JPH07231138A - Surface light-emitting semiconductor laser - Google Patents

Surface light-emitting semiconductor laser

Info

Publication number
JPH07231138A
JPH07231138A JP8477294A JP8477294A JPH07231138A JP H07231138 A JPH07231138 A JP H07231138A JP 8477294 A JP8477294 A JP 8477294A JP 8477294 A JP8477294 A JP 8477294A JP H07231138 A JPH07231138 A JP H07231138A
Authority
JP
Japan
Prior art keywords
semiconductor laser
emitting semiconductor
layer
surface emitting
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8477294A
Other languages
Japanese (ja)
Other versions
JP3243772B2 (en
Inventor
Takashi Tadokoro
貴志 田所
Yoshitaka Ooiso
義孝 大礒
Takashi Kurokawa
隆志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP08477294A priority Critical patent/JP3243772B2/en
Publication of JPH07231138A publication Critical patent/JPH07231138A/en
Application granted granted Critical
Publication of JP3243772B2 publication Critical patent/JP3243772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18355Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a defined polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18375Structure of the reflectors, e.g. hybrid mirrors based on metal reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18377Structure of the reflectors, e.g. hybrid mirrors comprising layers of different kind of materials, e.g. combinations of semiconducting with dielectric or metallic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface

Abstract

PURPOSE:To obtain a surface light-emitting semiconductor laser which can fix the polarising surface in the desired direction and has the stabilized polarizing surface not influenced by an application current level by providing, in the path of the oscillated light beam, a metal material grating which is continuous in the predetermined first direction but is dispersive in the second direction perpendicular to the first direction. CONSTITUTION:In a surface light emitting semiconductor laser in such a constitution that a resonator which is perpendicular to the substrate surface is provided and the upper and lower sides of the active layer 20 is held by reflection mirrors, a metal material grating 24 which is continuous in the predetermined first direction but is dispersive in the second direction which is perpendicular to the first direction is provided in the light path of the oscillated beam. For instance, a semiconductor multilayer reflecting mirror 19 consisting of InP and InGaAsP is formed on a semiconductor substrate 18 of Ink, and a light- emitting layer 20 consisting of InGaAsP, a clad layer 21 of InP and a contact layer 22 of InGaAsP are formed thereon. Moreover, a grating pattern 24 of metal film and a multilayer film reflecting mirror 25 consisting of two kinds of dielectric materials having different refraction indices are provided thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板に垂直方向に光を
出射させる面発光半導体レーザの偏波面制御に関するも
のであり、本発明の面発光半導体レーザにより、偏波面
の固定された安定な光源を提供することが可能となる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to polarization plane control of a surface emitting semiconductor laser which emits light in a direction perpendicular to a substrate. The surface emitting semiconductor laser of the present invention ensures stable polarization planes. It becomes possible to provide a light source.

【0002】[0002]

【従来の技術】周知のように、面発光レーザは、低しき
い値で動作し、高速変調および大規模二次元集積化が可
能であり、光通信、光情報処理システムを構成するデバ
イスとして期待されている。
2. Description of the Related Art As is well known, surface-emitting lasers operate at low threshold values, are capable of high-speed modulation and large-scale two-dimensional integration, and are expected as devices constituting optical communication and optical information processing systems. Has been done.

【0003】従来の面発光レーザの概略の断面構造を図
6に示す。図6(a)は半導体多層膜を反射膜として使
用している場合を、(b)は誘電体多層膜を反射膜とし
て使用している場合を、(c)は金属膜を反射鏡として
使用している場合を、それぞれ示している。すなわち、
図6(a)に示す構造は、活性層2を半導体多層膜1お
よび3で挟んだ構造である。また、図6(b)に示す構
造は、上から順にコンタクト層5、クラッド層6、活性
層7、クラッド層8およびInGaAsP層9からなる
積層の上下を誘電体多層膜4および10で挟んだ構造で
ある。さらに、図6(c)に示す構造は、同様に上から
順にコンタクト層12、クラッド層13、活性層14、
クラッド層15およびInGaAsP層16からなる積
層の上下を金属膜11および17で挟んだ構造を有す
る。また、これらの反射鏡の組み合わせで構成される面
発光レーザも存在する。
FIG. 6 shows a schematic sectional structure of a conventional surface emitting laser. 6A shows the case where the semiconductor multilayer film is used as the reflection film, FIG. 6B shows the case where the dielectric multilayer film is used as the reflection film, and FIG. 6C shows the case where the metal film is used as the reflection mirror. In each case, it shows. That is,
The structure shown in FIG. 6A is a structure in which the active layer 2 is sandwiched between the semiconductor multilayer films 1 and 3. In the structure shown in FIG. 6B, the dielectric multilayer films 4 and 10 sandwich the upper and lower layers of the contact layer 5, the cladding layer 6, the active layer 7, the cladding layer 8 and the InGaAsP layer 9 in this order from the top. It is a structure. Further, similarly to the structure shown in FIG. 6C, the contact layer 12, the cladding layer 13, the active layer 14, and the
It has a structure in which metal films 11 and 17 sandwich the upper and lower sides of a stack of a clad layer 15 and an InGaAsP layer 16. In addition, there are surface emitting lasers configured by combining these reflecting mirrors.

【0004】しかし、これらの面発光レーザは、偏波面
を制御する構造はなにもなく、チップごと、あるいは同
じチップにおいても電流注入レベルによって偏波面が変
化していた。従って、偏波面依存性のある測定系での使
用や、アレイ状での使用が困難であった。
However, these surface-emitting lasers have no structure for controlling the plane of polarization, and the plane of polarization changes depending on the current injection level for each chip or for the same chip. Therefore, it is difficult to use it in a measurement system having polarization plane dependency or in an array form.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記欠点を
改善するために提案されたもので、その目的は、任意の
方向に偏波面を固定でき、注入電流レベルに影響されず
に安定な偏波面を持つ面発光半導体レーザを提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been proposed in order to improve the above-mentioned drawbacks, and its purpose is to fix the plane of polarization in an arbitrary direction and to stabilize it without being influenced by the injection current level. It is to provide a surface emitting semiconductor laser having a polarization plane.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、基板面に対し、垂直方向の共振器を有
し、活性層の上下を反射鏡で挟んだ構造の面発光半導体
レーザにおいて、前記反射鏡の一方あるいは双方の内
部、または前記反射鏡と前記活性層の間、および前記反
射鏡の外部のいずれかの位置に、所定の第1の方向には
連続であるが、それと垂直な第2の方向には離散的な格
子状金属膜を有していることを特徴とする。
In order to solve the above-mentioned problems, the present invention has a surface emitting device having a resonator having a vertical direction with respect to a substrate surface, and a structure in which an active layer is sandwiched between reflecting mirrors. In the semiconductor laser, it is continuous in one or both of the reflection mirrors, between the reflection mirror and the active layer, and outside the reflection mirror in a predetermined first direction. , And has a discrete grid-shaped metal film in the second direction perpendicular thereto.

【0007】すなわち、本発明の請求項1の面発光半導
体レーザは、基板面に対し垂直方向の共振器を有し、活
性層の上下を反射鏡で挟んだ構造の面発光半導体レーザ
であり、所定の第1の方向には連続であるが、該第1の
方向と垂直な第2の方向には離散的である格子状の金属
体が、発振光の光路に配置されていることを特徴とす
る。
That is, the surface emitting semiconductor laser according to claim 1 of the present invention is a surface emitting semiconductor laser having a structure in which a resonator is provided in a direction perpendicular to the substrate surface, and an active layer is sandwiched by reflecting mirrors. A lattice-shaped metal body that is continuous in a predetermined first direction but is discrete in a second direction perpendicular to the first direction is arranged in the optical path of the oscillated light. And

【0008】また、請求項2の面発光半導体レーザは、
前記金属体が前記反射鏡の外部に配置されていることを
特徴とする。
The surface emitting semiconductor laser according to claim 2 is
It is characterized in that the metal body is arranged outside the reflecting mirror.

【0009】請求項3の面発光半導体レーザは、前記金
属体が前記反射鏡の内部に配置されていることを特徴と
する。
A surface emitting semiconductor laser according to a third aspect of the present invention is characterized in that the metal body is disposed inside the reflecting mirror.

【0010】請求項4の面発光半導体レーザは、前記金
属体が前記反射鏡と前記活性層との間に配置されている
ことを特徴とする。
A surface emitting semiconductor laser according to a fourth aspect is characterized in that the metal body is disposed between the reflecting mirror and the active layer.

【0011】請求項5の面発光半導体レーザは、前記各
構成において、金属体が格子状の金属薄膜であることを
特徴とする。
In the surface emitting semiconductor laser according to a fifth aspect of the present invention, in each of the above constitutions, the metal body is a lattice-shaped metal thin film.

【0012】請求項6の面発光半導体レーザは、請求項
1ないし4の構成において、金属体が所望の層上に溝を
配列してなる凹凸形状における凸部の頭頂部と凹部の低
部に堆積した金属薄膜であることを特徴とする。
According to a sixth aspect of the present invention, in the surface emitting semiconductor laser according to the first to fourth aspects, the top of the convex portion and the lower portion of the concave portion in the concavo-convex shape in which the metal body has grooves arranged on a desired layer are provided. It is characterized by being a deposited metal thin film.

【0013】請求項7の面発光半導体レーザは、請求項
5の構成において、格子状の金属薄膜の幅と間隔が、発
光波長程度かそれよりも小さいことを特徴とする。
A surface emitting semiconductor laser according to a seventh aspect of the present invention is characterized in that, in the structure according to the fifth aspect, the width and interval of the lattice-shaped metal thin film are about the emission wavelength or smaller.

【0014】そして、請求項8の面発光半導体レーザ
は、請求項6の構成において、溝の幅と深さおよび間隔
が、発光波長程度がそれよりも小さいことを特徴とす
る。
The surface emitting semiconductor laser of claim 8 is characterized in that, in the structure of claim 6, the width, depth and interval of the groove are smaller than the emission wavelength.

【0015】[0015]

【作用】本発明の面発光半導体レーザでは、前記したよ
うに、片側あるいは両側の反射鏡の内部、または反射鏡
と活性層の間、または反射鏡の外部に、発光波長程度あ
るいはそれよりも細い幅と間隔を持つ格子状金属体を有
している。そのため、格子状金属体の格子方向に電場を
持つ偏波は、吸収または反射される。一方、格子と垂直
方向に電場を持つ偏波は、吸収も反射もされない。つま
り、格子方向とその他の方向での反射率が異なるので、
格子状金属体の方向により偏波面が決定されることにな
る。
In the surface emitting semiconductor laser of the present invention, as described above, the emission wavelength is smaller than or equal to the emission wavelength inside the one or both reflecting mirrors, between the reflecting mirror and the active layer, or outside the reflecting mirror. It has a grid-like metal body with width and spacing. Therefore, polarized waves having an electric field in the lattice direction of the lattice-shaped metal body are absorbed or reflected. On the other hand, polarized waves having an electric field perpendicular to the lattice are neither absorbed nor reflected. In other words, since the reflectivity in the lattice direction is different from that in other directions,
The polarization plane is determined by the direction of the lattice-shaped metal body.

【0016】[0016]

【実施例】以下、本発明を図面に示す実施例に基づいて
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings.

【0017】(実施例1)図1(a)は、本発明による
面発光半導体レーザの第1の実施例を示す基本構造の断
面図である。同図において、符号18は単結晶InPの
半導体基板、19はこの半導体基板18上に形成された
単結晶InPと単結晶InGaAsPからなる半導体多
層膜反射鏡であり、その厚さは、屈折率をn、発振波長
をλで表せば、λ/(4・n)である。また、符号20
は発光波長のピークが1.55μmである単結晶InG
aAsPからなる発光層であり、21は発光層20にキ
ャリアを閉じ込めるための単結晶InPからなるクラッ
ド層、22は単結晶InGaAsPからなるコンタクト
層である。また、符号24は、電子ビーム露光装置によ
り形成した、金属膜の格子状パターンであり、25は屈
折率の異なる2種の誘電体からなる多層膜反射鏡であ
る。さらに、符号23はコンタクト層22にオーミック
電極を形成するための金属であり、27、28は電流を
狭窄するためp型およびn型InPからなる電流ブロッ
ク層である。
(Embodiment 1) FIG. 1A is a sectional view of a basic structure showing a first embodiment of a surface emitting semiconductor laser according to the present invention. In the figure, reference numeral 18 is a semiconductor substrate of single crystal InP, reference numeral 19 is a semiconductor multilayer film reflecting mirror made of single crystal InP and single crystal InGaAsP formed on the semiconductor substrate 18, and its thickness has a refractive index. If n and the oscillation wavelength are represented by λ, then λ / (4 · n). Also, reference numeral 20
Is a single crystal InG having an emission wavelength peak of 1.55 μm
Reference numeral 21 is a light emitting layer made of aAsP, 21 is a clad layer made of single crystal InP for confining carriers in the light emitting layer 20, and 22 is a contact layer made of single crystal InGaAsP. Further, reference numeral 24 is a grid pattern of a metal film formed by an electron beam exposure apparatus, and 25 is a multilayer film reflecting mirror made of two kinds of dielectrics having different refractive indexes. Further, reference numeral 23 is a metal for forming an ohmic electrode on the contact layer 22, and reference numerals 27 and 28 are current blocking layers made of p-type and n-type InP for confining the current.

【0018】図1(b)は、この素子の上面図であり、
この図では、誘電体多層膜25を除いて示してある。図
中、符号29は発光領域を示す。
FIG. 1B is a top view of this element,
In this figure, the dielectric multilayer film 25 is omitted. In the figure, reference numeral 29 indicates a light emitting region.

【0019】次に、図に示した素子の各部について詳細
に説明する。
Next, each part of the element shown in the figure will be described in detail.

【0020】n型InP基板18上に、禁制帯幅が波長
にして1.4μmに対応するn型InGaAsP(厚さ
0.112μm)とn型InP(厚さ0.122μm)
を34対積層して、半導体多層膜反射鏡19とする。次
いで、発光層20であるInGaAsPを、光学波長で
2波長分(約0.875μm)の厚さで積層するととも
に、p型InPクラッド層21を、光学波長の9/4倍
分(約1.1μm)の厚さで積層する。コンタクト層2
2は、禁制帯幅が波長にして1.4μmに対応するp型
InGaAsPコンタクト層とする。コンタクト層22
上の発光領域29を避けた部分に、Au,Zn,Ni等
の金属を使って、オーミック電極23を形成する。その
上に、幅100nm、間隔100nm、厚さ30nmの
金の格子状パターン24を、電子ビーム露光装置を用い
て形成する。そして、発光領域29の上部に誘電体膜S
iO2 とTiO2 を交互に積層して誘電体多層膜25を
形成するが、ここでは発振に必要な反射率以下の反射率
を与える6対分を積層する。コンタクト層に接触する最
下層が低屈折率のSiO2 であり、最上層はTiO2
なる。SiO2 の厚さは約0.26μm、TiO2 の厚
さは約0.16μmである。電流はp型コンタクト層2
2に形成されたオーミック電極23とn型基板に形成さ
れたオーミック電極26を通して流れる。この場合、格
子と垂直方向に電場を持つ光は、格子状金属膜24での
反射を受けないので、誘電体多層膜25で与えられる反
射率のみで反射される。これに対し、格子方向に電場を
持つ光は、そのうちのほとんどは金属膜24で反射され
る。反射されなかった光は、金属膜が薄いため、金属膜
による強い吸収を受けず透過していく。透過した光はそ
の上にある誘電体の多層膜25で反射される。従って、
格子方向に電場を持つ光は、それに垂直方向に電場を持
つ光より高い反射率を感じることになる。よって、この
方向での発振が生じることになる。
On the n-type InP substrate 18, n-type InGaAsP (thickness 0.112 μm) and n-type InP (thickness 0.122 μm) corresponding to a forbidden band width of 1.4 μm in wavelength.
34 pairs are laminated to form a semiconductor multilayer film reflecting mirror 19. Next, InGaAsP, which is the light emitting layer 20, is laminated with a thickness of two wavelengths (about 0.875 μm) at the optical wavelength, and the p-type InP clad layer 21 is formed for 9/4 times the optical wavelength (about 1. 1 μm) in thickness. Contact layer 2
2 is a p-type InGaAsP contact layer whose forbidden band width corresponds to 1.4 μm in wavelength. Contact layer 22
The ohmic electrode 23 is formed using a metal such as Au, Zn, or Ni in a portion avoiding the upper light emitting region 29. A gold grid pattern 24 having a width of 100 nm, an interval of 100 nm, and a thickness of 30 nm is formed thereon by using an electron beam exposure apparatus. Then, the dielectric film S is formed on the light emitting region 29.
The dielectric multilayer film 25 is formed by alternately laminating io 2 and TiO 2. Here, 6 pairs are laminated to give a reflectance equal to or lower than the reflectance required for oscillation. The bottom layer in contact with the contact layer is SiO 2 having a low refractive index, and the top layer is TiO 2 . The thickness of SiO 2 is about 0.26 μm, and the thickness of TiO 2 is about 0.16 μm. Current is p-type contact layer 2
2 and the ohmic electrode 26 formed on the n-type substrate. In this case, light having an electric field in the direction perpendicular to the lattice is not reflected by the lattice-shaped metal film 24, and thus is reflected only by the reflectance given by the dielectric multilayer film 25. On the other hand, most of the light having an electric field in the lattice direction is reflected by the metal film 24. Since the metal film is thin, the light that has not been reflected is transmitted without being strongly absorbed by the metal film. The transmitted light is reflected by the dielectric multilayer film 25 thereon. Therefore,
Light having an electric field in the lattice direction will have a higher reflectance than light having an electric field in the vertical direction. Therefore, oscillation occurs in this direction.

【0021】(実施例2)図2は、本発明の第2の実施
例を示す断面図である。上記の実施例と異なり、基板側
の反射鏡も格子状金属膜24と屈折率の異なる2種の誘
電体からなる多層膜反射鏡25にしたものである。この
場合、n型InPクラッド層30の厚さは光学波長の9
/4倍分(約1.1μm)であり、このクラッド層30
の下の層31は禁制帯幅が波長にして1.4μmに対応
するn型InGaAsP層である。この素子の構成で
は、InP基板18を選択性のあるエッチング液でエッ
チングしてInGaAsP層31の表面を露出し、その
上に幅100nm、間隔100nm、厚さ30nmの金
の格子状パターンの金属膜24を電子ビーム露光装置を
用いて形成する。その上にSiO2 とTiO2 からなる
誘電体多層膜25を6対積層する。InGaAsP層3
1に接触する方が低屈折率のSiO2 であり、最下層は
TiO2 になる。
(Embodiment 2) FIG. 2 is a sectional view showing a second embodiment of the present invention. Unlike the above embodiment, the reflecting mirror on the substrate side is also a multilayer film reflecting mirror 25 composed of the lattice-shaped metal film 24 and two kinds of dielectrics having different refractive indexes. In this case, the thickness of the n-type InP clad layer 30 is 9 optical wavelengths.
/ 4 times (about 1.1 μm), and this cladding layer 30
The lower layer 31 is an n-type InGaAsP layer whose forbidden band width corresponds to 1.4 μm in wavelength. In the structure of this element, the InP substrate 18 is etched with an etchant having a selectivity to expose the surface of the InGaAsP layer 31, and a metal film having a gold lattice pattern with a width of 100 nm, a distance of 100 nm, and a thickness of 30 nm is formed thereon. 24 is formed using an electron beam exposure apparatus. Six pairs of dielectric multilayer films 25 made of SiO 2 and TiO 2 are laminated thereon. InGaAsP layer 3
The one that is in contact with 1 is SiO 2 having a low refractive index, and the bottom layer is TiO 2 .

【0022】また、前記第1、第2の実施例において、
格子状金属膜24を幅400nm、間隔300nmのタ
ングステンの格子状パターンとし、その厚さを、電場の
振幅が1/e(eは自然対数の底)になる厚さ(表皮の
深さ)よりも厚い200nmとし、格子方向に電場を持
つ光がほとんど透過しないようにすると、格子の方向に
電場を持つ光は、大きな吸収損失を受け、反射率は大き
くならない。一方、格子と垂直方向の光は、格子状金属
膜24での吸収を受けないので、誘電体多層膜で与えら
れる大きな反射率で反射される。従って、この格子と垂
直な方向での発振が生じることになる。この場合、誘電
体多層膜は発振に必要な反射率を与えるようにしなけれ
ばならないのは言うまでもない。
In the first and second embodiments,
The lattice-like metal film 24 is formed into a tungsten lattice-like pattern having a width of 400 nm and an interval of 300 nm, and its thickness is determined from the thickness (skin depth) at which the electric field amplitude is 1 / e (e is the base of natural logarithm). If the thickness is 200 nm and the light having the electric field in the lattice direction is hardly transmitted, the light having the electric field in the lattice direction suffers a large absorption loss and the reflectance does not increase. On the other hand, light in the direction perpendicular to the lattice is not absorbed by the lattice-shaped metal film 24, and thus is reflected with a large reflectance provided by the dielectric multilayer film. Therefore, oscillation occurs in the direction perpendicular to this lattice. In this case, it goes without saying that the dielectric multi-layer film must be provided with the reflectance necessary for oscillation.

【0023】(実施例3)図3は、本発明の第3の実施
例を示す断面図である。n型InP基板18上に、禁制
帯幅が波長にして1.4μmに対応するn型InGaA
sP(厚さ0.112μm)とn型InP(厚さ0.1
22μm)とを34対積層して、半導体多層膜19(反
射鏡)を形成する。次いで、発光層20であるInGa
Asを光学波長で2波長分(約0.875μm)の厚さ
に形成する。さらに、その上に、p型InP(厚さ0.
122μm)と禁制帯幅が波長にして1.4μmに対応
するp型InGaAsP(厚さ0.112μm)とを2
5対積層して、半導体多層膜(反射鏡)32を形成す
る。この多層膜32の最終のp型InGaAsP層上の
発光領域を避けた部分に、Au、Zn、Ni等の金属を
使って、オーミック電極23を形成する。さらに、その
上に、幅100nm、間隔100nm、厚さ30nmの
金の格子状パターンを電子ビーム露光装置を用いて形成
する。
(Embodiment 3) FIG. 3 is a sectional view showing a third embodiment of the present invention. On the n-type InP substrate 18, an n-type InGaA having a forbidden band width of 1.4 μm in wavelength.
sP (thickness 0.112 μm) and n-type InP (thickness 0.1
22 μm) and 34 pairs are laminated to form a semiconductor multilayer film 19 (reflecting mirror). Next, InGa that is the light emitting layer 20
As is formed with a thickness of two wavelengths (about 0.875 μm) at the optical wavelength. Furthermore, p-type InP (thickness: 0.
122 μm) and p-type InGaAsP (thickness 0.112 μm) corresponding to a forbidden band width of 1.4 μm in wavelength.
A semiconductor multilayer film (reflecting mirror) 32 is formed by stacking five pairs. An ohmic electrode 23 is formed using a metal such as Au, Zn, or Ni in a portion of the multilayer film 32 that is located on the final p-type InGaAsP layer except for the light emitting region. Further, a gold grid pattern having a width of 100 nm, an interval of 100 nm, and a thickness of 30 nm is formed thereon by using an electron beam exposure apparatus.

【0024】この場合、格子と垂直方向に電場を持つ光
は、格子状金属膜での反射を受けないので、半導体多層
膜で与えられる反射率のみで反射される。この反射率の
値は発振には不十分であるため発振はしない。これに対
し、格子方向に電場を持つ光は、半導体多層膜による反
射と、金属膜による反射の両方を受ける。この反射率
は、発振のために必要とされる反射率を越えているた
め、発振が可能となる。従って、格子方向に電場を持つ
光のみが選択的に発振することになる。
In this case, light having an electric field in the direction perpendicular to the lattice is not reflected by the lattice-shaped metal film, and therefore is reflected only by the reflectance given by the semiconductor multilayer film. Since the value of this reflectance is insufficient for oscillation, oscillation does not occur. On the other hand, light having an electric field in the lattice direction is both reflected by the semiconductor multilayer film and reflected by the metal film. Since this reflectance exceeds the reflectance required for oscillation, oscillation becomes possible. Therefore, only light having an electric field in the lattice direction oscillates selectively.

【0025】上記実施例では、コンタクト層と反射鏡の
間あるいは反射鏡の外部に格子状金属膜を形成したが、
反射鏡の内部に格子状金属膜を形成しても良い。
In the above embodiment, the grid-like metal film is formed between the contact layer and the reflecting mirror or outside the reflecting mirror.
A grid-shaped metal film may be formed inside the reflecting mirror.

【0026】上記実施例1ないし3では、発光層が長波
長系InGaAsPのバルクであったが、他の材料系あ
るいは量子井戸構造、歪構造などでも適用できる。さら
に、上記実施例1ないし3では半導体による埋込み構造
で電流狭窄を行っているが、イオン注入等による電流狭
窄でも良いし、電流狭窄構造になっていなくても良い。
また、格子状金属膜としては金以外の銀やアルミニウム
等の高反射率を得ることのできる材料でも同様な効果が
期待できる。一方、タングステン以外のニッケル、白金
などの金属や合金等の吸収損失の多い材料を使っても、
偏波面の制御が可能である。また、格子状金属の格子の
幅と間隔は、波長に比べ十分細い場合が最も効果が大き
いが、波長程度にしても同様の効果が期待できる。
In the first to third embodiments, the light emitting layer is a long wavelength InGaAsP bulk, but other material systems, quantum well structures, strained structures, etc. are also applicable. Further, in the above-described first to third embodiments, the current confinement is performed by the embedded structure of the semiconductor, but the current confinement may be performed by ion implantation or the like, or the current confinement structure may not be formed.
A similar effect can be expected with a material that can obtain a high reflectance such as silver or aluminum other than gold as the lattice-shaped metal film. On the other hand, even if a material with high absorption loss such as nickel or platinum other than tungsten, metal such as platinum, or alloy is used,
It is possible to control the plane of polarization. Further, the width and the interval of the grid of the grid-shaped metal are most effective when the width and the spacing are sufficiently smaller than the wavelength, but the same effect can be expected even when the wavelength is about the wavelength.

【0027】(実施例4)図4(a)は、本発明による
面発光半導体レーザの第4の実施例を示す基本構造の断
面図である。同図において、符号18は単結晶InPの
半導体基板であり、19はこの半導体基板18上に形成
された単結晶InPと単結晶InGaAsPからなる半
導体多層膜反射鏡であり、その厚さは、屈折率をn、発
振波長をλで表すと、λ/(4・n)である。また、符
号20は発光波長のピークが1.55μmである単結晶
InPと単結晶InGaAsPからなる半導体多層膜反
射鏡である。符号22は発光領域の上部に凹凸のついた
InGaAsP結晶であり、23はオーミック電極を形
成するための金属であり、24は金属膜である。また、
符号27、28は電流を狭窄するためのp型およびn型
InPからなる電流ブロック層である。
(Embodiment 4) FIG. 4A is a sectional view of a basic structure showing a fourth embodiment of the surface emitting semiconductor laser according to the present invention. In the figure, reference numeral 18 is a semiconductor substrate of single crystal InP, 19 is a semiconductor multi-layered film reflecting mirror made of single crystal InP and single crystal InGaAsP formed on the semiconductor substrate 18, and its thickness is When the ratio is represented by n and the oscillation wavelength is represented by λ, it is λ / (4 · n). Reference numeral 20 is a semiconductor multilayer film reflecting mirror made of single crystal InP and single crystal InGaAsP having an emission wavelength peak of 1.55 μm. Reference numeral 22 is an InGaAsP crystal having irregularities on the top of the light emitting region, 23 is a metal for forming an ohmic electrode, and 24 is a metal film. Also,
Reference numerals 27 and 28 are current blocking layers made of p-type and n-type InP for confining the current.

【0028】次に、上記構成の素子の各部について詳細
に説明する。
Next, each part of the element having the above-mentioned structure will be described in detail.

【0029】n型InP基板18上に、禁制帯幅が波長
にして1.4μmに対応するn型InGaAsP(0.
112μm)とn型InP(0.122μm)を34対
積層する。次いで、活性層20の発光層であるInGa
AsPを光学波長で2波長分(約0.875μm)積層
し、さらにその上にp型InP(0.112μm)と禁
制帯幅が波長にして1.4μmに対応するP型InGa
AsP(0.112μm)とを20対積層する。InG
aAsP層22上の発光領域を避けた部分に、Au、Z
n、Ni等の金属を使って、オーミック電極23を形成
する。その後、電子ビーム露光装置を用いて幅100n
mレジストパターンを形成する。そして、硫酸系のエッ
チャントを用いてInGaAsP層をエッチングし、そ
の後、レジストを除去する。そして、全面に金を蒸着す
ることでレーザ構造が完成する。電流はオーミック電極
23とn型基板18に形成されたオーミック電極26を
通して流される。図4(b)は、前記InGaAsPコ
ンタクト層22上の凹凸の溝部分の拡大図である。凹凸
の溝の深さ方向に垂直な方向に電場を持つ光は、半導体
多層膜で与えられる反射率のみで反射される。これに対
し、凹凸の溝の深さ方向に電場を持つ光は、半導体多層
膜による反射と溝を形成している凹部上の金属膜による
反射、さらに、溝を形成している凸部上の金属膜による
反射を受ける。従って、溝の深さ方向に電場を持つ光
は、それに垂直方向に電場を持つ光より高い反射率を感
じることになる。よって、この方向での発振が生じるこ
とになる。
On the n-type InP substrate 18, the n-type InGaAsP (0 ..
112 μm) and 34 pairs of n-type InP (0.122 μm) are laminated. Then, InGa which is a light emitting layer of the active layer 20
AsP is laminated for two wavelengths (about 0.875 μm) at an optical wavelength, and p-type InP (0.112 μm) and P-type InGa corresponding to a forbidden band width of 1.4 μm are further stacked thereon.
20 pairs of AsP (0.112 μm) are laminated. InG
Au, Z is formed in a portion of the aAsP layer 22 which is not in the light emitting region.
The ohmic electrode 23 is formed using a metal such as n or Ni. Then, using an electron beam exposure apparatus, a width of 100n
An m resist pattern is formed. Then, the InGaAsP layer is etched using a sulfuric acid-based etchant, and then the resist is removed. Then, the laser structure is completed by depositing gold on the entire surface. A current is passed through the ohmic electrode 23 and the ohmic electrode 26 formed on the n-type substrate 18. FIG. 4B is an enlarged view of the groove portion of the unevenness on the InGaAsP contact layer 22. Light having an electric field in a direction perpendicular to the depth direction of the uneven groove is reflected only by the reflectance given by the semiconductor multilayer film. On the other hand, light having an electric field in the depth direction of the uneven groove is reflected by the semiconductor multilayer film, reflected by the metal film on the concave portion forming the groove, and further on the convex portion forming the groove. It is reflected by the metal film. Therefore, light having an electric field in the depth direction of the groove feels a higher reflectance than light having an electric field in the direction perpendicular to the groove. Therefore, oscillation occurs in this direction.

【0030】(実施例5)図5は、本発明の第5の実施
例を示すものであり、上記の実施例において、活性層2
0上部の反射鏡を、屈折率の異なる2種の誘電体からな
る多層膜反射鏡25にしたものである。この場合、p型
InPクラッド層21の厚さは、光学波長の9/4倍分
(約1.1μm)であり、このクラッド層21上の層2
2は禁制帯幅が波長にして1.4μmに対応するp型I
nGaAsP層(約0.3μm)である。発光領域を避
けた部分に、Au、Zn、Ni等の金属を使ってオーミ
ック電極23を形成し、全面にSiO2 とTiO2 から
なる誘電体多層膜25を6対積層する。InGaAsP
に接触する方が低屈折率のSiO2 であり、最終層はT
iO2 になる。この誘電体多層膜を発光領域の上部を覆
うように残し、かつオーミック電極が露出するようにフ
ッ素系のガスを用いてエッチングする。そして、発光領
域上に残った誘電体多層膜上に幅100nm、間隔10
0nmのレジストパターンを形成し、フッ素系のガスを
用いて表面のTiO2 膜をエッチングする。その後、レ
ジストを酸素プラズマ中で除去し、表面全体に金を30
nm蒸着する。
(Embodiment 5) FIG. 5 shows a fifth embodiment of the present invention. In the above embodiment, the active layer 2 is used.
The upper reflecting mirror is a multilayer film reflecting mirror 25 made of two kinds of dielectrics having different refractive indexes. In this case, the thickness of the p-type InP clad layer 21 is 9/4 times the optical wavelength (about 1.1 μm), and the layer 2 on the clad layer 21 is
2 is a p-type I with a forbidden band width of 1.4 μm
It is an nGaAsP layer (about 0.3 μm). An ohmic electrode 23 is formed using a metal such as Au, Zn, or Ni in a portion other than the light emitting region, and 6 pairs of dielectric multilayer films 25 made of SiO 2 and TiO 2 are laminated on the entire surface. InGaAsP
The lower layer is SiO 2 with a lower refractive index and the final layer is T
iO 2 . The dielectric multilayer film is left so as to cover the upper part of the light emitting region, and etching is performed using a fluorine-based gas so that the ohmic electrode is exposed. Then, a width of 100 nm and an interval of 10 are formed on the dielectric multilayer film remaining on the light emitting region.
A 0 nm resist pattern is formed, and the TiO 2 film on the surface is etched using a fluorine-based gas. After that, the resist is removed in oxygen plasma, and gold is deposited on the entire surface with 30
nm vapor deposition.

【0031】上記実施例4、5では、反射鏡の上部の層
に凹凸を形成し、この凹部底面と凸部上面の金属を堆積
させたが、反射鏡の内部に凹凸を形成して金属を堆積さ
せても良いし、あるいは、コンタクト層と反射鏡の間に
凹凸を形成して金属を堆積させても良い。
In Examples 4 and 5 above, the unevenness was formed on the upper layer of the reflecting mirror, and the metal on the bottom surface of the concave portion and the upper surface of the convex portion were deposited. However, the unevenness was formed inside the reflecting mirror to form the metal. It may be deposited, or unevenness may be formed between the contact layer and the reflecting mirror to deposit the metal.

【0032】上記実施例4、5では、発光層が長波長系
InGaAsPのバルクであったが、他の材料系あるい
は量子井戸構造、歪構造などでも適用できる。さらに、
上記実施例では半導体による埋込み構造で電流狭窄を行
っているが、イオン注入等による電流狭窄でも良いし、
電流狭窄構造になっていなくても良い。また、凹凸部に
堆積させる金属としては金以外の銀やアルミニウム等の
高反射率を得ることのできる材料でも同様な効果が期待
できる。
In the fourth and fifth embodiments, the light emitting layer is a bulk of long-wavelength InGaAsP, but other material systems, quantum well structures, strained structures, etc. are also applicable. further,
In the above-mentioned embodiment, the current confinement is performed by the embedded structure of the semiconductor, but the current confinement by ion implantation or the like is also possible.
The current constriction structure does not have to be formed. Further, as a metal to be deposited on the uneven portion, a material other than gold, such as silver or aluminum, which can obtain a high reflectance, can be expected to have the same effect.

【0033】凹凸の幅と間隔および深さは、発光波長に
比べ十分細い場合が最も効果が大きいが、発光波長程度
にしても同様の効果が期待できる。
The effect is greatest when the width, interval, and depth of the unevenness are sufficiently smaller than the emission wavelength, but the same effect can be expected even when the emission wavelength is set.

【0034】[0034]

【発明の効果】以上説明したように、本発明の面発光半
導体レーザは、片側あるいは両側の反射鏡の内部、また
は反射鏡と活性層の間、または反射鏡の外部に、格子状
金属体を有しているため、使用する金属体の性質によ
り、格子方向と平行あるいは垂直方向に偏波面が固定さ
れ、注入電流レベルを変えても同じ偏波面を維持する。
また、アレイ構造を形成しても全てが同じ偏波面で発振
する。
As described above, in the surface emitting semiconductor laser of the present invention, the lattice-shaped metal body is provided inside the reflecting mirror on one side or both sides, between the reflecting mirror and the active layer, or outside the reflecting mirror. Because of this, the polarization plane is fixed in the direction parallel or perpendicular to the lattice direction depending on the properties of the metal body used, and the same polarization plane is maintained even if the injection current level is changed.
Even if the array structure is formed, all oscillate in the same plane of polarization.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による面発光半導体レーザの第1の実施
例を示すもので、(a)は断面構造図、(b)は上面図
である。
1A and 1B show a first embodiment of a surface emitting semiconductor laser according to the present invention, wherein FIG. 1A is a sectional structural view and FIG. 1B is a top view.

【図2】本発明による面発光半導体レーザの第2の実施
例の断面構造図である。
FIG. 2 is a sectional structural view of a second embodiment of the surface emitting semiconductor laser according to the present invention.

【図3】本発明による面発光半導体レーザの第3の実施
例の断面構造図である。
FIG. 3 is a sectional structural view of a surface emitting semiconductor laser according to a third embodiment of the present invention.

【図4】本発明による面発光半導体レーザの第4の実施
例を示すものであり、(a)は断面構造図、(b)は
(a)の凹凸溝部分の拡大図である。
4A and 4B show a fourth embodiment of the surface emitting semiconductor laser according to the present invention, wherein FIG. 4A is a sectional structural view, and FIG. 4B is an enlarged view of an uneven groove portion in FIG. 4A.

【図5】本発明による面発光半導体レーザの第5の実施
例の断面構造図である。
FIG. 5 is a sectional structural view of a surface emitting semiconductor laser according to a fifth embodiment of the present invention.

【図6】従来の面発光半導体レーザの断面構造を示すも
ので、(a)は半導体多層膜を反射鏡として使用してい
る面発光半導体レーザの断面構造図、(b)は誘電体多
層膜を反射鏡として使用している面発光半導体レーザの
断面構造図、(c)は金属膜を反射鏡として使用してい
る面発光半導体レーザの断面構造図である。
6A and 6B show a cross-sectional structure of a conventional surface-emitting semiconductor laser, wherein FIG. 6A is a cross-sectional structural view of a surface-emitting semiconductor laser using a semiconductor multilayer film as a reflecting mirror, and FIG. 6B is a dielectric multilayer film. Is a sectional structure diagram of a surface emitting semiconductor laser using as a reflecting mirror, and FIG. 7C is a sectional structure diagram of a surface emitting semiconductor laser using a metal film as a reflecting mirror.

【符号の説明】[Explanation of symbols]

1 半導体多層膜 2 活性層 3 半導体多層膜 4 誘電体多層膜 5 コンタクト層 6 クラッド層 7 活性層 8 クラッド層 9 InGaAsP層 10 誘電体多層膜 11 金属膜 12 コンタクト層 13 クラッド層 14 活性層 15 クラッド層 16 InGaAsP層 17 金属膜 18 InP半導体基板 19 半導体多層膜 20 活性層 21 クラッド層 22 コンタクト層 23 オーミック電極 24 格子状金属 25 誘電体多層膜 26 オーミック電極 27 p−InP埋込み層 28 n−InP埋込み層 29 発光領域 30 クラッド層 31 InGaAsP層 32 半導体多層膜 1 semiconductor multilayer film 2 active layer 3 semiconductor multilayer film 4 dielectric multilayer film 5 contact layer 6 clad layer 7 active layer 8 clad layer 9 InGaAsP layer 10 dielectric multilayer film 11 metal film 12 contact layer 13 clad layer 14 active layer 15 clad Layer 16 InGaAsP Layer 17 Metal Film 18 InP Semiconductor Substrate 19 Semiconductor Multilayer Film 20 Active Layer 21 Cladding Layer 22 Contact Layer 23 Ohmic Electrode 24 Lattice Metal 25 Dielectric Multilayer Film 26 Ohmic Electrode 27 p-InP Buried Layer 28 n-InP Buried Layer 29 Light Emitting Area 30 Cladding Layer 31 InGaAsP Layer 32 Semiconductor Multilayer Film

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板面に対し垂直方向の共振器を有し、
活性層の上下を反射鏡で挟んだ構造の面発光半導体レー
ザにおいて、 所定の第1の方向には連続であるが、該第1の方向と垂
直な第2の方向には離散的である格子状の金属体が、発
振光の光路に配置されていることを特徴とする面発光半
導体レーザ。
1. A resonator having a vertical direction with respect to a substrate surface,
In a surface emitting semiconductor laser having a structure in which an upper and lower sides of an active layer are sandwiched by reflecting mirrors, a grating is continuous in a predetermined first direction but discrete in a second direction perpendicular to the first direction. A surface-emitting semiconductor laser, wherein the metal body is arranged in the optical path of oscillation light.
【請求項2】 前記金属体が前記反射鏡の外部に配置さ
れていることを特徴とする請求項1に記載の面発光半導
体レーザ。
2. The surface emitting semiconductor laser according to claim 1, wherein the metal body is arranged outside the reflecting mirror.
【請求項3】 前記金属体が前記反射鏡の内部に配置さ
れていることを特徴とする請求項1に記載の面発光半導
体レーザ。
3. The surface emitting semiconductor laser according to claim 1, wherein the metal body is arranged inside the reflecting mirror.
【請求項4】 前記金属体が前記反射鏡と前記活性層と
の間に配置されていることを特徴とする請求項1に記載
の面発光半導体レーザ。
4. The surface emitting semiconductor laser according to claim 1, wherein the metal body is arranged between the reflecting mirror and the active layer.
【請求項5】 前記金属体が格子状の金属薄膜であるこ
とを特徴とする請求項1ないし4のいずれかに記載の面
発光半導体レーザ。
5. The surface emitting semiconductor laser according to claim 1, wherein the metal body is a lattice-shaped metal thin film.
【請求項6】 前記金属体が所望の層上に溝を配列して
なる凹凸形状における凸部の頭頂部と凹部の底部に堆積
した金属薄膜であることを特徴とする請求項1ないし4
のいずれかに記載の面発光半導体レーザ。
6. The metal thin film, which is a metal thin film deposited on the top of a convex portion and the bottom of a concave portion in an uneven shape formed by arranging grooves on a desired layer.
5. The surface emitting semiconductor laser according to any one of 1.
【請求項7】 前記格子状の金属薄膜の幅と間隔が、発
光波長程度かそれよりも小さいことを特徴とする請求項
5に記載の面発光半導体レーザ。
7. The surface emitting semiconductor laser according to claim 5, wherein the width and the interval of the lattice-shaped metal thin film are about the emission wavelength or smaller.
【請求項8】 前記溝の幅と深さおよび間隔が、発光波
長程度がそれよりも小さいことを特徴とする請求項6に
記載の面発光半導体レーザ。
8. The surface emitting semiconductor laser according to claim 6, wherein the width, the depth, and the interval of the groove are smaller than the emission wavelength.
JP08477294A 1993-12-21 1994-04-22 Surface emitting semiconductor laser Expired - Fee Related JP3243772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08477294A JP3243772B2 (en) 1993-12-21 1994-04-22 Surface emitting semiconductor laser

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-322080 1993-12-21
JP32208093 1993-12-21
JP08477294A JP3243772B2 (en) 1993-12-21 1994-04-22 Surface emitting semiconductor laser

Publications (2)

Publication Number Publication Date
JPH07231138A true JPH07231138A (en) 1995-08-29
JP3243772B2 JP3243772B2 (en) 2002-01-07

Family

ID=26425760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08477294A Expired - Fee Related JP3243772B2 (en) 1993-12-21 1994-04-22 Surface emitting semiconductor laser

Country Status (1)

Country Link
JP (1) JP3243772B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446592B1 (en) * 1997-02-05 2004-11-16 삼성전자주식회사 Semiconductor laser diode and method for manufacturing thereof
JP2009117408A (en) * 2007-11-01 2009-05-28 Sony Corp Semiconductor light emitting device and its manufacturing method, and printing apparatus
WO2010000231A1 (en) * 2008-06-30 2010-01-07 Osram Opto Semiconductors Gmbh Surface-emitting semiconductor laser having a plurality of active zones
CN101888058A (en) * 2010-06-02 2010-11-17 中国科学院半导体研究所 Method for preparing vertical cavity surface emitting laser with stable polarized output
CN103887709A (en) * 2014-03-20 2014-06-25 中国科学院半导体研究所 Asymmetric metal grating and coating semiconductor multi-quantum-well waveguide laser
CN113872048A (en) * 2017-01-19 2021-12-31 欧司朗光电半导体有限公司 Semiconductor laser and method for producing such a semiconductor laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446592B1 (en) * 1997-02-05 2004-11-16 삼성전자주식회사 Semiconductor laser diode and method for manufacturing thereof
JP2009117408A (en) * 2007-11-01 2009-05-28 Sony Corp Semiconductor light emitting device and its manufacturing method, and printing apparatus
WO2010000231A1 (en) * 2008-06-30 2010-01-07 Osram Opto Semiconductors Gmbh Surface-emitting semiconductor laser having a plurality of active zones
CN101888058A (en) * 2010-06-02 2010-11-17 中国科学院半导体研究所 Method for preparing vertical cavity surface emitting laser with stable polarized output
CN103887709A (en) * 2014-03-20 2014-06-25 中国科学院半导体研究所 Asymmetric metal grating and coating semiconductor multi-quantum-well waveguide laser
CN113872048A (en) * 2017-01-19 2021-12-31 欧司朗光电半导体有限公司 Semiconductor laser and method for producing such a semiconductor laser

Also Published As

Publication number Publication date
JP3243772B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
JP4927411B2 (en) Two-dimensional photonic crystal surface emitting laser
US7697588B2 (en) Structure having photonic crystal and surface-emitting laser using the same
JP5177285B2 (en) Optical element and manufacturing method thereof
JP2618875B2 (en) Waveguide
JPH09172227A (en) Photoelectron quantum well device
JP5182362B2 (en) Optical element and manufacturing method thereof
JP2003273456A (en) Two-dimensional photonic crystal face emitting laser
US3996528A (en) Folded cavity injection laser
JP2008098379A (en) Two dimensional photonic crystalline surface emission laser and its manufacturing method
JP3243772B2 (en) Surface emitting semiconductor laser
JP5015641B2 (en) Two-dimensional photonic crystal surface emitting laser
JP3742317B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPH03190295A (en) Face light-emitting laser and manufacture thereof
JP3541539B2 (en) Surface emitting semiconductor laser
JPH0319292A (en) Semiconductor laser
JPH1027943A (en) Normal radiation semiconductor laser, method of fabricating the same, and method of varying wavelength
KR19980069797A (en) Distributed feedback semiconductor laser and manufacturing method thereof
JPH09129979A (en) Semiconductor laser device
JPS6257275A (en) Semiconductor laser array device
JPH065984A (en) Semiconductor laser and manufacture thereof
JPS63211784A (en) Quantum well type semiconductor laser
JPH0567838A (en) Surface emission laser
JPH04101486A (en) Surface emitting type semiconductor laser device provided with monitor
JPH04174584A (en) Surface emission laser and laser oscillating method using the same
JPS60211993A (en) Semiconductor laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees