JPS63194234A - Semiconductor optical deflecting device - Google Patents

Semiconductor optical deflecting device

Info

Publication number
JPS63194234A
JPS63194234A JP2776787A JP2776787A JPS63194234A JP S63194234 A JPS63194234 A JP S63194234A JP 2776787 A JP2776787 A JP 2776787A JP 2776787 A JP2776787 A JP 2776787A JP S63194234 A JPS63194234 A JP S63194234A
Authority
JP
Japan
Prior art keywords
light beam
optical waveguide
quantum well
voltage
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2776787A
Other languages
Japanese (ja)
Inventor
Kiyoshi Tone
刀根 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoelectronics Technology Research Laboratory
Original Assignee
Optoelectronics Technology Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoelectronics Technology Research Laboratory filed Critical Optoelectronics Technology Research Laboratory
Priority to JP2776787A priority Critical patent/JPS63194234A/en
Publication of JPS63194234A publication Critical patent/JPS63194234A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • G02F1/2955Analog deflection from or in an optical waveguide structure] by controlled diffraction or phased-array beam steering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06233Controlling other output parameters than intensity or frequency
    • H01S5/06243Controlling other output parameters than intensity or frequency controlling the position or direction of the emitted beam

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To largely deflect the deflection angle of an emitting light beam with a sufficient resolution by controlling a voltage applied to a voltage applying part of a deflecting device by an outer voltage controller. CONSTITUTION:A light beam 20 propagated through the inside of an optical waveguide 10 containing a quantum well layer 13 is emitted to the outside by a diffraction grating 15 and becomes an emitted light 21. When a reverse bias is applied to the laminated body optical waveguide 10 from a voltage controller 19 through electrodes 16, 17, an electric field can be applied effectively to the multiple quantum well layer 13, and the refractive index of that part can be varied. That is, the direction of the emitted light beam can be controlled freely such as the emitted light beam is brought to a scanning motion by varying periodically an applied voltage, or the irradiating position of the emitted light beam is switched in accordance with an output signal from other device connected to a voltage controller 16. In such a way, the deflection angle of the emitting light beam can be enlarged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光情報処理系で用いられるレーザ光を偏向する
ための光偏向装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical deflection device for deflecting laser light used in an optical information processing system.

〔従来技術の説明〕[Description of prior art]

従来、この種の光偏向装置として例えば第1図に示す構
造のものがある(特願昭tt−so64!r3)。
Conventionally, as this type of optical deflection device, there is a structure shown in FIG. 1, for example (Japanese Patent Application Sho TT-SO64!R3).

同図の半導体光偏向装置は、GaAS等から成る基板l
上にGaAJAs等の電気光学効果をもつ半導体から成
る光導波路−を設け、ざらに光導波路−に回折格子3を
形成し、且つ光導波路λ上に電界を印加するための電極
4(A、4Bを設けるとともに、これら電極に電圧制御
装置jを接続して構成されている。
The semiconductor optical deflection device shown in the figure has a substrate made of GaAS or the like.
An optical waveguide made of a semiconductor having an electro-optic effect such as GaAJAs is provided on the top, a diffraction grating 3 is formed roughly on the optical waveguide, and electrodes 4 (A, 4B) are provided for applying an electric field onto the optical waveguide λ. are provided, and a voltage control device j is connected to these electrodes.

上記光偏向装置において、光導波路λ内を伝搬した導波
光6は、回折格子3により基板面よりある角度をもって
出射する。そして回折格子3から出射する光ビーム7の
光軸角度θは光導波路2の屈折率に依存する。
In the optical deflection device described above, the guided light 6 propagated within the optical waveguide λ is emitted from the substrate surface at a certain angle by the diffraction grating 3. The optical axis angle θ of the light beam 7 emitted from the diffraction grating 3 depends on the refractive index of the optical waveguide 2.

一方、電圧制御装置!から電極i、4’Bを通して光導
波路コに電界を印加することによって、電気光学効果を
もつ光導波路λの屈折率を変化させることができる。し
たがって、電極#A、iに印加する電圧を電圧制御装置
!により制御することによって、出射光ビーム7の出射
角度を制御することができる。
On the other hand, the voltage control device! By applying an electric field to the optical waveguide λ through the electrodes i and 4'B, the refractive index of the optical waveguide λ having an electro-optic effect can be changed. Therefore, the voltage applied to electrode #A, i is controlled by the voltage control device! By controlling this, the output angle of the output light beam 7 can be controlled.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体光偏向装置では、光導波路の屈折
率を変化させる手段として電気光学効果を利用している
ため、変化させることのできる屈折率の割合が小さく、
その結果出射光ビームの偏向角をあまり大きくできない
という欠点があった。
In the conventional semiconductor optical deflection device described above, since the electro-optic effect is used as a means to change the refractive index of the optical waveguide, the proportion of the refractive index that can be changed is small;
As a result, there is a drawback that the deflection angle of the emitted light beam cannot be made very large.

具体的には、光導波路から回折格子により出射される光
ビームの角度θは次式で表わされる。
Specifically, the angle θ of the light beam emitted from the optical waveguide by the diffraction grating is expressed by the following equation.

sinθ−n−mλ/I)            (
1)(1)式で、nは導波路の実効屈折率、mは回折の
次数、λは自由空間における光の波長、pは回折格子の
周期である。これより次式が得られる。
sinθ−n−mλ/I) (
1) In equation (1), n is the effective refractive index of the waveguide, m is the order of diffraction, λ is the wavelength of light in free space, and p is the period of the diffraction grating. From this, the following equation is obtained.

△θ/△n−//CO8θ         (2)一
方、電気光学効果によって変化させることのできる屈折
率の割合△n/nは0./%程度であり、θ−約90°
、n−JJとして上記Δn/nの値を用いて前述式から
偏向角Δθを求めると△θ−0,2゜である。そしてこ
のような回折格子により出射されるレーザビームの光軸
方向におけるビームの拡がり角は0.10程度であるた
め、上記のように小さい偏向角では充分な分解能を得る
ことができない。
Δθ/Δn−//CO8θ (2) On the other hand, the ratio Δn/n of the refractive index that can be changed by the electro-optic effect is 0. /%, and θ-approximately 90°
, n-JJ, and the deflection angle Δθ is calculated from the above equation using the value of Δn/n as Δθ-0.2°. Since the beam divergence angle in the optical axis direction of the laser beam emitted by such a diffraction grating is about 0.10, sufficient resolution cannot be obtained with such a small deflection angle as described above.

〔問題点を解決するための手段〕[Means for solving problems]

上記従来の問題点を解決するために、本発明で、は半導
体光導波路中Kit子井戸構造を設け、さらに上記量子
井戸構造に垂直Km界を印加するための電圧印加部を設
けた。
In order to solve the above conventional problems, the present invention provides a quantum well structure in a semiconductor optical waveguide, and further provides a voltage application section for applying a vertical Km field to the quantum well structure.

本発明で使用できる量子井戸構造としては、単一のポテ
ンシャル井戸層からなる単一量子井戸構造でも、また複
数のポテンシャル井戸層が複数のポテンシャル障壁層に
よって交互に挾まれた多重量子井戸構造でもかまわない
The quantum well structure that can be used in the present invention may be a single quantum well structure consisting of a single potential well layer, or a multiple quantum well structure in which multiple potential well layers are alternately sandwiched between multiple potential barrier layers. do not have.

上記量子井戸構造を構成する材料としては、バンドギャ
ップの異なる2つ以上の半導体を用いればよく、例えば
ポテンシャル井戸層をGaAs 、ポテンシャル障壁層
をAlGaAsで形成する。
Two or more semiconductors having different band gaps may be used as the materials constituting the quantum well structure. For example, the potential well layer is formed of GaAs, and the potential barrier layer is formed of AlGaAs.

本発明では光導波路を構成する材質として、GaAJA
s系の半導体結晶以外に、InGaASP系、AlGa
InP  系等の半導体結晶も使用できる。
In the present invention, GaAJA is used as the material constituting the optical waveguide.
In addition to s-based semiconductor crystals, InGaASP-based and AlGa
Semiconductor crystals such as InP-based crystals can also be used.

ただし、電界による上記井戸形の屈折率変化を有効に利
用するには、導波路内を伝搬する°光のエネルギーと、
量子井戸内に形成される量子化した伝導帯内の電子のエ
ネルギー準位、および価電子帯内の正孔のエネルギー準
位の差のエネルギーとが同程度であることが望ましい。
However, in order to effectively utilize the well-shaped refractive index change caused by the electric field, the energy of the light propagating within the waveguide,
It is desirable that the energy level of the electron in the quantized conduction band formed in the quantum well and the energy of the difference in the energy level of the hole in the valence band are approximately the same.

本発明で量子井戸構造は、光導波路のコア部分またはク
ラッド部分のいずれに組み入れてもよく、また画部分に
組み入れることもできる。
In the present invention, the quantum well structure may be incorporated into either the core portion or the cladding portion of the optical waveguide, or may be incorporated into the partition portion.

さらに光導波路のコアまたは(および)クラッド全体が
完全に量子井戸構造で構成されていてもよい。
Furthermore, the entire core and/or cladding of the optical waveguide may be completely composed of a quantum well structure.

ただし電界による量子井戸層の屈折率変化を有効に利用
するには、光導波路のコア部を前記多重量子井戸で構成
することが望ましい。また本発明で、量子井戸構造に垂
直に電界を印加する方法としては、例えばp−n接合や
ショットキー接合が利用できる。
However, in order to effectively utilize the change in the refractive index of the quantum well layer due to the electric field, it is desirable that the core portion of the optical waveguide be constituted by the multiple quantum well. Further, in the present invention, as a method of applying an electric field perpendicularly to the quantum well structure, for example, a pn junction or a Schottky junction can be used.

〔作 用〕[For production]

本発明によれば、量子井戸構造の電界による屈折率の変
化が通常のバルクの屈折率変化に比べて大きいため、大
きな偏向角を得ることができる。
According to the present invention, since the change in the refractive index of the quantum well structure due to the electric field is larger than the change in the refractive index of a normal bulk, a large deflection angle can be obtained.

例えば多重量子井戸構造とした場合に/X105■/c
mの電界印加により屈折率が約7%変化し、この値を(
2)式に代入すると偏向角はコ0となる。
For example, in the case of a multiple quantum well structure, /X105■/c
The refractive index changes by about 7% by applying an electric field of m, and this value is expressed as (
2) Substituting into the equation, the deflection angle becomes co0.

上記の偏向角は従来のバルクの電気光学効果を用いた場
合に比べて10倍も大きい。
The above deflection angle is ten times larger than when using conventional bulk electro-optic effects.

このように、外部の電圧制御袋&により偏向装置の電圧
印加部に印加する電圧を制御することによって、出射光
ビームの偏向角を充分な分解能をもって大きく偏向する
ことができる。
In this way, by controlling the voltage applied to the voltage application section of the deflection device using the external voltage control bag &, the deflection angle of the emitted light beam can be largely deflected with sufficient resolution.

〔実 施 例〕〔Example〕

以下本発明を図面に示した実施例に基づいて詳細に説明
する。
The present invention will be described in detail below based on embodiments shown in the drawings.

第1図は本発明の半導体光偏向装置を示す斜視図であり
、n+ −GaAsから成る基板//上に1n Al0
0?Gao、3AS (n −j X/ 0−17cm
−3)層12、アンドープ多重量子井戸層13、P−A
IQ、5 Ga□、5as(P−jX1017cm−3
)層lqを順次積JiLr形成した光導波路10が設け
られている。多重量子井戸層/3は、第2図に断面を拡
大して示すように1厚さ100にのGaASJll/J
Aおよび厚さJOOAのAlo、5Ga□、 5As層
/j Bを交互に多数積層して形成されている。これら
各層1.3k 、 /JB・・・・・・の成長は分子線
エピタキシー、有機金属CVD 、液相エピタキシー等
によって製作することができる。
FIG. 1 is a perspective view showing a semiconductor optical deflection device of the present invention, in which 1n Al0 is placed on a substrate made of n+ -GaAs.
0? Gao, 3AS (n −j X/ 0-17cm
-3) Layer 12, undoped multiple quantum well layer 13, P-A
IQ, 5 Ga□, 5as (P-jX1017cm-3
) An optical waveguide 10 is provided in which layers lq are sequentially stacked. The multi-quantum well layer/3 is made of GaASJll/J with a thickness of 100, as shown in the enlarged cross section in FIG.
It is formed by alternately laminating a large number of Alo, 5Ga□, and 5As layers/jB with a thickness of JOOA and a thickness of JOOA. These layers 1.3k, /JB, . . . can be grown by molecular beam epitaxy, organometallic CVD, liquid phase epitaxy, or the like.

最上層のAJGaAS層/lの一部には回折格子/jが
一体的に形成しである。
A diffraction grating /j is integrally formed in a part of the uppermost AJGaAS layer /l.

上記回折格子/jは例えば干渉露光を用いたフォトリソ
グラフィーによって形成することができる。さらに、A
ltGaAs層llの表面上および基板//の裏面には
それぞれ電極/4および17が形成されており、オーミ
ックコンタクトを成している。電極#、/7は導線/r
を介して電圧制御装置19に接続されている。
The diffraction grating /j can be formed, for example, by photolithography using interference exposure. Furthermore, A
Electrodes /4 and 17 are formed on the front surface of the ltGaAs layer 11 and the back surface of the substrate //, respectively, to form ohmic contact. Electrode #, /7 is conductor wire /r
It is connected to the voltage control device 19 via.

上記の光偏向装置において、量子井戸層13を含む光導
波路10内を伝搬してきた光コOは、回折格子/jによ
って外部に出射されて出射光コlとなる。電極/6./
7を通して電圧制御装置19より、積層体光導波路10
に逆バイアスをかけることによって、多重量子井戸層1
3に有効に電界を印加することができ、該部分の屈折率
を変化させることができる。
In the above-mentioned optical deflection device, the light beam O that has propagated within the optical waveguide 10 including the quantum well layer 13 is outputted to the outside by the diffraction grating /j and becomes the output beam beam I. Electrode/6. /
7 from the voltage control device 19, the laminated optical waveguide 10
By applying a reverse bias to the multi-quantum well layer 1
An electric field can be effectively applied to the portion 3, and the refractive index of the portion can be changed.

このようにして、電圧制御装置19による印加電圧を制
御することで、出射光の偏向角を制御することができる
In this way, by controlling the applied voltage by the voltage control device 19, the deflection angle of the emitted light can be controlled.

例えば印加電圧を周期的に変化させて出射光ビームを走
査動させたり、あるいは電圧制御装置l乙に接続した他
の装置からの出力信号に応じて出射光ビームの照射位置
を切り換えるなど出射光ビームの方向を自在に制御する
ことができる。
For example, the output light beam may be scanned by periodically changing the applied voltage, or the irradiation position of the output light beam may be switched according to an output signal from another device connected to the voltage control device lB. The direction of can be freely controlled.

上述した半導体光偏向装置は半導体レーザを容易に集積
化することができる。
The semiconductor optical deflection device described above allows semiconductor lasers to be easily integrated.

第卓図は本発明に係る半導体光偏向装置と半導体レーザ
とを集積化した一例であり、光導波路IO上に設けた半
導体レーザ部22は分布帰還型レーザである。そして上
記レーザ部λ2の半導体の活性層として多重量子井戸層
13を、また分布帰還のための回折格子としては、光導
波路IOの回折格子ljと同様のプロセスにより形成し
たものを利用できるので、容易に両者を集積化すること
ができる。
The table shown in FIG. 1 is an example in which a semiconductor optical deflection device and a semiconductor laser according to the present invention are integrated, and the semiconductor laser section 22 provided on the optical waveguide IO is a distributed feedback laser. The multi-quantum well layer 13 can be used as the semiconductor active layer of the laser section λ2, and the diffraction grating for distributed feedback can be formed by the same process as the diffraction grating lj of the optical waveguide IO. It is possible to integrate both.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体光偏向装置における出射光ビー
ムの偏向角を従来のものよりも大きくすることかできる
According to the present invention, the deflection angle of the emitted light beam in the semiconductor optical deflection device can be made larger than that of the conventional device.

また他の半導体素子との集積化も容易である。Furthermore, integration with other semiconductor elements is also easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2図は第1
図の要部を示す断面図、第3図は本発明の光偏向装置と
半導体レーザとを集積化した例を示す斜視図、第4図は
従来の半導体光偏向装置を示す斜視図である。 10・・・・・・光導波路 lj・・・・・・基 板/
 2・・−n −AIo、7 Ga□、 s As層1
3・・・・・・多重量子井戸層 1・・・・・・P −Am!0.5 Ga(、、5As
層 lj・・・・・・回折格子/l、/7・・・・・・
電 極 19・・・・・・電圧制御装置20・・・・・
・伝搬光 −7・・・・・・出射光−コ・・・・・・半
導体レーザ部 第 1 図(実施例) Iソ 第 2 図(実施例) 第 3 図(実施例) 19   第 4 図(従来例) 手続補正書 特願昭62−27767号 2、発明の名称 半導体光偏向装置 3、補正をする者 事件との関係 特許出願人 住所 東京都港区西新橋2丁目7番4号名称  光技術
研究開発株式会社 代表者 植之原 通行 4、代理人 自  発 6、補正の対象 Z 補正の内容 (1)明細書簡7頁第!行に、 「n−jXlo−17cm−3J (!: アルノヲr
 n −jX#717cm−3J ト補正スル。 (2)図面中筒3図を別紙の通り補正する(参照番号1
0を追加記入)。 以  上
FIG. 1 is a perspective view showing one embodiment of the present invention, and FIG. 2 is a perspective view showing one embodiment of the present invention.
FIG. 3 is a perspective view showing an example in which the optical deflection device of the present invention and a semiconductor laser are integrated, and FIG. 4 is a perspective view showing a conventional semiconductor optical deflection device. 10... Optical waveguide lj... Substrate/
2...-n -AIo, 7 Ga□, s As layer 1
3...Multi-quantum well layer 1...P-Am! 0.5 Ga(,,5As
Layer lj... Diffraction grating /l, /7...
Electrode 19... Voltage control device 20...
・Propagating light -7...Outgoing light -Co...Semiconductor laser section Fig. 1 (Example) I-S Fig. 2 (Example) Fig. 3 (Example) 19 Fig. 4 Diagram (Conventional example) Procedural amendment document Japanese Patent Application No. 62-27767 2 Name of the invention Semiconductor optical deflection device 3 Relationship with the person making the amendment Patent applicant address 2-7-4 Nishi-Shinbashi, Minato-ku, Tokyo Name Photonics Research and Development Co., Ltd. Representative Uenohara Pass 4, Agent voluntary 6 Subject of amendment Z Contents of amendment (1) Specification letter page 7! In the line, "n-jXlo-17cm-3J (!: Arunohor
n-jX#717cm-3J Correction. (2) Correct the third figure in the drawing as shown in the attached sheet (reference number 1)
(add 0). that's all

Claims (4)

【特許請求の範囲】[Claims] (1)半導体光導波路に回折格子を設け、該回折格子を
通して導波路内伝搬光を導波路外に放射するとともに、
その放射方向を、前記光導波路の屈折率を変化させるこ
とにより制御する光偏向装置において、前記光導波路中
に量子井戸構造を設けるとともに、前記量子井戸構造に
垂直に電界を印加するための電圧印加部を設け、前記電
圧印加部に印加する電圧を変化することによって前記量
子井戸構造部分の屈折率を変化させて前記放射光を偏向
させることを特徴とする半導体光偏向装置。
(1) A diffraction grating is provided in the semiconductor optical waveguide, and the light propagating within the waveguide is radiated to the outside of the waveguide through the diffraction grating, and
In an optical deflection device that controls the radiation direction by changing the refractive index of the optical waveguide, a quantum well structure is provided in the optical waveguide, and a voltage is applied to apply an electric field perpendicular to the quantum well structure. What is claimed is: 1. A semiconductor optical deflection device, comprising: a semiconductor light deflecting device, wherein the refractive index of the quantum well structure portion is changed by changing the voltage applied to the voltage applying portion, and the emitted light is deflected.
(2)前記光導波路を構成する材質がGaAlAs系の
半導体結晶である特許請求の範囲第1項記載の半導体光
偏向装置。
(2) The semiconductor optical deflection device according to claim 1, wherein the material constituting the optical waveguide is a GaAlAs-based semiconductor crystal.
(3)前記光導波路を構成する材質がInGaAsP系
の半導体結晶である特許請求の範囲第1項記載の半導体
光偏向装置。
(3) The semiconductor optical deflection device according to claim 1, wherein the material constituting the optical waveguide is an InGaAsP-based semiconductor crystal.
(4)前記光導波路を構成する材質がAlGaInP系
の半導体結晶である特許請求の範囲第1項記載の半導体
光偏向装置。
(4) The semiconductor optical deflection device according to claim 1, wherein the material constituting the optical waveguide is an AlGaInP-based semiconductor crystal.
JP2776787A 1987-02-09 1987-02-09 Semiconductor optical deflecting device Pending JPS63194234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2776787A JPS63194234A (en) 1987-02-09 1987-02-09 Semiconductor optical deflecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2776787A JPS63194234A (en) 1987-02-09 1987-02-09 Semiconductor optical deflecting device

Publications (1)

Publication Number Publication Date
JPS63194234A true JPS63194234A (en) 1988-08-11

Family

ID=12230138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2776787A Pending JPS63194234A (en) 1987-02-09 1987-02-09 Semiconductor optical deflecting device

Country Status (1)

Country Link
JP (1) JPS63194234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431974A2 (en) * 1989-12-08 1991-06-12 International Business Machines Corporation Light beam deflector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162024A (en) * 1984-09-03 1986-03-29 Omron Tateisi Electronics Co Optical information processor
JPS61198212A (en) * 1985-02-28 1986-09-02 Tokyo Inst Of Technol Optical circuit function element
JPS61232426A (en) * 1985-04-08 1986-10-16 Fuji Photo Film Co Ltd Optical scanning and recording device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162024A (en) * 1984-09-03 1986-03-29 Omron Tateisi Electronics Co Optical information processor
JPS61198212A (en) * 1985-02-28 1986-09-02 Tokyo Inst Of Technol Optical circuit function element
JPS61232426A (en) * 1985-04-08 1986-10-16 Fuji Photo Film Co Ltd Optical scanning and recording device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431974A2 (en) * 1989-12-08 1991-06-12 International Business Machines Corporation Light beam deflector

Similar Documents

Publication Publication Date Title
US5305412A (en) Semiconductor diode optical switching arrays utilizing low-loss, passive waveguides
CA2014904C (en) Semiconductor radiation coupling system
EP0201930A2 (en) Light emitting semiconductor device
US5191630A (en) Nonlinear optical device for controlling a signal light by a control light
US5321714A (en) Reflection suppression in semiconductor diode optical switching arrays
JP2703784B2 (en) Semiconductor laser device
JPH06314839A (en) Semiconductor laser element of optical modulator integration type multiple quantum well structure
JPS63194234A (en) Semiconductor optical deflecting device
JPH03228032A (en) Optical directional coupler
US4730326A (en) Semiconductor laser array device
JPH0716079B2 (en) Semiconductor laser device
US4744616A (en) Monolithic electro-optic modulator array
JPH0951142A (en) Semiconductor light emitting element
JP3146821B2 (en) Manufacturing method of semiconductor optical integrated device
US5157543A (en) Optical beam deflector
JPS6257275A (en) Semiconductor laser array device
JPH07231138A (en) Surface light-emitting semiconductor laser
JPS61148890A (en) Distribution feedback type semiconductor laser element
JPH10228005A (en) Electric field absorption type optical modulator and optical modulator integrating type semiconductor laser diode
JP2684619B2 (en) Semiconductor laser device and semiconductor phase modulator
JPS6159555B2 (en)
JPS63313888A (en) Optical electronic element
JPS6297386A (en) Distributed feedback type bistable semiconductor laser
JPS62190885A (en) Semiconductor laser
JPH08262503A (en) Condenser grating coupler type optical deflecting element