate the combustion rate to obtain the appropriate output, while at high-speed operation, we suppress swirl generation and reduce flow resistance to intake air, making it possible to increase output. Swirl generating means are known. For example, as shown in Fig. 1, the intake air reaching the intake port 1 of each cylinder is controlled by butterfly valves (hereinafter simply referred to as butterfly valves) 4 installed in the flow paths 3 of the intake ports 2. be. A link 5 is attached to each butterfly valve 4, and by operating this link 5, all butterfly valves 4 are operated simultaneously. The butterfly valve 4 operates during low-load operation, narrows the cross section of the flow path 3 (see FIG. 2), and gives directionality to the intake air. Thereby, the intake air flowing into the combustion chamber 6 acts to effectively generate a swirl. Furthermore, during high-load operation, the Bata valves are aligned in the flow direction so that the Bata valves 4 do not provide flow resistance to the intake air in the flow path 3, and the cross-sectional area of the flow path 3 is kept as large as possible to increase suction efficiency. , measure the output increase. However, in a multi-cylinder diesel engine using such a conventional variable swirl generating means, the control of the butterfly valve 4 of each intake port must be linked using a link 5, etc., and the moving parts are dispersed in many locations. The structure is complex. Moreover, as shown in Fig. 3, the intake air flowing through each intake port 2 instantaneously pulsates at a high flow velocity V, which causes the butterfly valve 4 to vibrate, resulting in low reliability and durability. There are drawbacks.

この考案は可変スワール生成を行なうことので
きる内燃機関の吸気装置を提供することを目的と
する。
The object of this invention is to provide an intake system for an internal combustion engine that can generate variable swirl.

この考案による内燃機関の吸気装置は、内燃機
関の吸気マニホウルド内に形成された主路と、上
記主路に連通すると共に上記内燃機関の燃焼室に
対して所定流入方向で吸気を供給せしめる吸気ポ
ート側主路と、上記主路に並列状に上記マニホウ
ルド内に形成される分割副路と、上記分割副路に
連通すると共に上記吸気ポート側主路に並列状に
形成される吸気ポート側副路と、上記内燃機関の
複数気筒の各燃焼室に連通された各上記分割副路
の上流側に同一平面上に並設して形成される開口
側端部と、これら開口側端部にそれぞれ流入する
吸気量を同時に制御すると共に成閉状態において
上記開口側端部を各々密閉する単一の開閉弁を備
え、上記各燃焼室に対し上記主路からの吸気の他
に上記開閉弁を開作動することによつて上記分割
副路からの吸気をも供給可能に構成される。
The intake device for an internal combustion engine according to this invention includes a main passage formed in an intake manifold of the internal combustion engine, and an intake port that communicates with the main passage and supplies intake air in a predetermined inflow direction to the combustion chamber of the internal combustion engine. a side main path, a divided sub-path formed in the manifold in parallel with the main path, and an intake port side sub-path connected to the divided sub-path and formed in parallel with the intake port side main path. and an opening side end formed in parallel on the same plane on the upstream side of each of the divided secondary passages communicating with each combustion chamber of a plurality of cylinders of the internal combustion engine, and an inflow into each of these opening side ends. It is equipped with a single on-off valve that simultaneously controls the intake air amount and seals each of the opening side ends in the closed and closed states. By doing so, it is possible to also supply intake air from the divided sub-path.

このため、この考案による内燃機関の吸気装置
は次のような作用効果を示す。即ち、吸気マニホ
ウルドの開口より流入する吸気は常時主路および
これに連通する吸気ポート側主路を経て各気筒の
吸入口へ供給される。一方吸気マニホウルド内の
気筒数だけの分割副路に対し、単一の開閉弁の作
動時に、同一位置において、同一平面上に並設さ
れた各開口側端部よりそれぞれ流入する吸気は、
各分割副路およびこれに連通する各吸気ポート側
副路を経て、各気筒の吸入口へ付加供給される。
このため、多気筒内燃機関であつても、各吸入口
へ吸気を供給する流路のうちの副路を一個所にお
いて、単一の開閉弁の作動により開閉操作し、吸
入口への吸気の流入態様を制御することができ、
特に、開口弁の構造を簡素化でき、部品点数を低
減させて、コスト安になるという効果を有してい
る。しかも、各開口側端部は直接開閉弁により開
閉操作されるため、各分割副路間において、互い
に連通することがなく、さらに、全閉状態のとき
は各分割副路の開口側端部を、各々密閉するた
め、副路側の閉鎖時の気密性が優れ、低出力時に
おけるスワールを強化することができる。
Therefore, the intake system for an internal combustion engine according to this invention exhibits the following effects. That is, the intake air flowing through the opening of the intake manifold is always supplied to the intake port of each cylinder via the main path and the main path on the intake port side communicating with the main path. On the other hand, when a single opening/closing valve is operated, the intake air flowing into the sub-channels corresponding to the number of cylinders in the intake manifold from the opening side ends arranged in parallel on the same plane at the same position is as follows:
It is additionally supplied to the intake port of each cylinder via each divided sub-path and each intake port-side sub-path connected thereto.
For this reason, even in a multi-cylinder internal combustion engine, a sub-path among the flow paths that supply intake air to each intake port is opened and closed at one location by the operation of a single on-off valve, and the intake air to the intake ports is opened and closed. The inflow mode can be controlled,
In particular, the structure of the opening valve can be simplified, the number of parts can be reduced, and the cost can be reduced. Moreover, since each opening side end is directly opened and closed by the on-off valve, there is no communication between the divided sub-paths, and furthermore, when the opening side end of each divided sub-path is in the fully closed state, the opening side end of each divided sub-path is , are each sealed, so airtightness is excellent when the side road side is closed, and swirl can be strengthened at low output.

以下、この考案を添付図面と共に説明する。 This invention will be explained below with reference to the accompanying drawings.

第4図にはこの考案の一実施例としての内燃機
関の吸気装置(以後単に吸気装置と記す)7を示
した。この吸気装置7は図示しない直接噴射式デ
ーゼルエンジン(3気筒エンジンとして示した)
のシリンダヘツド8と、これに連結される吸気マ
ニホウルド9とにわたつて配備される。吸気マニ
ホウルド9は一端に開口10が形成され、これに
は図示しないエアクリーナからの吸気が流入す
る。この開口10より直ぐ内側には開口を通過し
た吸気を分割し各燃焼室11にそれぞれ導びくよ
う、主路12、および3つの分割副路13とが形
成される。即ち、吸気マニホウルド9の下層側に
は各燃焼室11の吸気ポート14に向け吸気を常
時流入させる主路12が、上層側には設定時限に
のみ吸気を吸気ポート14側に付加流入させ、か
つ、互いに並列状に配置される3つの分割副路1
3が形成される。この内、3つの分割副路13の
開口10と対向する開口側端部15は同一平面上
に並設され、これらは同一位置で開閉弁としての
バタ弁16により同時に開閉操作される。一方、
主路12はその開口10との対向端を開口10に
対し常時連通させ、かつ、第5図、第6図、第7
図に示すように、主路断面積は長手方向に向け
徐々に狭められ、各燃焼室11への吸気の供給量
が同等となるよう形成される。シリンダヘツド8
側の3つの吸気ポート14はそれぞれの流路をし
きい壁21により上下に分割される(第10図参
照)。そして、吸入口17近くでこれら上下流路
は一つとなり、吸入口17を開閉させる吸気弁1
8の開作動時に、吸気ポート14側と燃焼室11
側とは連通する。吸気ポート14の下層側の各主
路19は吸気マニホウルド側の主路12に、上層
の各副路20は吸気マニホウルド側の各分割副路
13にそれぞれ連通する。このため、バタ弁16
に開閉操作される分割副路の各開口側端部15は
それぞれの吸気ポートの吸入口17側に個々に連
通し、各分割副路13間が互いに連通することは
ない。更に、吸気ポート側主路19は下流側であ
る吸入口17に対して吸気の流速を早めるよう、
その断面積が徐々にしぼられると共に(第10図
参照)、所定流入方向で吸気を吸入口17を介し
燃焼室11に供給するよう形成される。バタ弁1
6はこれと一体の支軸22を介し吸気マニホウル
ド9に枢着される。この支軸22の一端は吸気マ
ニホウルド9の外部に突出し、これに操作腕23
が固着される。この操作腕23にはスワール制御
部24が連結される。このスワール制御部24は
吸気圧を受けて作動する図示しないダイヤフラム
を用い、吸気圧としての負圧の大きな時、即ち、
低負荷運転時に各分割副路の開口側端部15を閉
鎖し、高負荷運転時に開口側端部15を開放する
よう構成する。なお、このスワール制御部24は
この他の周知の手段を用い、バタ弁16を操作し
てもよい。
FIG. 4 shows an intake system (hereinafter simply referred to as an intake system) 7 for an internal combustion engine as an embodiment of this invention. This intake device 7 is a direct injection diesel engine (not shown) (shown as a three-cylinder engine).
The cylinder head 8 and the intake manifold 9 connected thereto. The intake manifold 9 has an opening 10 formed at one end, into which intake air from an air cleaner (not shown) flows. Immediately inside this opening 10, a main passage 12 and three divided sub-passages 13 are formed so as to divide the intake air that has passed through the opening and guide it to each combustion chamber 11, respectively. That is, on the lower side of the intake manifold 9, there is a main passage 12 through which intake air always flows toward the intake ports 14 of each combustion chamber 11, and on the upper side, there is a main passage 12 through which intake air flows additionally into the intake ports 14 only at a set time. , three divided sub-routes 1 arranged in parallel with each other
3 is formed. Among these, the opening-side ends 15 of the three divided sub-paths 13 facing the opening 10 are arranged side by side on the same plane, and these are simultaneously opened and closed at the same position by the butterfly valves 16 as opening/closing valves. on the other hand,
The main path 12 has an end opposite to the opening 10 in constant communication with the opening 10, and
As shown in the figure, the cross-sectional area of the main passage is gradually narrowed in the longitudinal direction, and the main passage is formed so that the amount of intake air supplied to each combustion chamber 11 is equal. Cylinder head 8
The three side intake ports 14 have respective flow paths divided into upper and lower portions by a threshold wall 21 (see FIG. 10). These upstream and downstream channels become one near the intake port 17, and the intake valve 1 opens and closes the intake port 17.
8, the intake port 14 side and the combustion chamber 11
It communicates with the side. Each main passage 19 on the lower side of the intake port 14 communicates with the main passage 12 on the intake manifold side, and each sub passage 20 on the upper layer communicates with each divided sub passage 13 on the intake manifold side. For this reason, the bata valve 16
The opening-side ends 15 of the divided sub-paths that are opened and closed are individually communicated with the suction ports 17 of the respective intake ports, and the divided sub-paths 13 do not communicate with each other. Furthermore, the main passage 19 on the intake port side is designed to increase the flow velocity of intake air relative to the intake port 17 on the downstream side.
Its cross-sectional area is gradually narrowed (see FIG. 10), and it is formed so that intake air is supplied to the combustion chamber 11 through the intake port 17 in a predetermined inflow direction. Bataben 1
6 is pivotally connected to the intake manifold 9 via a support shaft 22 that is integrated therewith. One end of this support shaft 22 protrudes outside the intake manifold 9, and an operating arm 23 is attached to it.
is fixed. A swirl control section 24 is connected to this operating arm 23 . This swirl control unit 24 uses a diaphragm (not shown) that operates in response to intake pressure, and when the negative pressure as intake pressure is large, that is,
The opening side end 15 of each divided secondary passage is closed during low load operation, and the opening side end 15 is opened during high load operation. Note that the swirl control section 24 may operate the butterfly valve 16 using other well-known means.

第4図に示した吸気装置7の作動を説明する。
まず、スワール制御部24が低負荷運転を検出す
ると、バタ弁16はホームポジシヨンである分割
副路の3つの開口側端部15を閉鎖した状態に保
たれる(第8図参照)。これにより、開口10よ
り流入した吸気は全て主路12に向い、各吸気ポ
ート側主路19を経て吸入口17に供給される。
この場合、吸気ポート側主路19により、吸気は
流速を早められ、かつ、所定流入方向に向け吸入
口17より燃焼室11内に流入され、強力なスワ
ールSを生成できる。なお、各分割副路13側は
その開口側端部15を閉鎖されており、開口10
側からも、あるいは、隣設する他の分割副路13
側からも吸気を受けることはないよう気密性が保
たれる。
The operation of the intake device 7 shown in FIG. 4 will be explained.
First, when the swirl control unit 24 detects low-load operation, the butterfly valve 16 maintains the home position of the three opening side ends 15 of the divided sub-paths closed (see FIG. 8). As a result, all the intake air flowing in through the opening 10 is directed toward the main passage 12 and is supplied to the intake port 17 via each intake port side main passage 19.
In this case, the flow velocity of the intake air is increased by the main passage 19 on the intake port side, and the intake air flows into the combustion chamber 11 from the intake port 17 in a predetermined inflow direction, so that a strong swirl S can be generated. Note that each divided sub-path 13 side has its opening side end 15 closed, and the opening 10
From the side or from other divided sub-roads 13
Airtightness is maintained to prevent intake of air from the sides.

一方、スワール制御部24が高負荷運転を検知
すると、バタ弁16は分割副路13の閉鎖位置
(ホームポジシヨン)より90゜回転して、分割副路
の開口側端部15を開放する(第9図参照)。こ
れにより、開口10からの吸気は吸気マニホウル
ドの主路12の外に、3つの分割副路13にも流
入する。各燃焼室11の吸入口17には吸気ポー
ト側主路19と、付加された吸気ポート側副路2
0とから共に、吸気が流入する。このため全体と
して吸気量が多くても吸気に対し流動抵抗はあま
り加わらず、流入方向も吸入口17より全体に拡
散する傾向を示し、スワールSの生成は少ない。
On the other hand, when the swirl control unit 24 detects high-load operation, the butterfly valve 16 rotates 90 degrees from the closed position (home position) of the divided secondary passage 13 to open the open end 15 of the divided secondary passage ( (See Figure 9). As a result, the intake air from the opening 10 flows not only into the main path 12 of the intake manifold but also into the three divided sub-paths 13. The intake port 17 of each combustion chamber 11 has an intake port side main passage 19 and an added intake port side secondary passage 2.
At the same time, intake air flows in from 0. Therefore, even if the amount of intake air is large as a whole, there is not much flow resistance applied to the intake air, and the inflow direction also shows a tendency to diffuse from the intake port 17 to the whole, and the generation of swirl S is small.

このように、第4図に示した吸気装置7は低負
荷運転時には簡素化された1つのバタ弁16を操
作し、各分割副路13および、これに続く吸気ポ
ート側副路20を確実に遮断するため、比較的少
ない吸気は吸気ポート側主路19のみを通ること
になり、吸気の流速を確実に高め、流入方向を最
もスワールS生成に適するよう作用することがで
きる。このため、吸気量が比較的少なくても、強
力なスワールSを生成し、燃焼室11内で燃料を
早期に吸気と混合させ、燃焼速度を早めることが
でき、低負荷運転時の出力アツプに寄与できる。
更に、高負荷運転時には、吸気ポート側主路およ
び副路19,20を通して吸気を多量に燃焼室1
1に供給でき、これにより流動抵抗を低減し、出
力アツプに寄与できる。特に、本考案によれば単
一の開閉弁を用いたことより、部品点数低減、コ
スト低減効果が大きく、しかも、各分割副路間の
相対的な開閉ずれを生じることもない。
In this way, the intake device 7 shown in FIG. 4 operates one simplified butterfly valve 16 during low-load operation, and reliably connects each divided sub-path 13 and the intake port side sub-path 20 that follows it. Since this is shut off, a relatively small amount of intake air passes through only the main passage 19 on the intake port side, so that the flow velocity of intake air can be reliably increased and the inflow direction can be made most suitable for swirl S generation. Therefore, even if the amount of intake air is relatively small, a strong swirl S can be generated, the fuel can be mixed with the intake air early in the combustion chamber 11, and the combustion speed can be accelerated, resulting in increased output during low-load operation. I can contribute.
Furthermore, during high-load operation, a large amount of intake air is supplied to the combustion chamber 1 through the main passage and auxiliary passages 19 and 20 on the intake port side.
1, thereby reducing flow resistance and contributing to increased output. In particular, according to the present invention, since a single on-off valve is used, the number of parts and costs are reduced significantly, and there is no relative opening/closing deviation between the sub-paths.

上述の処において、三気筒デーゼルエンジンに
ついて説明したが、この他の気筒数のデーゼルエ
ンジンにもこの考案は適用される。その場合、各
多筒数だけの分割副路を吸気マニホウルドには形
成されることになる。更に、第4図に示した吸気
装置7は上下に吸気ポート14内の流路を区分し
ていたが、第11図に示す吸気ポート25のよう
に縦向しきい壁26を用い、吸気ポート側主路2
7および副路28を左右に配置した構成としても
よい。この場合も、第4図に示した吸気装置7と
同様に、低負荷運転時(第11図a)には強スワ
ールSを生成させ、高負荷運転時(第11図b)
には吸気ポートを通る吸気の流動抵抗を低減させ
それぞれ出力アツプを計ることができる。
In the above description, a three-cylinder diesel engine has been described, but the invention can also be applied to diesel engines with other numbers of cylinders. In that case, the intake manifold will have as many divided auxiliary passages as the number of cylinders. Furthermore, although the intake device 7 shown in FIG. 4 divides the flow path inside the intake port 14 into upper and lower sections, a vertical threshold wall 26 is used as in the intake port 25 shown in FIG. Side main road 2
7 and the sub-path 28 may be arranged on the left and right. In this case as well, similar to the intake system 7 shown in Fig. 4, a strong swirl S is generated during low load operation (Fig. 11a), and a strong swirl S is generated during high load operation (Fig. 11b).
In addition, it is possible to increase the output by reducing the flow resistance of intake air through the intake port.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の吸気装置の要部斜視図、第2図
は同上吸気装置の要部断面図、第3図は同上吸気
装置の吸気流速−クランク角線図、第4図はこの
考案の一実施例としての吸気装置の要部概略斜視
図、第5図は第4図の−線断面図、第6図は
第4図の−線断面図、第7図は第4図の−
線断面図、第8図および第9図は第4図に示し
た吸気装置の各々異なる作用説明図、第10図は
第4図に示した吸気装置の要部側断面図、第11
図はこの考案の他の実施例としての吸気装置の概
略説明図である。 7……吸気装置、9……吸気マニホウルド、1
0……開口、11……燃焼室、12……主路、1
3……分割副路、15……開口側端部、16……
バタ弁、17……吸入口、19……吸気ポート側
主路、20……吸気ポート側副路。
Fig. 1 is a perspective view of the main parts of the conventional intake system, Fig. 2 is a cross-sectional view of the main parts of the same intake system, Fig. 3 is an intake flow velocity-crank angle diagram of the same intake system, and Fig. 4 is a diagram of the intake system of this invention. A schematic perspective view of a main part of an intake device as an embodiment, FIG. 5 is a cross-sectional view taken along the line -- in FIG. 4, FIG. 6 is a cross-sectional view taken along the line -- in FIG. 4, and FIG.
8 and 9 are diagrams illustrating different functions of the intake device shown in FIG. 4, FIG. 10 is a side sectional view of main parts of the intake device shown in FIG. 4, and FIG.
The figure is a schematic explanatory diagram of an intake device as another embodiment of this invention. 7...Intake device, 9...Intake manifold, 1
0...Opening, 11...Combustion chamber, 12...Main passage, 1
3... Divided sub-route, 15... Opening side end, 16...
Bata valve, 17...Intake port, 19...Intake port side main path, 20...Intake port side secondary path.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 内燃機関の吸気マニホウルド内に形成された主
路と、上記主路に連通すると共に上記内燃機関の
燃焼室に対して所定流入方向で吸気を供給せしめ
る吸気ポート側主路と、上記主路に並列状に上記
マニホウルド内に形成される分割副路と、上記分
割副路に連通すると共に上記吸気ポート側主路に
並列状に形成される吸気ポート側副路と、上記内
燃機関の複数気筒の各燃焼室に連通された各上記
分割副路の上流側に同一平面上に並設して形成さ
れる開口側端部と、これら開口側端部にそれぞれ
流入する吸気量を同時に制御すると共に全閉状態
において上記開口側端部を各々密閉する単一の開
閉弁を備え、上記各燃焼室に対し上記主路からの
吸気の他に上記開閉弁を開作動することによつて
上記分割副路からの吸気も供給可能とした内燃機
関の吸気装置。
A main passage formed in the intake manifold of the internal combustion engine, an intake port side main passage communicating with the main passage and supplying intake air in a predetermined inflow direction to the combustion chamber of the internal combustion engine, and parallel to the main passage. a divided sub-path formed in the manifold in a shape, an intake port-side sub-path communicating with the divided sub-path and formed in parallel with the intake port-side main path, and each of the plurality of cylinders of the internal combustion engine. The opening end portions are arranged in parallel on the same plane on the upstream side of each of the sub-paths communicating with the combustion chamber, and the amount of intake air flowing into each of these opening end portions is simultaneously controlled and fully closed. A single opening/closing valve is provided for sealing each of the opening side ends in the above-mentioned state, and in addition to intake air from the main passage to each combustion chamber, by opening the opening/closing valve, air is drawn from the divided subsidiary passage. An intake system for internal combustion engines that can also supply intake air.
JP17251881U 1981-11-19 1981-11-19 Internal combustion engine intake system Granted JPS5877128U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17251881U JPS5877128U (en) 1981-11-19 1981-11-19 Internal combustion engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17251881U JPS5877128U (en) 1981-11-19 1981-11-19 Internal combustion engine intake system

Publications (2)

Publication Number Publication Date
JPS5877128U JPS5877128U (en) 1983-05-25
JPS6319550Y2 true JPS6319550Y2 (en) 1988-06-01

Family

ID=29964414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17251881U Granted JPS5877128U (en) 1981-11-19 1981-11-19 Internal combustion engine intake system

Country Status (1)

Country Link
JP (1) JPS5877128U (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474912A (en) * 1977-11-28 1979-06-15 Mazda Motor Corp Multi-cylinder engine
JPS55107058A (en) * 1979-02-08 1980-08-16 Zenji Ishikawa Suction device of internal combustion engine
JPS5644419A (en) * 1979-09-20 1981-04-23 Honda Motor Co Ltd Device for improving combustion of mixture in four-cycle internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827055Y2 (en) * 1977-12-13 1983-06-11 トヨタ自動車株式会社 Intake system of multi-cylinder internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474912A (en) * 1977-11-28 1979-06-15 Mazda Motor Corp Multi-cylinder engine
JPS55107058A (en) * 1979-02-08 1980-08-16 Zenji Ishikawa Suction device of internal combustion engine
JPS5644419A (en) * 1979-09-20 1981-04-23 Honda Motor Co Ltd Device for improving combustion of mixture in four-cycle internal combustion engine

Also Published As

Publication number Publication date
JPS5877128U (en) 1983-05-25

Similar Documents

Publication Publication Date Title
JPS6052292B2 (en) Dual intake passage internal combustion engine
JPH03264727A (en) Intake system for multiple valve engine
JPH076395B2 (en) Internal combustion engine intake system
JPH02277919A (en) Suction device of multi-cylinder engine
JP2001132589A (en) Fuel supply device for engine
JPS60164619A (en) Suction device for multicylinder internal-combustion engine
JPS6319550Y2 (en)
JP2002221036A (en) Intake system for engine
JPS60233314A (en) Aspiration control device for internal-combustion engine
JP2639720B2 (en) Intake control device for internal combustion engine
JP3617691B2 (en) Engine intake control device
JPH0723698B2 (en) Multi-valve engine intake system
JPH0346179Y2 (en)
JPH0324840Y2 (en)
JPS60230512A (en) Swirl strength regulating device for direct injection type diesel engine
JP2533172Y2 (en) Intake manifold for internal combustion engine
JPS581268B2 (en) Internal combustion engine exhaust recirculation control device
JPS614821A (en) Intake device for internal-combustion engine
JPS588230A (en) Suction device for multi-cylinder internal combustion engine
JPH036859Y2 (en)
JP2995200B2 (en) Engine air supply
JPH0481522A (en) Intake device of engine
JPH0678729B2 (en) Intake device for intake 2-valve engine
JPH0346183Y2 (en)
JPH0118839Y2 (en)