JPH0951142A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH0951142A
JPH0951142A JP19957395A JP19957395A JPH0951142A JP H0951142 A JPH0951142 A JP H0951142A JP 19957395 A JP19957395 A JP 19957395A JP 19957395 A JP19957395 A JP 19957395A JP H0951142 A JPH0951142 A JP H0951142A
Authority
JP
Japan
Prior art keywords
layer
substrate
laser
modulator
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19957395A
Other languages
Japanese (ja)
Inventor
Takayuki Yamamoto
剛之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19957395A priority Critical patent/JPH0951142A/en
Publication of JPH0951142A publication Critical patent/JPH0951142A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the semiconductor laser, which is operated with the power supply line having the same polarity by laminating a laser part having an active layer and a modulator part having an absorbing layer on a substrate, and providing the inverted type for respective upper and lower clad laysers of the active layer and the absorbing layer. SOLUTION: On the same substrate 1, a laser part having an active layer 3 and a modulator part having an absorbing layer 7 are laminated in the direction of an optical resonator. A clad layer 2 at the lower side of the active layer 3 has the same conducting type as the substrate 1. A clad layer 4 at the upper side has the reverse conducting type from the substrate 1. A clad layer 6 below the absorbing layer 7 has the reverse conducting type from the substrate 1. A clad layer 8 above has the same conducting type as the substrate 1. Therefore, the voltage in the foward direction required for the operation of the laser part and the voltage in the reverse direction required for the operation of the modulator part can be applied by imparting the voltage having the same polarity to the surface electrode. That is to say, the semiconductor laser can be operated with the power supply line having the same porality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体発光素子に係り,
特に, 光変調器を集積した半導体レーザに関する。
The present invention relates to a semiconductor light emitting device,
In particular, it relates to a semiconductor laser integrated with an optical modulator.

【0002】光変調器を集積した半導体レーザは光通信
の光源として用いられており,近年, 光ファイバによる
情報伝送が幹線系から光LANや加入者系等に広範囲な
領域に普及するにつれ,光モジュールの簡略化が求めら
れている。
A semiconductor laser integrated with an optical modulator has been used as a light source for optical communication. In recent years, as optical fiber information transmission spreads over a wide range from a trunk system to an optical LAN and a subscriber system, the Module simplification is required.

【0003】[0003]

【従来の技術】図6は光変調器を集積した半導体レーザ
の従来例を示す。図で, 1はn型半導体基板, 3は活性
層, 4はp型クラッド層, 7は吸収層,11はレーザ部の
p側電極, 12は変調器部のp側電極, 13は基板側のn側
電極で共通電極である。
2. Description of the Related Art FIG. 6 shows a conventional example of a semiconductor laser integrated with an optical modulator. In the figure, 1 is an n-type semiconductor substrate, 3 is an active layer, 4 is a p-type cladding layer, 7 is an absorption layer, 11 is a p-side electrode of the laser section, 12 is a p-side electrode of the modulator section, and 13 is a substrate side. The n-side electrode is a common electrode.

【0004】光の共振器方向に,電流注入により光を増
幅する活性層 3を有するレーザ部と電圧印加により吸収
係数が変化する吸収層 7を有する変調器部が同一基板 1
上にモノリシックに集積された素子である。
A laser section having an active layer 3 for amplifying light by current injection and a modulator section having an absorption layer 7 whose absorption coefficient is changed by applying a voltage are formed on the same substrate 1 in the optical resonator direction.
It is a device monolithically integrated on top.

【0005】この素子では,レーザ部にレーザの発振し
きい値電流以上の直流電流を流して連続発振させ,変調
器部に電圧を印加して吸収層に電界をかけてその吸収係
数を変化させることにより,外部に出射されるレーザ光
の強度を変調して信号を伝送している。
In this device, a direct current equal to or higher than the oscillation threshold current of the laser is passed through the laser section for continuous oscillation, and a voltage is applied to the modulator section to apply an electric field to the absorption layer to change its absorption coefficient. As a result, the intensity of the laser light emitted to the outside is modulated and the signal is transmitted.

【0006】[0006]

【発明が解決しようとする課題】しかしながら,従来例
の光変調器を集積した半導体レーザでは,表面電極に印
加する電圧の極性が基板に対し正であるのに対し,変調
器部では負であるために極性の異なる2つの電源ライン
が必要となり,駆動回路を複雑化していた。
However, in the semiconductor laser in which the conventional optical modulator is integrated, the polarity of the voltage applied to the surface electrode is positive with respect to the substrate, whereas it is negative in the modulator section. Therefore, two power supply lines with different polarities are required, which complicates the drive circuit.

【0007】本発明は単一極性の電源ラインで動作する
光変調器を集積した半導体レーザを得ることを目的とす
る。
An object of the present invention is to obtain a semiconductor laser integrated with an optical modulator that operates on a power supply line of a single polarity.

【0008】[0008]

【課題を解決するための手段】上記課題の解決は, 1)同一基板上に, 電流注入により光を増幅する活性層
を有するレーザ部と, 電圧印加により吸収係数が変化す
る吸収層を有する変調器部とが光の共振器方向に集積さ
れ,該活性層の下層は該基板と同じ導電型であり,該活
性層の上層は該基板と反対型の導電型であり, 該吸収層
の下層は該基板と反対型の導電型であり,該吸収層の上
層は該基板と同じ導電型である半導体発光素子,あるい
は 2)前記変調器部の導電型が,n型基板を用いた場合に
は上層よりp/n/p/nであり,p型基板を用いた場
合には上層よりn/p/n/pであり,素子表面の導電
型がレーザ部, 変調器部とも同一である前記1記載の半
導体発光素子により達成される。
[Means for Solving the Problems] The above problems can be solved by: 1) Modulation having a laser section having an active layer for amplifying light by current injection, and an absorption layer having an absorption coefficient changed by voltage application, on the same substrate. And an upper part of the active layer have the same conductivity type as that of the substrate, and an upper layer of the active layer has a conductivity type opposite to that of the substrate. Is a semiconductor light-emitting element whose conductivity type is opposite to that of the substrate, and the upper layer of the absorption layer is the same conductivity type as the substrate, or 2) when the conductivity type of the modulator section is an n-type substrate Is p / n / p / n from the upper layer, and is n / p / n / p from the upper layer when a p-type substrate is used, and the conductivity type of the device surface is the same in both the laser section and modulator section. This is achieved by the semiconductor light emitting device described in 1 above.

【0009】[0009]

【作用】図1は本発明の原理説明図である。図のよう
に,レーザ部の活性層 3の上下のクラッド層 2,4の導
電型と変調器部の吸収層の上下のクラッド層 6,7 の導
電型が反転した構造とすることにより,レーザ部に順方
向となる極性の電圧を変調器部に印加すると,変調器部
では逆方向電圧が印加されることになる。このとき,変
調器部では基板と下側のクラッド層で形成されるpn接
合が,吸収層の上下のクラッド層で形成されるpn接合
と逆向きに直列に接続されることになるが,順方向と逆
方向のpn接合が直列に接続された場合は,電圧は主に
逆方向にバイアスされたpn接合にかかるため,変調す
るために十分な電界を吸収層にかけることができる。
FIG. 1 is a diagram for explaining the principle of the present invention. As shown in the figure, the conductivity type of the cladding layers 2 and 4 above and below the active layer 3 in the laser section and the conductivity type of the cladding layers 6 and 7 above and below the absorption layer in the modulator section are reversed to obtain a laser When a voltage having a forward polarity is applied to the modulator section, a reverse voltage is applied to the modulator section. At this time, in the modulator part, the pn junction formed by the substrate and the lower clad layer is connected in series in the opposite direction to the pn junction formed by the clad layers above and below the absorption layer. When the pn junction in the opposite direction is connected in series, the voltage is mainly applied to the pn junction biased in the reverse direction, so that a sufficient electric field for modulation can be applied to the absorption layer.

【0010】従って,本発明では基板に対して同一極性
の電圧を表面電極に与えることにより, レーザ部の動作
に必要な順方向の電圧と,変調器部の動作に必要な逆方
向電圧を印加することができる。すなわち,この素子は
単一極性の電源ラインで動作することができる。
Therefore, in the present invention, a forward voltage necessary for the operation of the laser section and a reverse voltage necessary for the operation of the modulator section are applied by applying the same polarity voltage to the substrate to the surface electrode. can do. That is, this device can operate with a single-polarity power supply line.

【0011】[0011]

【実施例】図2は本発明の実施例1の説明図である。図
において,n-InP 基板 1上にレーザ部は回折格子1Aが形
成され,その上に活性層 3, p-InP クラッド層 4, p-In
GaAsP(組成表示の波長λg = 1.3μm) コンタクト層 5
が積層されており,変調器部は基板上に, p-InP クラッ
ド層 6, 吸収層 7, n-InP クラッド層 8, n-InGaAsP(λ
g = 1.3μm) コンタクト層 9が積層されている。
EXAMPLE 1 FIG. 2 is an explanatory diagram of Example 1 of the present invention. In the figure, the diffraction grating 1A is formed in the laser section on the n-InP substrate 1, and the active layer 3, p-InP clad layer 4, and p-In are formed on it.
GaAsP (wavelength for composition display λg = 1.3 μm) Contact layer 5
The p-InP clad layer 6, absorption layer 7, n-InP clad layer 8, n-InGaAsP (λ
g = 1.3 μm) The contact layer 9 is laminated.

【0012】上記の構造をとることにより,レーザ部は
基板に対して正の電圧を印加することにより,n-InP 基
板 1とp-InP クラッド層 4によるpn接合は順方向にな
り,p-InP クラッド層 6, 吸収層 7, n-InP クラッド層
8からなるpn接合は逆方向になるので,印加された電
圧の大部分は吸収層を含むpn接合に印加されて吸収層
に電界をかけることができ, 吸収層の吸収係数を変化さ
せることができる。従って, この素子は正の電源ライン
のみで動作することができる。
With the above structure, the pn junction between the n-InP substrate 1 and the p-InP cladding layer 4 becomes forward by applying a positive voltage to the substrate in the laser portion, and the p- InP clad layer 6, absorption layer 7, n-InP clad layer
Since the pn junction composed of 8 is in the opposite direction, most of the applied voltage can be applied to the pn junction including the absorption layer and an electric field can be applied to the absorption layer, changing the absorption coefficient of the absorption layer. it can. Therefore, this device can operate only on the positive power supply line.

【0013】次に, この素子の作製方法の概略を説明す
る。まず,n-InP 基板 1上のレーザ部のみに回折格子1A
を形成し,次いで有機金属気相成長(MOCVD) 法により,
基板上にレーザの活性層 3, 厚さ 2μmのp-InP クラッ
ド層 4, 厚さ 0.2μmのp-InGaAsP(λg = 1.3μm) コ
ンタクト層 5を成長する。
Next, an outline of a method of manufacturing this element will be described. First, only the laser section on the n-InP substrate 1 has a diffraction grating 1A.
And then by metalorganic vapor phase epitaxy (MOCVD)
A laser active layer 3, a 2 μm thick p-InP cladding layer 4, and a 0.2 μm thick p-InGaAsP (λg = 1.3 μm) contact layer 5 are grown on the substrate.

【0014】次いで, フォトリソグラフィ法により, レ
ーザ部の表面に酸化シリコン(SiO2)膜を形成し,これを
マスクにして変調器部の成長層を基板に達するまでエッ
チングで除去する。
Next, a silicon oxide (SiO 2 ) film is formed on the surface of the laser portion by photolithography, and the growth layer of the modulator portion is removed by etching until it reaches the substrate by using this as a mask.

【0015】次いで, このSiO2マスクを残したまま,再
びMOCVD 法により,エッチングで除去した変調器部のみ
に厚さ 0.3μmのp-InP クラッド層 6, 吸収層 7, 厚さ
2μmのn-InP クラッド層 8, 厚さ 0.2μmのn-InGaAs
P(λg = 1.3μm) コンタクト層 9を成長する。
Next, with the SiO 2 mask remaining, the p-InP clad layer 6, the absorption layer 7, and the thickness of the p-InP clad layer 6, the thickness of which is 0.3 μm, are formed only on the modulator portion removed by etching by the MOCVD method again.
2 μm n-InP clad layer 8, 0.2 μm thick n-InGaAs
A P (λg = 1.3 μm) contact layer 9 is grown.

【0016】次いで,横モード制御のために,共振器方
向に幅約 1.2μmのメサをエッチングで形成した後, メ
サの両側に鉄(Fe)ドープのInP 層をMOCVD 法により成長
して埋め込む。
Next, in order to control the transverse mode, a mesa having a width of about 1.2 μm is formed by etching in the cavity direction, and then an iron (Fe) -doped InP layer is grown and embedded by MOCVD on both sides of the mesa.

【0017】最後に, レーザ部と変調器部の境界のコン
タクト層を除去し,基板表面に絶縁膜としてSiO2層10を
被着し,この膜に電極形成用の窓を開けて, レーザ部の
表面には下側から順に積層されたTi/Pt/Au電極11を, 変
調器部表面及び基板側には下側より順に積層されたAuGe
/Au 電極12, 13を形成し,素子化する。
Finally, the contact layer at the boundary between the laser section and the modulator section is removed, a SiO 2 layer 10 is deposited on the surface of the substrate as an insulating film, and a window for electrode formation is opened in this film to form the laser section. The Ti / Pt / Au electrode 11 stacked in order from the bottom is formed on the surface of the substrate, and the AuGe stacked in order from the bottom on the modulator surface and the substrate side.
/ Au electrodes 12 and 13 are formed to form a device.

【0018】レーザ部の活性層や変調器部の吸収層の層
構造は, 特に本発明の効果には関わりないが,例示する
と以下のようである。波長1.55μm帯の素子では, レー
ザ部の活性層としては厚さ0.1 μmのInGaAsP(λg =
1.1μm) ガイド層と厚さ0.1 μmのInGaAsP(λg =1.5
5μm)発光層で形成し,変調器部の吸収層を厚さ 0.2μ
mのInGaAsP(λg =1.46μm)で形成する。
The layer structure of the active layer of the laser section and the absorption layer of the modulator section is not particularly related to the effect of the present invention, but is exemplified as follows. In a device with a wavelength of 1.55 μm, the active layer of the laser section has a thickness of 0.1 μm InGaAsP (λg =
1.1 μm) Guide layer and 0.1 μm thick InGaAsP (λg = 1.5
5 μm) The light emitting layer is formed, and the absorption layer of the modulator is 0.2 μm thick.
m InGaAsP (λg = 1.46 μm).

【0019】上記の例はバルクの活性層であるが,量子
井戸を用いた例としては,レーザ部の活性層としては厚
さ0.1 μmのInGaAsP(λg =1.15μm) ガイド層と, 厚
さ10nmのInGaAsP(λg =1.15μm) 障壁層と厚さ 5nmの
0.8 %圧縮歪みInGaAsP 井戸層からなる10周期の多重量
子井戸(MQW) 層, 厚さ0.1 μmのInGaAsP(λg =1.15μ
m) ガイド層とで構成する。変調器部の吸収層として
は, 厚さ0.1 μmのInGaAsP(λg =1.15μm) ガイド層
と, 厚さ 5nmのInGaAsP(λg =1.15μm) 障壁層と厚さ
5nmのIn0.53Ga0.47As井戸層からなる10周期の多重量子
井戸層, 厚さ0.1μmのInGaAsP(λg =1.15μm) ガイ
ド層とで構成する。
The above example is a bulk active layer. As an example using a quantum well, an InGaAsP (λg = 1.15 μm) guide layer having a thickness of 0.1 μm and an active layer of a laser portion having a thickness of 10 nm are used. InGaAsP (λg = 1.15μm) barrier layer and thickness of 5nm
10% multiple quantum well (MQW) layer consisting of 0.8% compressive strain InGaAsP well layer, 0.1 μm thick InGaAsP (λg = 1.15 μm)
m) It is composed of a guide layer. The absorption layer of the modulator is composed of a 0.1 μm thick InGaAsP (λg = 1.15 μm) guide layer and a 5 nm thick InGaAsP (λg = 1.15 μm) barrier layer.
It is composed of a 10-period multiple quantum well layer consisting of a 5 nm In 0.53 Ga 0.47 As well layer and a 0.1 μm thick InGaAsP (λg = 1.15 μm) guide layer.

【0020】上に例示した層構造以外の組成, 層数,
厚の活性層, 吸収層を用いても, あるいは波長 1.3μm
帯素子用の層構造を用いても本発明の効果は変わらな
い。図3は本発明の実施例2の説明図である。
Even if an active layer or absorption layer having a composition , number of layers , and layer thicknesses other than the layer structure exemplified above is used, or the wavelength is 1.3 μm.
The effect of the present invention does not change even if a layered structure for a band element is used. FIG. 3 is an explanatory diagram of the second embodiment of the present invention.

【0021】実施例1ではレーザ部に回折格子を有する
分布帰還型レーザを説明したが,レーザ部に回折格子が
ない構造もある。この図は回折格子を持たないファプリ
ペローレーザで, 2はn-InP クラッド層である。
Although the distributed feedback laser having the diffraction grating in the laser section has been described in the first embodiment, there is a structure in which the laser section does not have the diffraction grating. This figure shows a Fabry-Perot laser without a diffraction grating, and 2 is an n-InP cladding layer.

【0022】これレーザでは,レーザ部に直流電流を流
しておき,変調器部に電圧を印加してこの部分の吸収係
数を変えてレーザ共振器内の内部損失を変えることによ
り,レーザの発振,非発振を切り換える。
In this laser, a direct current is passed through the laser section, and a voltage is applied to the modulator section to change the absorption coefficient of this section to change the internal loss in the laser resonator, thereby oscillating the laser. Switch non-oscillation.

【0023】以下の実施例では回折格子を設けていない
が,これらと同一構造で回折格子を設けてもよいことは
当然である。図4は本発明の実施例3の説明図である。
Although the diffraction grating is not provided in the following embodiments, it goes without saying that the diffraction grating may be provided with the same structure as these. FIG. 4 is an explanatory diagram of the third embodiment of the present invention.

【0024】この例は,吸収層 7に隣接したn-InP 上部
クラッド層 8の上にp-InP 上部クラッド層 2 a積層した
構造である。この場合変調器部の層構造はpnpn構造
となっており,p側電極にレーザ部と同じ正の電圧を印
加すると,逆方向のpn接合内に吸収層 2が設けられて
いるため,印加された電圧は主にここにかかり吸収層の
電界を変化させることができる。
In this example, the p-InP upper clad layer 2 a is laminated on the n-InP upper clad layer 8 adjacent to the absorption layer 7. In this case, the layer structure of the modulator section is a pnpn structure. When the same positive voltage as that of the laser section is applied to the p-side electrode, the absorption layer 2 is provided in the pn junction in the opposite direction. The applied voltage is mainly applied here, and the electric field of the absorption layer can be changed.

【0025】この構造をとると, 基板表面はレーザ部も
変調器部もともにp型となり,電極分離を行うのみで,
同じ材料で電極形成が行えるから素子作製プロセスが簡
略化される。
With this structure, both the laser section and the modulator section are p-type on the substrate surface, and only electrode separation is performed.
Since the electrodes can be formed with the same material, the device manufacturing process is simplified.

【0026】図5は本発明の実施例4の説明図である。
これまでの実施例では基板の導電型をすべてn型とした
が,p型基板 1’上に作製することもできる。この場合
は,クラッド層及びコンタクト層の導電型をこれまでの
実施例と反転させることになる。この図は実施例4をp
型基板上に作製した例である。他の実施例に対しても,
同様にp型基板上に作製できる。
FIG. 5 is an explanatory diagram of the fourth embodiment of the present invention.
Although the conductivity type of the substrate is all n-type in the above-described embodiments, it can be formed on the p-type substrate 1 '. In this case, the conductivity types of the clad layer and the contact layer are reversed from those of the previous embodiments. This figure shows Example 4
This is an example manufactured on a mold substrate. For other embodiments,
Similarly, it can be formed on a p-type substrate.

【0027】この場合は,レーザ部,変調器部ともに基
板にたいして負の電圧を印加するため,負の電源ライン
のみ必要となる。電源ラインの極性は用いる駆動回路に
よって決まるので,それに応じた基板の導電型を選ぶこ
とにより,いずれの極性の電源ラインにも対応すること
ができる。
In this case, since a negative voltage is applied to the substrate in both the laser section and the modulator section, only a negative power supply line is needed. Since the polarity of the power supply line is determined by the drive circuit used, it is possible to deal with the power supply line of any polarity by selecting the conductivity type of the substrate according to it.

【0028】次に,レーザ部と変調器部の電気的な分離
について説明する。図6に示されている従来の変調器を
集積化したレーザにおいても,上部p型クラッド層はレ
ーザ部及び変調器部に共通で,且つレーザ部には順方向
電圧が,変調器部には逆方向電圧が印加されている。し
かし,活性層幅が1μm程度と狭く且つその両側が高抵
抗層であるので,ある程度の距離(数10μm) をとると
電極間の抵抗はMΩ以上となり,電気的分離は十分であ
る。各実施例の構造においても同様である。
Next, the electrical separation of the laser section and the modulator section will be described. Also in the conventional laser integrated with the modulator shown in FIG. 6, the upper p-type cladding layer is common to the laser part and the modulator part, and the forward voltage is applied to the laser part and the modulator part is applied to the modulator part. Reverse voltage is applied. However, since the width of the active layer is as narrow as about 1 μm and both sides are high resistance layers, the resistance between the electrodes becomes MΩ or more when a certain distance (several tens of μm) is taken, and electrical isolation is sufficient. The same applies to the structure of each embodiment.

【0029】印加電圧は使用方法に依存するが,例えば
図2の実施例1ではレーザ部に 2 V, 変調器部に対して
オンのときは 1 V, オフのとき 3 Vである。
The applied voltage depends on the method of use, but is, for example, 2 V in the laser section, 1 V when the modulator section is on and 3 V when the modulator section is off in Example 1 of FIG.

【0030】[0030]

【発明の効果】本発明によれぱ,単一極性の電源ライン
で動作する光変調器を集積した半導体レーザを得ること
ができる。
According to the present invention, it is possible to obtain a semiconductor laser integrated with an optical modulator that operates on a power supply line of a single polarity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明図FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】 本発明の実施例1の説明図FIG. 2 is an explanatory diagram of Embodiment 1 of the present invention.

【図3】 本発明の実施例2の説明図FIG. 3 is an explanatory diagram of a second embodiment of the present invention.

【図4】 本発明の実施例3の説明図FIG. 4 is an explanatory diagram of a third embodiment of the present invention.

【図5】 本発明の実施例4の説明図FIG. 5 is an explanatory diagram of Embodiment 4 of the present invention.

【図6】 従来例の説明図FIG. 6 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 n-InP 基板 1’p-InP 基板 1A 回折格子 2 n-InP クラッド層 3 活性層 4 p-InP クラッド層 5 p-InGaAsP(λg = 1.3μm) コンタクト層 6 p-InP クラッド層 7 吸収層 8 n-InP クラッド層 9 n-InGaAsP(λg = 1.3μm) コンタクト層 10 絶縁膜でSiO2膜 11〜13 電極1 n-InP substrate 1'p-InP substrate 1A Diffraction grating 2 n-InP cladding layer 3 Active layer 4 p-InP cladding layer 5 p-InGaAsP (λg = 1.3 μm) Contact layer 6 p-InP cladding layer 7 Absorption layer 8 n-InP clad layer 9 n-InGaAsP (λg = 1.3 μm) contact layer 10 Insulating film SiO 2 film 11 to 13 electrodes

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 同一基板上に, 電流注入により光を増幅
する活性層を有するレーザ部と, 電圧印加により吸収係
数が変化する吸収層を有する変調器部とが光の共振器方
向に集積され,該活性層の下層は該基板と同じ導電型で
あり,該活性層の上層は該基板と反対型の導電型であ
り, 該吸収層の下層は該基板と反対型の導電型であり,
該吸収層の上層は該基板と同じ導電型であることを特徴
とする半導体発光素子。
1. A laser section having an active layer for amplifying light by current injection and a modulator section having an absorption layer whose absorption coefficient changes by voltage application are integrated on the same substrate in the optical resonator direction. A lower layer of the active layer has the same conductivity type as the substrate, an upper layer of the active layer has a conductivity type opposite to the substrate, and a lower layer of the absorption layer has a conductivity type opposite to the substrate,
A semiconductor light emitting device, wherein an upper layer of the absorption layer has the same conductivity type as the substrate.
【請求項2】 前記変調器部の導電型が,n型基板を用
いた場合には上層よりp/n/p/nであり,p型基板
を用いた場合には上層よりn/p/n/pであり,素子
表面の導電型がレーザ部, 変調器部とも同一であること
を特徴とする請求項1記載の半導体発光素子。
2. The conductivity type of the modulator portion is p / n / p / n from the upper layer when an n-type substrate is used, and n / p / from the upper layer when a p-type substrate is used. 2. The semiconductor light emitting device according to claim 1, wherein the semiconductor type is n / p, and the conductivity type of the device surface is the same in both the laser section and the modulator section.
JP19957395A 1995-08-04 1995-08-04 Semiconductor light emitting element Withdrawn JPH0951142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19957395A JPH0951142A (en) 1995-08-04 1995-08-04 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19957395A JPH0951142A (en) 1995-08-04 1995-08-04 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPH0951142A true JPH0951142A (en) 1997-02-18

Family

ID=16410086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19957395A Withdrawn JPH0951142A (en) 1995-08-04 1995-08-04 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH0951142A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069136A (en) * 2001-08-29 2003-03-07 Furukawa Electric Co Ltd:The Optical integrated device and method of manufacturing the same
JP2006173465A (en) * 2004-12-17 2006-06-29 Opnext Japan Inc Modulator integrated laser and optical module
JP2006287144A (en) * 2005-04-05 2006-10-19 Nippon Telegr & Teleph Corp <Ntt> Optical integrated device
JP2007019561A (en) * 2006-10-26 2007-01-25 Eudyna Devices Inc Optical semiconductor device, method of controlling same, and optical module
US7199441B2 (en) 2004-06-11 2007-04-03 Hitachi, Ltd. Optical module device driven by a single power supply
JP2019079993A (en) * 2017-10-26 2019-05-23 日本電信電話株式会社 Semiconductor optical element
JP2019192918A (en) * 2019-05-27 2019-10-31 三菱電機株式会社 Semiconductor optical integrated element
CN111900615A (en) * 2020-07-30 2020-11-06 西安炬光科技股份有限公司 Semiconductor laser structure and stacked array

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069136A (en) * 2001-08-29 2003-03-07 Furukawa Electric Co Ltd:The Optical integrated device and method of manufacturing the same
US7199441B2 (en) 2004-06-11 2007-04-03 Hitachi, Ltd. Optical module device driven by a single power supply
JP2006173465A (en) * 2004-12-17 2006-06-29 Opnext Japan Inc Modulator integrated laser and optical module
JP2006287144A (en) * 2005-04-05 2006-10-19 Nippon Telegr & Teleph Corp <Ntt> Optical integrated device
JP2007019561A (en) * 2006-10-26 2007-01-25 Eudyna Devices Inc Optical semiconductor device, method of controlling same, and optical module
JP2019079993A (en) * 2017-10-26 2019-05-23 日本電信電話株式会社 Semiconductor optical element
JP2019192918A (en) * 2019-05-27 2019-10-31 三菱電機株式会社 Semiconductor optical integrated element
CN111900615A (en) * 2020-07-30 2020-11-06 西安炬光科技股份有限公司 Semiconductor laser structure and stacked array

Similar Documents

Publication Publication Date Title
EP0896405B1 (en) Method for fabricating surface-emitting semiconductor device
US4815087A (en) High speed stable light emitting semiconductor device with low threshold current
JPH0636457B2 (en) Method for manufacturing monolithic integrated optical device incorporating semiconductor laser and device obtained by this method
JPH06291406A (en) Surface emitting semiconductor laser
JP2746326B2 (en) Semiconductor optical device
US6821798B2 (en) Semiconductor optical device and method for fabricating same
JPH0951142A (en) Semiconductor light emitting element
JPH0194689A (en) Optoelectronic semiconductor element
JPH01319986A (en) Semiconductor laser device
JPH07231132A (en) Semiconductor optical device
JP2003142773A (en) Semiconductor light emitting device
JPH0716079B2 (en) Semiconductor laser device
JP3238979B2 (en) Surface emitting laser device and method of manufacturing the same
JPH0563301A (en) Semiconductor optical element and optical communication system
JP2001267639A (en) Optical element mounting board and multi-wavelength light source
JPS61289689A (en) Semiconductor light emission device
JP2713445B2 (en) Semiconductor laser device
JPS6297386A (en) Distributed feedback type bistable semiconductor laser
JP2528886B2 (en) Semiconductor light emitting device
JPH10228005A (en) Electric field absorption type optical modulator and optical modulator integrating type semiconductor laser diode
JPH07325328A (en) Semiconductor optical modulator
JPH10303499A (en) Semiconductor laser and its manufacture
JP2001313442A (en) Semiconductor optical element
JPS60145692A (en) Single axial mode semiconductor laser
JPH104239A (en) Semiconductor light emitting diode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105