JPH02221880A - Measurement for electrical characteristic of semiconductor device - Google Patents

Measurement for electrical characteristic of semiconductor device

Info

Publication number
JPH02221880A
JPH02221880A JP4248889A JP4248889A JPH02221880A JP H02221880 A JPH02221880 A JP H02221880A JP 4248889 A JP4248889 A JP 4248889A JP 4248889 A JP4248889 A JP 4248889A JP H02221880 A JPH02221880 A JP H02221880A
Authority
JP
Japan
Prior art keywords
semiconductor device
probe
wafer
electrode
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4248889A
Other languages
Japanese (ja)
Inventor
Toshiaki Hikichi
敏彰 引地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4248889A priority Critical patent/JPH02221880A/en
Publication of JPH02221880A publication Critical patent/JPH02221880A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure electrical characteristics in a large current region even in a wafer state by supplying a current sufficient for making a contact resistance between a probe and an electrode small enough. CONSTITUTION:In a measuring method for electrical characteristics of a semiconductor device in the wafer state by using the wafer prober, the probe is brought to contact with a prescribed electrode on the semiconductor device in the first place. The current sufficient for making the contact resistance between the probe and the electrode small enough is supplied between the probe and the electrode. Next, the measurement for the electrical characteristics of the semiconductor device is performed by a tester connected to the wafer prober. Thus, a variance in measured values caused by the contact resistances is prevented efficiently, and the electrical characteristics in the large current region can be accurately measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は主に大電力用途に用いられる半導体装置のウ
ェハ状態においての電気的特性の測定方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of measuring electrical characteristics in a wafer state of a semiconductor device mainly used for high power applications.

〔従来の技術〕[Conventional technology]

電力用半導体装置においては、破壊などの動特性に影響
を与える、通常動作が行われる小電流領域での静特性は
熱論のこと、製品として保証する必要がある最大電流規
格近傍の大電流領域での静特性も重要な電気的特性であ
る。
In power semiconductor devices, the static characteristics in the small current range where normal operation occurs, which affects the dynamic characteristics such as breakdown, are thermal theory, and the static characteristics in the high current range near the maximum current specification that must be guaranteed as a product. The static properties of are also important electrical properties.

従来、半導体装置の大電流領域での静特性は、製品の製
造工程の後半段階であるアセンブリ工程のそれもかなり
後半の段階において測定されていた。このため、半導体
装置の大電流領域での静特性の不良(保証値を下回る等
)を検出できるのは、アセンブリ工程のかなり後半にな
ってしまう。したがって、大電流領域の静特性の不良検
出時には、既に半導体装置は半完成品になっており、か
なりの付加価値が付与されてしまっているため、不良検
出時点に至るまでの時間及びコストの損失は大きなもの
となる。
Conventionally, the static characteristics of a semiconductor device in a large current region have been measured at a fairly late stage of the assembly process, which is the latter stage of the product manufacturing process. For this reason, a defect in the static characteristics of a semiconductor device in a large current region (below a guaranteed value, etc.) can only be detected very late in the assembly process. Therefore, when a defect in static characteristics in a large current region is detected, the semiconductor device is already a semi-finished product and considerable added value has been added, so there is a loss of time and cost until the defect is detected. becomes big.

仮に、製造工程の前半段階であるウニハエ程で大電流領
域の静特性の不良を検出できたならば、不良検出時点に
至るまでの時間及びコストの損失は最小限に抑えること
ができる。
If defects in static characteristics in the large current region could be detected at the early stage of the manufacturing process, the loss of time and cost up to the point of defect detection could be minimized.

またウェハ状態で、正確に大電流領域の静特性の測定が
行えれば、ウェハの物理的位置と大電流領域の静特性と
の相関等の情報を得ることができるため、大電流領域で
の静特性改善を目的としたウニハエ程へのより的確なフ
ィードバックが可能になり、製品の品質の向上をもたら
す。
Furthermore, if the static characteristics in the large current region can be accurately measured in the wafer state, information such as the correlation between the physical position of the wafer and the static characteristics in the large current region can be obtained. It becomes possible to provide more accurate feedback to sea urchin flies for the purpose of improving static characteristics, resulting in improved product quality.

そこで、ウェハ状態における電力用半導体装置の大電流
領域での静特性の測定を実現すべく、今日まで様々なア
プローチがなされてきた。たとえば、ウェハテスタの大
電流対応への改良、プローブニードルの構造の改良、プ
ローブニードルとプローブカードとの接続方法の改善、
ブローブニドルからの電流の取り出し方法の改善、大電
流を流しても電圧のドロップの彩管のほとんどない特殊
なウェハステージの製作などである。これらのアプロー
チのほとんど全ては、ウェハ状態における大電流領域で
の静特性測定に不可欠なものであることがわかっている
Therefore, various approaches have been taken to date to realize the measurement of static characteristics of power semiconductor devices in a wafer state in a large current region. For example, improving wafer testers to support large currents, improving the structure of probe needles, improving the connection method between probe needles and probe cards,
These included improving the method of extracting current from the probe needle, and creating a special wafer stage with almost no voltage drop even when a large current was passed through it. Almost all of these approaches have been found to be essential for measuring static characteristics in the high current range in the wafer state.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記した個々の技術がほぼ確立されようとして
るにもかかわらず、未だウェハ状態における大電流領域
での静特性測定の技術は完成されていない。特に、同一
の半導体装置について静特性を複数回測った場合、各回
の測定値が異なる、いわゆる測定誤差が問題となってい
る。すなわち、測定値のバラツキを示す標準偏差をσと
して、±3σの測定値の平均値に対する割合を測定誤差
として求めると、これが±10〜±20%(許容節回±
5%)と大きいことが問題であった。
However, although the above-mentioned individual technologies are almost being established, the technology for measuring static characteristics in a large current region in a wafer state has not yet been completed. In particular, when the static characteristics of the same semiconductor device are measured multiple times, there is a problem of so-called measurement error, in which the measured values differ each time. In other words, if the standard deviation indicating the variation in measured values is σ, and the ratio of ±3σ to the average value of the measured values is calculated as the measurement error, this is ±10 to ±20% (acceptable speed ±
The problem was that it was large (5%).

この原因は、以下のように考えられる。アセンブリ処理
された電力用半導体装置は、半田付け、超音波ワイヤボ
ンドなどにより電気的にしっかりと電極に接続された外
部接続用端子より電気信号を取り出し、静特性の測定を
行うことが可能である。一方、これに対して、ウェハ状
態の電力用半導体装置では、上記した測定を行うことが
できず、ウエハプローバを用い、ウェハ状態の電力用半
導体装置をウェハステージ上に保持し、ウェハ表面の電
極をプローブニードル先端に接触させ、ウエハプローバ
に接続されたウェハテスタにより静特性の測定を行わな
ければならない。したがって、ウェハ表面の電極とプロ
ーブニードル問およびウェハ裏面とウェハステージ間の
接触部分が不安定であり、これらの接触部分の接触抵抗
が大きくなるため、測定誤差が生じてしまう。この傾向
は、大電流領域においてより顕著になる。特にウェハ表
面の電極とプローブニードル先端との間の接触抵抗は、
ウェハ表面とウェハステージとの間のそれより大きく、
測定誤差の主因となると考えられる。
The reason for this is thought to be as follows. It is possible to measure static characteristics of assembled power semiconductor devices by extracting electrical signals from external connection terminals that are firmly electrically connected to electrodes by soldering, ultrasonic wire bonding, etc. . On the other hand, with a power semiconductor device in a wafer state, it is not possible to perform the above-mentioned measurements, and a wafer prober is used to hold the power semiconductor device in a wafer stage on a wafer stage. The static characteristics must be measured using a wafer tester connected to a wafer prober by touching the tip of a probe needle. Therefore, the contact portions between the electrodes on the wafer surface and the probe needles and between the wafer back surface and the wafer stage are unstable, and the contact resistance of these contact portions increases, resulting in measurement errors. This tendency becomes more pronounced in the large current region. In particular, the contact resistance between the electrode on the wafer surface and the tip of the probe needle is
larger than that between the wafer surface and the wafer stage;
This is thought to be the main cause of measurement errors.

この発明は上記のような問題点を解決するためになされ
たもので、ウェハ状態においても正確に大電流領域での
電気的特性を測定することができる半導体装置の電気的
特性の測定方法を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and provides a method for measuring the electrical characteristics of a semiconductor device that can accurately measure the electrical characteristics in a large current region even in a wafer state. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

この発明にかかる半導体装置の電気的特性の測定方法は
、ウエハプローバを用いてウェハ状態の半導体装置の電
気的特性を測定する方法であり、プローブを前記半導体
装置の所定の電極に接触させるステップと、前記プロー
ブと前記電極間の接触抵抗を十分小さくするに足る電流
を、前記プローブと前記電極間に供給するステップと、
前記ウエハプローバに接続されたテスタにより、前記半
導体装置の電気的特性の測定を行うステップとを備えて
いる。
The method for measuring the electrical characteristics of a semiconductor device according to the present invention is a method for measuring the electrical characteristics of a semiconductor device in a wafer state using a wafer prober, and includes the step of bringing a probe into contact with a predetermined electrode of the semiconductor device. , supplying a current sufficient to sufficiently reduce the contact resistance between the probe and the electrode between the probe and the electrode;
and measuring electrical characteristics of the semiconductor device using a tester connected to the wafer prober.

〔作用〕[Effect]

この発明においては、プローブとこのプローブに接触し
た半導体装置の電極間の接触抵抗を十分小さくするに足
る電流を、前記プローブと電極間に供給した後、半導体
装置の電気的特性の測定を行うため、測定値が、10−
ブと電極間の接触抵抗に起因してばらつくことはない。
In this invention, after supplying a current sufficient to sufficiently reduce the contact resistance between the probe and the electrode of the semiconductor device that is in contact with the probe, the electrical characteristics of the semiconductor device are measured. , the measured value is 10-
There is no variation due to contact resistance between the tube and the electrode.

(実施例) 以下、この発明の一実施例であるウェハ状態の電力用ト
ランジスタの大電流領域での静特性の測定方法について
述べる。ウエハプローバを用いて、ウェハ状態の電力用
トランジスタにおける大電流領域での静特性測定を行う
にあたって、前述した装置側の改良、すなわち、ウエハ
プローバに接続されるウェハテスタの大電流対応への改
良、プローブニードルの構造の改良、プローブニードル
とプローブカードとの接続方法の改善、プローブニード
ルからの電流の取り出し方法の改善、大電流を流しても
電圧のドロップの彩管のほとんどない特殊なウェハステ
ージの製作などが行われていることが前提となっている
。これらの改良された装置を用い、ここでは最大規格電
流50Aの電力用トランジスタについて、電流増幅率h
FEの測定を行った。なお、ウエハプローバに接続され
た、電流増幅率hFE測定用のウェハテスタとして、カ
ーブトレーサーを使用している。
(Example) Hereinafter, a method for measuring static characteristics in a large current region of a power transistor in a wafer state, which is an example of the present invention, will be described. When using a wafer prober to measure the static characteristics of power transistors in the wafer state in the high current range, the above-mentioned improvements to the equipment, namely improvements to the wafer tester connected to the wafer prober to support large currents, and probes are required. Improvement of the needle structure, improvement of the connection method between the probe needle and probe card, improvement of the method of extracting current from the probe needle, and production of a special wafer stage with almost no voltage drop even when a large current is passed. It is assumed that such things have been done. Using these improved devices, we will calculate the current amplification factor h for a power transistor with a maximum specified current of 50A.
FE was measured. Note that a curve tracer is used as a wafer tester connected to a wafer prober for measuring the current amplification factor hFE.

第1表(第1A表〜第1D表)、第2表(第2A表〜第
2D表)は、各々ウェハ状態の異なる2つの電力用トラ
ンジスタa、bにおいて、プローブニードルの先端を電
力用トランジスタa、bの所定の電極に接触させた後、
1.2.3,5,7゜10.15,20,30.40.
50 (A)のコレクタN流Icを流した場合における
電力増巾率hFEの、異なる2つの方法■と方法■によ
る測定結果である。なお、この測定は各電力用トランジ
スタa、bにおいてそれぞれ3回ずつ行っており、第1
A表〜第1C表が電力用トランジスタa1第2A表〜第
2C表が電力用トランジスタbについての各3回の測定
結果である。
Table 1 (Table 1A to Table 1D) and Table 2 (Table 2A to Table 2D) show that in two power transistors a and b in different wafer states, the tip of the probe needle is connected to the power transistor. After contacting the predetermined electrodes a and b,
1.2.3,5,7゜10.15,20,30.40.
These are the measurement results of the power amplification factor hFE when N-flow Ic of 50 (A) is applied using two different methods (1) and (2). Note that this measurement was performed three times for each power transistor a and b, and the first
Table A to Table 1C are the results of three measurements for power transistor a1, and Tables 2A to 2C are for power transistor b.

方法1は、従来から行われている方法であり、1(A)
〜50 (A)まで段階的にコレクタ電流ICを上昇さ
せて電流増幅率hFEを測定している。
Method 1 is a conventional method, and 1(A)
The current amplification factor hFE is measured by increasing the collector current IC in steps up to ~50 (A).

一方、方法■は、本発明の一実施例の方法であり、まず
60Aのコレクタ電流I、を短期間流し、その後50(
A)〜1(A)まで段階的にコレクタ電流ICを下降さ
せて電流増幅率hFEを測定している。また、第1D表
、第2D表においてσは3回の測定結果(第1A表〜第
1C表、第2A表〜第2C表)のバラツキ具合を示す標
準偏差、±3σ(%)は3σの3回の測定結果の平均値
に対する割合(以下[誤差率1という。)を示している
On the other hand, method (2) is a method according to an embodiment of the present invention, in which a collector current I of 60 A is first applied for a short period of time, and then 50 A (
The current amplification factor hFE is measured by decreasing the collector current IC stepwise from A) to 1(A). In addition, in Tables 1D and 2D, σ is the standard deviation of the three measurement results (Tables 1A to 1C, Tables 2A to 2C), and ±3σ (%) is the standard deviation of 3σ. The ratio of the three measurement results to the average value (hereinafter referred to as error rate 1) is shown.

第1表、第2表より明らかなように、方法工の測定結果
は、バラツキも大きく、これに伴い誤差率(±3σ(%
))も大きい。特にコレクタ電流I  が15〜50(
A)の区間における誤差率は無視できない値になってい
る。
As is clear from Tables 1 and 2, there are large variations in the measurement results of the method, and along with this, the error rate (±3σ (%
)) is also large. Especially when the collector current I is 15 to 50 (
The error rate in section A) is a value that cannot be ignored.

一方、方法■の測定結果はバラツキも小さく、最大の誤
差率(±3σ(%))も、3.45%と許容範囲(15
%)に収まっている。 1、−°\、 (以下、余白) 第1A表 第2A表 第18表 第28表 第1C表 第2C表 第1D表 第2D表 第1図、第2図は各々第1表、第2表の測定結果をグラ
フ化した図である。同図において、11゜12は各々方
法1.I[にょる3回の測定結果の平均値を示している
。なお、11については測定結果の最大値と最小値の幅
も併せて表示しているがj!2についてはこの幅が小さ
いので表示していない。これらの図に示すように、方法
Iの測定結果の平均[1が方法Hの平均1i!f72よ
り、コレクタ電流■。の5〜50Aの区間において、若
干低目になっている。
On the other hand, the measurement results of method ① have small variations, and the maximum error rate (±3σ (%)) is 3.45%, which is within the allowable range (15
%). 1, -°\, (Hereinafter, blank space) Table 1A Table 2A Table 18 Table 28 Table 1C Table 2C Table 1D Table 2D Figures 1 and 2 are from Table 1 and 2, respectively. It is a figure which graphed the measurement result of a table. In the same figure, 11° and 12 are respectively method 1. The average value of three measurements is shown. Regarding 11, the width of the maximum and minimum values of the measurement results is also displayed, but j! 2 is not shown because its width is small. As shown in these figures, the average of the measurement results of method I [1 is the average of method H 1i! From f72, collector current ■. It is slightly lower in the 5-50A section.

上記したように、方法1.I間で測定結果の違いが生じ
た原因は、以下のように推測できる。前述したように、
電力用トランジスタa、bのウェハ表面の電極とプロー
ブニードルとの間には、接触抵抗(−例としてアルミ電
極の表面酸化等が考えられる)が介在している。この接
触抵抗の存在により、方法■の測定結果である電流増幅
率hFEは実際より低い値で、かつ測定ごとのバラツキ
が大きくなってしまう。
As mentioned above, method 1. The cause of the difference in measurement results between I can be inferred as follows. As previously mentioned,
Contact resistance (for example, surface oxidation of the aluminum electrode can be considered) exists between the electrodes on the wafer surface of the power transistors a and b and the probe needle. Due to the presence of this contact resistance, the current amplification factor hFE, which is the measurement result of method (2), is a lower value than the actual value, and the variation from measurement to measurement becomes large.

一方、方法■においては、最初に60Aのコレクタ電流
r、を流している。60Aのコレクタ電流ICは、ウェ
ハ表面の電極とプローブニードル間の接触抵抗を、測定
結果に影響を与えない程度にまで低下させてしまう作用
があると考えられる。
On the other hand, in method (2), a collector current r of 60 A is initially passed. It is thought that the collector current IC of 60 A has the effect of reducing the contact resistance between the electrode on the wafer surface and the probe needle to the extent that it does not affect the measurement results.

その理由の1つとしては、60A程度の大電流を流すこ
とにより、接触抵抗の1つと考えられているアルミ電極
の表面酸化膜が絶縁破壊される等が推測される。
One of the reasons for this is presumed to be that passing a large current of about 60 A causes dielectric breakdown of the surface oxide film of the aluminum electrode, which is considered to be one of the contact resistances.

つまり、方法■のように、−旦所定レベル(この実施例
では60A>以上の電流を流した後に、得た測定結果は
、ウェハ状態における半導体装置の大電流領域の電気的
特性であっても再現性の良い正確な値となるといえる。
In other words, as in method (2), the measurement results obtained after passing a current of a predetermined level (in this example, 60A> or higher) may be the electrical characteristics of the semiconductor device in the high current region in the wafer state. It can be said that this is an accurate value with good reproducibility.

言い換えれば、方法■のように、所定レベル以上の1!
流をウェハ表面の電極とプローブニードル間に流した後
、大電流領域での静特性を測定すれば、「ウェハ状態の
半導体装置であっても、正確に大電流領域での静特性を
測定することができる。
In other words, as in Method ■, 1!
If you measure the static characteristics in the high current region after passing a current between the electrode on the wafer surface and the probe needle, it is possible to accurately measure the static characteristics in the high current region even for semiconductor devices in the wafer state. be able to.

その結果、不良品検出が早期(ウニハエ程段階)で行え
、時間及びコストの損失も最小限に抑えることができる
。また、大電流領域での静特性改善のための、ウニハエ
程へのより的確なフィードバックが可能となり、より一
層製品の品質向上が図れる。
As a result, defective products can be detected at an early stage (at the sea urchin fly stage), and losses in time and cost can be minimized. In addition, it is possible to provide more accurate feedback to the sea urchin flies to improve static characteristics in the high current region, further improving product quality.

なお、この実施例(方法■)では、コレクタ電流I、を
6OA流した後、50〜1(A)と段階的に下降させて
いったが、最初に60Aのコレクタ電流■。を流した後
は、方法工のように1〜50(A)と段階的に上昇させ
測定してもよく、必須要件としては、実際の測定前にウ
ェハ表面の電極とプローブニードルIAlの接触抵抗を
十分小さくする程度の電流を、電極とプローブニードル
間に流せばよい。また、この発明による測定方法を、ウ
ェハテスタのテストプログラムに組込むことも可能であ
る。
In this example (method ①), after 6 OA of collector current I was allowed to flow, it was gradually lowered from 50 to 1 (A), and first, the collector current ① was 60 A. After flowing, the measurement may be carried out stepwise from 1 to 50 (A) as in the method.The essential requirement is to check the contact resistance between the electrode on the wafer surface and the probe needle IAl before the actual measurement. It is sufficient to flow a current that sufficiently reduces the current between the electrode and the probe needle. It is also possible to incorporate the measurement method according to the present invention into a test program of a wafer tester.

(発明の効果) 以上説明したように、この発明によれば、プローブとこ
のプローブに接触した半導体装置の電極間の接触抵抗を
十分小さくするに足る電流を、プローブと電極間に供給
した後、半導体装置の電気的特性の測定を行うため、測
定値が接触抵抗に起因してばらつくことが効果的に防止
され、ウェハ状態においても正確に大電流領域での電気
的特性を測定することができる効果がある。
(Effects of the Invention) As explained above, according to the present invention, after supplying sufficient current between the probe and the electrode to sufficiently reduce the contact resistance between the probe and the electrode of the semiconductor device that is in contact with the probe, Because it measures the electrical characteristics of semiconductor devices, it effectively prevents variations in measured values due to contact resistance, and enables accurate measurement of electrical characteristics in large current regions even in wafer state. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はこの発明の一実施例である半導体装
置の電気的特性の測定方法の効果を示すグラフである。 図において、11は従来の測定方法による測定結果、1
2はこの発明の一実施例の測定方法による測定結果であ
る なお、各図中同一符号は同一または相当部分を示ず。 代理人   大  岩  増  雄 第1図 第2図
FIGS. 1 and 2 are graphs showing the effects of the method for measuring the electrical characteristics of a semiconductor device, which is an embodiment of the present invention. In the figure, 11 is the measurement result by the conventional measurement method, 1
2 shows the measurement results according to the measurement method of one embodiment of the present invention. In each figure, the same reference numerals do not indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)ウエハプローバを用いてウェハ状態の半導体装置
の電気的特性を測定する方法であつて、プローブを前記
半導体装置の所定の電極に接触させるステップと、 前記プローブと前記電極間の接触抵抗を十分小さくする
に足る電流を、前記プローブと前記電極間に供給するス
テップと、 前記ウエハプローバに接続されたテスタにより、前記半
導体装置の電気的特性の測定を行うステップとを備えた
半導体装置の電気的特性の測定方法。
(1) A method for measuring the electrical characteristics of a semiconductor device in a wafer state using a wafer prober, the method comprising: bringing a probe into contact with a predetermined electrode of the semiconductor device; and measuring the contact resistance between the probe and the electrode. An electrical method for a semiconductor device comprising: supplying a current sufficient to reduce the current sufficiently between the probe and the electrode; and measuring electrical characteristics of the semiconductor device with a tester connected to the wafer prober. How to measure physical characteristics.
JP4248889A 1989-02-21 1989-02-21 Measurement for electrical characteristic of semiconductor device Pending JPH02221880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4248889A JPH02221880A (en) 1989-02-21 1989-02-21 Measurement for electrical characteristic of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4248889A JPH02221880A (en) 1989-02-21 1989-02-21 Measurement for electrical characteristic of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02221880A true JPH02221880A (en) 1990-09-04

Family

ID=12637447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4248889A Pending JPH02221880A (en) 1989-02-21 1989-02-21 Measurement for electrical characteristic of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02221880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174946A (en) * 2011-06-02 2011-09-08 Fuji Electric Co Ltd Testing method of semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174946A (en) * 2011-06-02 2011-09-08 Fuji Electric Co Ltd Testing method of semiconductor element

Similar Documents

Publication Publication Date Title
CN102187447A (en) Method for inspecting electrostatic chuck, and electrostatic chuck apparatus
JPH0394177A (en) Circuit for measuring resistance of test piece
US20210156902A1 (en) Semiconductor chip and circuit and method for electrically testing semiconductor chip
CN212410776U (en) Measuring device for contact resistance of wafer test probe
JPH06258384A (en) Current measuring apparatus for integrated-circuit testing and integrated circuit
JP2001249161A (en) Integrated circuit test method
JPH02221880A (en) Measurement for electrical characteristic of semiconductor device
JPH0245339B2 (en) HANDOTAISHUSEKIKAIROSOCHI
JPS63166242A (en) Needle pressure adjusting method in wafer prober
KR100313105B1 (en) Method for measuring contact resistance between liquid crystal display panel and drive device thereof
JPS63193538A (en) Testing method for wafer of semiconductor element
JPH0566732B2 (en)
WO2023000498A1 (en) Test method for connectivity of semiconductor structure and test system therefor
JPS61208840A (en) Detecting method for semiconductor chip
JP2007123430A (en) Semiconductor wafer and semiconductor inspecting method
JPH05312894A (en) Measuring method and device for transistor characteristic
JPH0541419A (en) Estimation method of test equipment
JPS6279374A (en) Inspecting device for insulator thin film
JPS5943733Y2 (en) semiconductor equipment
JPS5823590B2 (en) Sokutei Souchi
JPH04146644A (en) Semiconductor evaluation device and tddb testing method using same
JPH03255644A (en) Evaluation of reliability of insulating film
JP2005043053A (en) Probe inspection method
JP2004165611A (en) Semiconductor device, inspection apparatus thereof, inspecting method of the device, and manufacturing method of the device
JPH01210874A (en) Inspecting method for semiconductor device