JPS63193538A - Testing method for wafer of semiconductor element - Google Patents

Testing method for wafer of semiconductor element

Info

Publication number
JPS63193538A
JPS63193538A JP62024613A JP2461387A JPS63193538A JP S63193538 A JPS63193538 A JP S63193538A JP 62024613 A JP62024613 A JP 62024613A JP 2461387 A JP2461387 A JP 2461387A JP S63193538 A JPS63193538 A JP S63193538A
Authority
JP
Japan
Prior art keywords
probes
saturation voltage
pair
electrode
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62024613A
Other languages
Japanese (ja)
Inventor
Tsutomu Hashimoto
勉 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62024613A priority Critical patent/JPS63193538A/en
Publication of JPS63193538A publication Critical patent/JPS63193538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To measure a saturation voltage at 100 mA or more stably, by applying a required current to a pair of probes, and measuring the characteristic of the saturation voltage with another pair of probes. CONSTITUTION:Electrode lead-out terminals 7, 7', 8 and 8' are formed for an emitter electrode 4 and a collector electrode 6. A pair of probes 9 and 10 are contacted with the terminals 7 and 8, which are connected to the electrode 4 and the electrode 8. Another pair of probes 9' and 10' are contacted to the similar terminals 7 ' and 8'. A current is applied to the probes 9 and 10, and the characteristic of a saturation voltage is measured with the probes 9, and 10'. Then the effect of the contact resistances generated among the probes 9, 10, 9' and 10' and the terminals 7, 8, 7, and 8' is removed. Thus the saturation voltage of at 100 mA or more is measured stably.

Description

【発明の詳細な説明】 〈発明の目的〉 (産業上の利用分野) 本発明は集積回路ならびに個別半導体素子のウェーハテ
ストに係り、特に大電流駆動タイプの半導体装置に好適
するものである。
DETAILED DESCRIPTION OF THE INVENTION <Object of the Invention> (Industrial Application Field) The present invention relates to wafer testing of integrated circuits and individual semiconductor elements, and is particularly suitable for large current drive type semiconductor devices.

(従来の技術) 半導体装置の製造は、半導体装、結晶に回路もしくはデ
バイスを造込む前処理工程と、この各素子を必要な電子
機器に組込むのに適する構造とする後処理即ち組立工程
に大別され、この各工程終了時点で必要な測定を実施し
ており、前処理工程後のそ九ば通称ダイソータテストと
言われている。
(Prior Art) The manufacturing of semiconductor devices involves a pre-processing process in which circuits or devices are built into a semiconductor package or crystal, and a post-processing or assembly process in which each element is made into a structure suitable for being incorporated into the necessary electronic equipment. The necessary measurements are carried out at the end of each process, which is commonly known as the die sorter test after the pretreatment process.

このダイソータテストにはいわゆるプローブカードを利
用する方式が一般的であり、これを装着する設備として
プローバが広く販売され、生産現場で稼動しているのが
実情である。
This die sorter test generally uses a so-called probe card, and the reality is that probers are widely sold as equipment to which the probe cards are attached, and are in operation at production sites.

このプローブカードは被測定半導体素子の種類に応じて
交換するものの、その測定に当っては第3図及び第4図
に示すように、高融点金属通常はW製の針11を被測定
半導体素子12のエミッタ電極13ならびにコレクタ電
極14に形成する導電性金属製電極取出端子ts、 i
sに接触した状態で、電流を附勢しながら電圧を測定す
る方式を採用している。
Although this probe card is replaced depending on the type of semiconductor device to be measured, as shown in FIGS. Conductive metal electrode lead terminals ts and i formed on the emitter electrodes 13 and collector electrodes 14 of 12
A method is adopted in which voltage is measured while applying current while in contact with s.

一方、被測定半導体素子としては個別半導体素子や集積
回路(以後ICとする)が対象となり、このなかには1
00mA以上の飽和電圧を測定するトランジスタや、こ
のトランジスタをモノリシックに集積するバイポーラ型
IC素子もある。
On the other hand, the semiconductor devices to be measured include individual semiconductor devices and integrated circuits (hereinafter referred to as ICs).
There are also transistors that measure saturation voltages of 00 mA or more, and bipolar IC devices that monolithically integrate these transistors.

(発明が解決しようとする問題点) ところで、被測定半導体素子に設ける電極取出端子は導
電性を示すAQ、 AQ−5i、もしくはAQ−3i−
Cuを利用しており、これに接触するプローブ針の直径
もこの半導体素子に応じて取捨選択する。
(Problems to be Solved by the Invention) By the way, the electrode extraction terminal provided on the semiconductor device to be measured is AQ, AQ-5i, or AQ-3i- which exhibits conductivity.
Cu is used, and the diameter of the probe needle that comes into contact with Cu is also selected depending on the semiconductor element.

しかし、実際の測定は所定の電流を附勢しながら電圧即
ち電位差を測定するので、この電極取出端子とプローブ
針間の接触抵抗が第4図に示す測定回路に直列に附加さ
れることは否めない。
However, in actual measurement, the voltage, that is, the potential difference, is measured while applying a predetermined current, so it cannot be denied that the contact resistance between the electrode lead terminal and the probe needle is added in series to the measurement circuit shown in Figure 4. do not have.

前述のように、100mA以上の飽和電圧を測定する出
力トランジスタならびにこれを集積したICを前記プロ
ーブ針で測定すると、両者間の接触抵抗によって発生す
る熱でプローブ針表面が酸化し、その進行に応じてます
ます接触抵抗が増大する悪循環をもたらす。従ってその
測定開始直後数Ωを示したものが、その後数百Ωにも達
し又素子毎の測定値が大幅に変動し、安定した測定は極
めて困難な状態である。
As mentioned above, when an output transistor that measures a saturation voltage of 100 mA or more and an IC integrated with the same are measured with the probe needle, the surface of the probe needle is oxidized by the heat generated by the contact resistance between the two, and as the oxidation progresses, This results in a vicious cycle in which the contact resistance increases. Therefore, what initially showed several ohms after the start of the measurement reaches several hundred ohms, and the measured values for each element fluctuate significantly, making stable measurement extremely difficult.

このために、前述の組立工程によって外囲器をもつ半導
体装置の成品特性を保証するのに、ダイソータテスト(
今後ウェーハテストと記載する)段階では比較的安定し
た測定ができる数十mA程度の電流領域で飽和電圧を測
定し、成品における大電流領域飽和特性と相関をとって
保証している。
For this reason, die sorter tests (
At the stage (hereinafter referred to as wafer test), the saturation voltage is measured in a current range of about several tens of mA, where relatively stable measurements can be made, and is guaranteed by correlating it with the saturation characteristics in the large current range of the finished product.

しかし、この相関関係は半導体ウェーハ製造上の各種パ
ラメータによって大きく左右されるために、実質上保証
は困難にならざるを得ない。
However, since this correlation is greatly influenced by various parameters in semiconductor wafer manufacturing, it is practically difficult to guarantee it.

本発明は上記難点を克服する新規なウェーハテスト方法
を提供するもので、特にプローブテスト段階における大
電流領域の飽和電圧特性を安定して測定することによっ
て、成品である半導体装置の歩留りを向上することを目
的とする。
The present invention provides a novel wafer testing method that overcomes the above-mentioned difficulties, and improves the yield of finished semiconductor devices by stably measuring the saturation voltage characteristics in the large current region especially during the probe test stage. The purpose is to

〈発明の構成〉 (問題点を解決するための手段) この目的を達成するために、本発明では半導体素子の被
測定端子毎に設置する2個の電極取出端子のうち、1対
には電流を附勢し更に他の1対によって飽和電圧を測定
する手法を採用する。
<Structure of the Invention> (Means for Solving the Problems) In order to achieve this object, in the present invention, of the two electrode lead terminals installed for each terminal to be measured of the semiconductor element, one pair is connected to a current A method is adopted in which the saturation voltage is measured using the other pair.

(作 用) トランジスタ出力部に発生する飽和電圧特性は。(for production) What are the saturation voltage characteristics that occur in the transistor output section?

この出力部を構成するコレクタ部とエミッタ部間の電位
差であるので1両電極もしくはこれに電気的に接続する
導電性電極には夫々電極取出端子を2個づつ設置し、そ
の1対ならびに他の1対には別々のプローブ針を接触し
て飽和電圧特性を測定する。
Since there is a potential difference between the collector part and the emitter part that constitute this output part, two electrode extraction terminals are installed on each of the two electrodes or the conductive electrodes that are electrically connected to this, and one pair of them and the other Separate probe needles are brought into contact with one pair to measure the saturation voltage characteristics.

しかも、この一対には必要な電流を附勢し、他の一対で
は両者間の電位差即ち飽和電圧特性を測定しているので
、プローブ針と電極取出端子間に発生する接触抵抗によ
る影響を排除して、100+nA以上の飽和電圧を安定
して測定可能としたものである。
Moreover, since the necessary current is energized to this pair and the other pair measures the potential difference between them, that is, the saturation voltage characteristics, the influence of contact resistance generated between the probe needle and the electrode lead terminal is eliminated. This makes it possible to stably measure a saturation voltage of 100+nA or more.

(実施例) 第1図及び第2図により本発明に係る実施例を従来の技
術欄と重複する記載にも新番号をつけて詳述する。
(Example) An example according to the present invention will be described in detail with reference to FIGS. 1 and 2, with new numbers added to descriptions that overlap with those in the conventional technology column.

第1図には、測定する飽和電圧が10011IA以上の
トランジスタにおけるエミッタ、ベースならびにコレク
タのレイアウトを示す上面図、第2図はその測定回路図
を示している。
FIG. 1 is a top view showing the layout of the emitter, base, and collector of a transistor whose saturation voltage to be measured is 10011 IA or more, and FIG. 2 is a measurement circuit diagram thereof.

この第2図ではエミッタ接地型NPN トランジスタの
オープンコレクタ出力形式を示しており、このNPN 
トランジスタに本発明方法を適用する状態をレイアウト
と共に第1図に明らかにしている。
This figure 2 shows the open collector output format of a common emitter type NPN transistor.
The state in which the method of the present invention is applied to a transistor is shown in FIG. 1 together with the layout.

即ちエミッタ1、ベース2ならびにコレクタ3には常法
に従って電極4,5.6を設け、そのエミッタ電極4な
らびにコレクタ電極6には同様にAl2、Al2−5i
、もしくはAl2−5L−Cuのうちの一種類からなる
電極取出端子7.7’、 8.8’ を形成して、プロ
ーブ針9.9’、 10.10’の接触に備える。
That is, the emitter 1, base 2, and collector 3 are provided with electrodes 4, 5.6 according to the conventional method, and the emitter electrode 4 and collector electrode 6 are similarly made of Al2, Al2-5i.
Electrode extraction terminals 7.7' and 8.8' made of one type of aluminum or Al2-5L-Cu are formed to prepare for contact with probe needles 9.9' and 10.10'.

このプローブ針9〜10′は公知のプローブカードに固
着するもので、本発明では従来のプローブ針より多い数
4個を用意して、その1対をエミッタ電極4とコレクタ
ー電極6に接続する電極取出端子7,8ならびに他の1
対を同様な電極取出端子7’、 8’に接触して、1対
で電位差即ち100mA以上の飽和電圧を他の1対で電
流を附勢する。
These probe needles 9 to 10' are fixed to a known probe card, and in the present invention, four probe needles are prepared, which is more than the conventional probe needles, and one pair of probe needles is connected to the emitter electrode 4 and the collector electrode 6. Output terminals 7, 8 and other 1
The pair is brought into contact with similar electrode extraction terminals 7' and 8', and a potential difference, that is, a saturation voltage of 100 mA or more is applied to one pair, and a current is applied to the other pair.

この測定に当っては、プローブ針と必要な電流附勢用針
と実際の測定用針を別に設定しているので、このプロー
ブ針と電極取出端子間に発生する接触抵抗の影響を防止
できる。
In this measurement, since the probe needle, the necessary current energizing needle, and the actual measuring needle are set separately, it is possible to prevent the influence of contact resistance generated between the probe needle and the electrode lead terminal.

従って、半導体素子の組立工程によって完成する半導体
装置の試験と同じ条件の許で、100mA以上の飽和電
圧を安定した測定により検出可能となり、しかもこれが
ウェーハテストの段階で達成したものである。
Therefore, it is possible to stably measure and detect a saturation voltage of 100 mA or more under the same conditions as for testing semiconductor devices completed through the semiconductor element assembly process, and this was achieved at the wafer test stage.

〈発明の効果〉 このように本発明に係る半導体素子のウェーハテスト方
法では電位差測定用のプローブ針と電極取出端子間に発
生する接触抵抗が測定回路内に入るものの直流が流れな
いために電位差を発生せず純粋な半導体素子の飽和電圧
だけを測定可能として精度良く、シかも安定した結果が
得られる。
<Effects of the Invention> As described above, in the wafer testing method for semiconductor devices according to the present invention, although the contact resistance generated between the probe needle for measuring the potential difference and the electrode lead terminal enters the measurement circuit, the potential difference cannot be detected because no direct current flows. Since it is possible to measure only the saturation voltage of a pure semiconductor element without generation, highly accurate and stable results can be obtained.

従って飽和電圧特性が不充分なペレットをウェーハテス
ト段階で確実に排除して成品の歩留りを向上させること
ができるものである。
Therefore, it is possible to reliably eliminate pellets with insufficient saturation voltage characteristics at the wafer test stage, thereby improving the yield of finished products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のウェーハテストを示す上面図。 第2図はその副室回路図、第3図は従来のウェーハテス
トを示す上面図、第4図は従来テストに適用する回路図
である。
FIG. 1 is a top view showing the wafer test of the present invention. FIG. 2 is a circuit diagram of the sub-chamber, FIG. 3 is a top view showing a conventional wafer test, and FIG. 4 is a circuit diagram applied to the conventional test.

Claims (1)

【特許請求の範囲】[Claims] 半導体素子の被測定端子毎に設ける2個の電極取出し部
の1対に電流を附勢し、他の1対により飽和電圧を測定
することを特徴とする半導体素子のウェーハテスト方法
A wafer testing method for a semiconductor device, characterized in that a current is applied to one pair of two electrode lead-out portions provided for each terminal to be measured of the semiconductor device, and a saturation voltage is measured using the other pair.
JP62024613A 1987-02-06 1987-02-06 Testing method for wafer of semiconductor element Pending JPS63193538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62024613A JPS63193538A (en) 1987-02-06 1987-02-06 Testing method for wafer of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62024613A JPS63193538A (en) 1987-02-06 1987-02-06 Testing method for wafer of semiconductor element

Publications (1)

Publication Number Publication Date
JPS63193538A true JPS63193538A (en) 1988-08-10

Family

ID=12142998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62024613A Pending JPS63193538A (en) 1987-02-06 1987-02-06 Testing method for wafer of semiconductor element

Country Status (1)

Country Link
JP (1) JPS63193538A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199253A (en) * 2013-03-12 2014-10-23 グローバルウェーハズ・ジャパン株式会社 Saturation voltage estimation method and manufacturing method of silicon epitaxial wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199253A (en) * 2013-03-12 2014-10-23 グローバルウェーハズ・ジャパン株式会社 Saturation voltage estimation method and manufacturing method of silicon epitaxial wafer

Similar Documents

Publication Publication Date Title
JPH0394177A (en) Circuit for measuring resistance of test piece
US20210156902A1 (en) Semiconductor chip and circuit and method for electrically testing semiconductor chip
JP3277914B2 (en) Integrated circuit device having a process parameter measuring circuit
JPS63193538A (en) Testing method for wafer of semiconductor element
JP3475822B2 (en) Method for measuring on-resistance of power MOSFET, apparatus for measuring on-resistance of power MOSFET, and power MOSFET
JPH10274668A (en) Measuring method for detecting the short of winding of coil integrated on chip and integrated circuit structure employing the method
JP2657315B2 (en) Probe card
JPH0566732B2 (en)
JPH0480529B2 (en)
JPH02221880A (en) Measurement for electrical characteristic of semiconductor device
KR100313105B1 (en) Method for measuring contact resistance between liquid crystal display panel and drive device thereof
JPS6278842A (en) Inspection of probecard
JP2007123430A (en) Semiconductor wafer and semiconductor inspecting method
JP2005049314A (en) Probing test method and probe condition detector
TWI735915B (en) A wafer probe card integrated with a light source facing a device under test side and method of manufacturing
JPH0827307B2 (en) Printed wiring board test equipment
JPH03185744A (en) Semiconductor element
KR20010110157A (en) Monitoring resistor element and measuring method of relative preciseness of resistor elements
JPS5943733Y2 (en) semiconductor equipment
JPS618939A (en) Semiconductor device
JPH0121562Y2 (en)
JPH0541419A (en) Estimation method of test equipment
JPS58158939A (en) Measurement of semiconductor wafer chip
JPH01210874A (en) Inspecting method for semiconductor device
KR980012185A (en) Electrical test equipment for wafers