JPS6319236B2 - - Google Patents

Info

Publication number
JPS6319236B2
JPS6319236B2 JP2701681A JP2701681A JPS6319236B2 JP S6319236 B2 JPS6319236 B2 JP S6319236B2 JP 2701681 A JP2701681 A JP 2701681A JP 2701681 A JP2701681 A JP 2701681A JP S6319236 B2 JPS6319236 B2 JP S6319236B2
Authority
JP
Japan
Prior art keywords
chlorine
cod
concentration
ammonia
chlorine injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2701681A
Other languages
Japanese (ja)
Other versions
JPS57144084A (en
Inventor
Juichi Kondo
Yukio Saito
Tetsuro Haga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2701681A priority Critical patent/JPS57144084A/en
Publication of JPS57144084A publication Critical patent/JPS57144084A/en
Publication of JPS6319236B2 publication Critical patent/JPS6319236B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は原水中の被酸化物濃度を測定し、消費
率を前もつて把握し、水質の急変に対処できる浄
水場の塩素注入制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a chlorine injection control method for a water purification plant that measures the concentration of oxidizable substances in raw water, grasps the consumption rate in advance, and can cope with sudden changes in water quality.

従来の塩素注入制御方法は、原水の塩素要求量
を手分析で求め、塩素を注入している。この方法
は、測定に時間と労力がかかり、原水水質の急変
に対処できない。これを解決するため紫外線を利
用する塩素要求量計を用いる方法がある。これ
は、食塩水(NaCl)を電気分解することにより
次亜塩素酸ナトリウム(NaOCl)を発生させる。
これを原水に注入して紫外線を照射し塩素の酸化
反応を促進させた後、残塩を測定する。電気量か
ら求められる発生した次亜塩素酸ナトリウムと残
塩の差から原水の塩素要求量を求め、これをもと
に塩素の流入量制御を行うものである。この方法
では、連続して塩素要求量を求めることができ
る。しかし、電流効果の変化による信頼性低減、
短時間で酸化反応を完了させることが困難、機器
のメンテナンスが複雑であるなどの欠点がある。
In the conventional chlorine injection control method, the chlorine demand of raw water is determined by manual analysis and chlorine is injected. This method requires time and effort for measurement and cannot cope with sudden changes in raw water quality. To solve this problem, there is a method using a chlorine demand meter that uses ultraviolet light. It generates sodium hypochlorite (NaOCl) by electrolyzing saline water (NaCl).
After injecting this into raw water and irradiating it with ultraviolet rays to accelerate the oxidation reaction of chlorine, the residual salt is measured. The amount of chlorine required for raw water is determined from the difference between the generated sodium hypochlorite and the residual salt determined from the amount of electricity, and the amount of chlorine inflow is controlled based on this. With this method, the amount of chlorine required can be determined continuously. However, reliability reduction due to changes in current effects,
There are disadvantages such as difficulty in completing the oxidation reaction in a short time and complicated equipment maintenance.

本発明の目的は、原水水質の変化に対処する信
頼性の高い塩素注入制御方法を提供することにあ
る。
An object of the present invention is to provide a highly reliable chlorine injection control method that copes with changes in raw water quality.

まず、本発明の基本的な考え方を説明する。 First, the basic idea of the present invention will be explained.

原水中のアンモニアとCODの塩素消費率を求
める。これによりアンモニアとCODの塩素消費
率が設定される。設定されたアンモニアとCOD
の塩素消費率と、原水のアンモニア濃度とCOD
濃度から、原水への塩素注入率を(1)式から求める
ものである。
Find the chlorine consumption rate of ammonia and COD in raw water. This sets the chlorine consumption rate for ammonia and COD. Set ammonia and COD
Chlorine consumption rate, raw water ammonia concentration and COD
From the concentration, the rate of chlorine injection into raw water is calculated from equation (1).

Y=a・N+b・C+R ………(1) Y:塩素注入率(ppm) a:アンモニアの塩素消費率 b:CODの塩素消費率 N:アンモニア濃度(ppm) C:COD濃度(ppm) R:酸塩目標値(ppm) 原水のアンモニアの塩素消費率a、CODの塩
素消費率bを求め、(1)式に設定する。さらに、原
水のアンモニア濃度、COD濃度の測定値を(1)式
に代入する。これにより、原水への塩素注入率を
求めることができるものである。
Y=a・N+b・C+R……(1) Y: Chlorine injection rate (ppm) a: Chlorine consumption rate of ammonia b: Chlorine consumption rate of COD N: Ammonia concentration (ppm) C: COD concentration (ppm) R : Acid acid target value (ppm) Find the chlorine consumption rate a of raw water for ammonia and the chlorine consumption rate b for COD, and set them in equation (1). Furthermore, the measured values of the ammonia concentration and COD concentration of the raw water are substituted into equation (1). This allows the rate of chlorine injection into raw water to be determined.

本発明者達は、上記のことを確認する実験を行
つた。
The present inventors conducted an experiment to confirm the above.

アンモニア濃度、COD濃度を設定した試料水
に塩素を注入し、塩素消費量を測定した。第1図
にアンモニアの塩素消費量の測定結果を示し、第
2図にCODの塩素消費量の測定結果を示す。図
より、アンモニアの塩素消費率は8.0で、CODの
塩素消費率は0.6であつた。これらの値を(1)式に
組み込み塩素注入率を設定した。そして、実際の
河川水のアンモニア濃度とCOD濃度を測定し、
設定した塩素注入式に代入し、塩素注入式より塩
素注入率を求め塩素注入を行つた結果、塩素消費
量は(1)式を用いた計算値1.47ppmに対し、実験値
1.57ppmとほぼ一致した。
Chlorine was injected into sample water with ammonia and COD concentrations set, and the amount of chlorine consumed was measured. Figure 1 shows the measurement results of the chlorine consumption of ammonia, and Figure 2 shows the measurement results of the chlorine consumption of COD. From the figure, the chlorine consumption rate of ammonia was 8.0, and the chlorine consumption rate of COD was 0.6. These values were incorporated into equation (1) to set the chlorine injection rate. Then, we measured the ammonia concentration and COD concentration of actual river water,
As a result of substituting the chlorine injection rate into the set chlorine injection formula and performing chlorine injection, the chlorine consumption amount was 1.47 ppm calculated using formula (1), but the experimental value was
It was almost the same as 1.57ppm.

このように、アンモニアとCODの塩素消費率
と濃度をもとに(1)式から正確な塩素注入率を求め
ることができ、アンモニアとCODの濃度を連続
測定すれば、水質の急変に対して迅速に塩素注入
率を最適にできる。
In this way, an accurate chlorine injection rate can be determined from equation (1) based on the chlorine consumption rate and concentration of ammonia and COD, and if the concentrations of ammonia and COD are continuously measured, it can be used to prevent sudden changes in water quality. Chlorine injection rate can be quickly optimized.

アンモニア濃度はアンモニア電極を用いて測定
可能である。COD濃度は紫外線測定可能である。
第3図にCODと紫外線吸光度の関係を示す。こ
の図から、CODと紫外線吸光度の相関係数は
0.972となり、紫外線測定器で測定可能であるこ
とを示すものである。
Ammonia concentration can be measured using an ammonia electrode. COD concentration can be measured by ultraviolet light.
Figure 3 shows the relationship between COD and ultraviolet absorbance. From this figure, the correlation coefficient between COD and UV absorbance is
The value is 0.972, indicating that it can be measured with an ultraviolet measuring device.

以下、本発明の一実施例を第4図に基づき説明
する。
Hereinafter, one embodiment of the present invention will be described based on FIG. 4.

着水井1に流入する原水をサンプリングパイプ
5を介して採水ポンプ(図示せず)により採水
し、アンモニア濃度計6、COD濃度計7に送る。
その結果、アンモニア濃度N、COD濃度Cが測
定される。これらの値は、塩素注入率演算器8に
入力される。塩素注入率演算器8では、すでに設
定されたアンモニアの塩素消費率a、CODの塩
素消費率bの値を組み込んだ(1)式の塩素注入式と
アンモニア濃度N、COD濃度Cの測定値から、
塩素注入率Yを演算し出力する。混和池2から流
出する塩素処理された水をサンプリングパイプ5
を介して採水ポンプ(図示せず)により採水し、
残塩計9に送る。その結果、残塩RCLが測定さ
れる。残塩偏差演算器10では残塩RCLを残塩
目標値RCL0の偏差ΔRCLを演算し出力する。判
定器11では偏差ΔRCLが一定の許容値ΔRCL1
を越えた時だけ偏差ΔRCLを出力する。塩素注入
率補正演算器12では、塩素注入率演算器8で演
算された塩素注入率Yと偏差ΔRCLから補正塩素
注入率Y1を演算し出力する。補正塩素注入率Y1
と原水流量計4で測定した原水流入量Fから塩素
注入量演算器13では原水へ注入する塩素注入率
FYを演算し出力する。塩素注入機14では、塩
素注入量演算器13の出力信号、塩素注入量FY
をもとに塩素を注入する。
Raw water flowing into the receiving well 1 is sampled by a water sampling pump (not shown) through a sampling pipe 5 and sent to an ammonia concentration meter 6 and a COD concentration meter 7.
As a result, ammonia concentration N and COD concentration C are measured. These values are input to the chlorine injection rate calculator 8. The chlorine injection rate calculator 8 uses the chlorine injection formula of equation (1) that incorporates the values of the ammonia chlorine consumption rate a and the COD chlorine consumption rate b that have already been set, and the measured values of the ammonia concentration N and COD concentration C. ,
Calculate and output the chlorine injection rate Y. Sampling pipe 5 collects chlorinated water flowing out from mixing pond 2
Collect water with a water sampling pump (not shown) through the
Send to residual salt meter 9. As a result, the residual salt RCL is measured. The residual salt deviation calculator 10 calculates and outputs the residual salt RCL as a deviation ΔRCL from the residual salt target value RCL 0 . In the judgment device 11, the deviation ΔRCL is a constant tolerance value ΔRCL 1
The deviation ΔRCL is output only when it exceeds the value. The chlorine injection rate correction calculator 12 calculates and outputs a corrected chlorine injection rate Y1 from the chlorine injection rate Y calculated by the chlorine injection rate calculator 8 and the deviation ΔRCL. Corrected chlorine injection rate Y 1
Based on the raw water inflow rate F measured by the raw water flow meter 4, the chlorine injection amount calculator 13 calculates the chlorine injection rate to be injected into the raw water.
Calculate and output FY. In the chlorine injection machine 14, the output signal of the chlorine injection amount calculator 13, the chlorine injection amount FY
Inject chlorine based on.

以上説明したように、本発明は原水中のアンモ
ニアとCODの濃度を連続測定し、この測定値を
もとに塩素注入率を求め、塩素注入量を制御する
もので、下記の効果をを奏し得る。
As explained above, the present invention continuously measures the concentration of ammonia and COD in raw water, determines the chlorine injection rate based on the measured values, and controls the amount of chlorine injection, and has the following effects. obtain.

(1) アンモニアとCODの濃度を連続測定し、各
値をもとに塩素注入率が変化するため、水質の
急変時にも制御が可能である。
(1) Since the concentration of ammonia and COD is continuously measured and the chlorine injection rate changes based on each value, control is possible even when water quality suddenly changes.

(2) アンモニアとCODの濃度から、塩素注入率
を設定し最適な塩素注入量を求めることができ
る。それに伴ない、塩素注入量に無駄がなく経
済的である。
(2) The optimum chlorine injection rate can be determined from the ammonia and COD concentrations by setting the chlorine injection rate. Accordingly, there is no waste in the amount of chlorine injection, making it economical.

(3) アンモニアとCODの塩素消費率を設定する
ことにより塩素注入式を作成することができ、
どの河川にも適用可能である。
(3) A chlorine injection formula can be created by setting the chlorine consumption rate of ammonia and COD.
Applicable to any river.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアンモニア濃度と塩素消費量の関係を
示す特性図、第2図はCOD濃度と塩素消費量の
関係を示す特性図、第3図はCOD濃度と紫外線
吸光度の関係を示す特性図、第4図は本発明の一
実施例を示すブロツク図である。 1……着水井、2……混和池、3……フロツク
形成池、4……原水流量計、5……サンプリング
パイプ、6……アンモニア濃度計、7……COD
濃度計、8……塩素注入率演算器、9……残塩
計、10……残塩偏差演算器、11……判定器、
12……塩素注入率補正演算器、13……塩素注
入量演算器、14……塩素注入機。
Figure 1 is a characteristic diagram showing the relationship between ammonia concentration and chlorine consumption, Figure 2 is a characteristic diagram showing the relationship between COD concentration and chlorine consumption, Figure 3 is a characteristic diagram showing the relationship between COD concentration and ultraviolet absorbance, FIG. 4 is a block diagram showing one embodiment of the present invention. 1...Water landing well, 2...Mixing pond, 3...Flot formation pond, 4...Raw water flow meter, 5...Sampling pipe, 6...Ammonia concentration meter, 7...COD
Concentration meter, 8... Chlorine injection rate calculator, 9... Residual salt meter, 10... Residual salt deviation calculator, 11... Judgment device,
12... Chlorine injection rate correction calculator, 13... Chlorine injection amount calculator, 14... Chlorine injection machine.

Claims (1)

【特許請求の範囲】[Claims] 1 取水した原水に塩素を注入し、浄化過程にお
ける任意地点の残留塩素が所定値となるようにす
る浄水場において、前記原水のアンモニア濃度と
COD濃度を検出し、このアンモニア濃度とCOD
濃度によつて塩素注入率を求め前記任意地点の残
留塩素が所定値となるように塩素を注入するよう
にしたことを特徴とする浄水場の塩素注入制御方
法。
1 At a water treatment plant where chlorine is injected into the raw water taken and the residual chlorine at any point during the purification process reaches a predetermined value, the ammonia concentration of the raw water is
Detects the COD concentration, and this ammonia concentration and COD
A chlorine injection control method for a water purification plant, characterized in that the chlorine injection rate is calculated based on the concentration and chlorine is injected so that the residual chlorine at the arbitrary point becomes a predetermined value.
JP2701681A 1981-02-27 1981-02-27 Control method for chlorine injection in water purifying plant Granted JPS57144084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2701681A JPS57144084A (en) 1981-02-27 1981-02-27 Control method for chlorine injection in water purifying plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2701681A JPS57144084A (en) 1981-02-27 1981-02-27 Control method for chlorine injection in water purifying plant

Publications (2)

Publication Number Publication Date
JPS57144084A JPS57144084A (en) 1982-09-06
JPS6319236B2 true JPS6319236B2 (en) 1988-04-21

Family

ID=12209289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2701681A Granted JPS57144084A (en) 1981-02-27 1981-02-27 Control method for chlorine injection in water purifying plant

Country Status (1)

Country Link
JP (1) JPS57144084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11610467B2 (en) 2020-10-08 2023-03-21 Ecolab Usa Inc. System and technique for detecting cleaning chemical usage to control cleaning efficacy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077065B2 (en) * 2007-05-30 2012-11-21 Jfeスチール株式会社 Continuous treatment apparatus and continuous treatment method for waste water containing COD component
JP5412834B2 (en) * 2009-01-06 2014-02-12 栗田工業株式会社 Ultrapure water production method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11610467B2 (en) 2020-10-08 2023-03-21 Ecolab Usa Inc. System and technique for detecting cleaning chemical usage to control cleaning efficacy

Also Published As

Publication number Publication date
JPS57144084A (en) 1982-09-06

Similar Documents

Publication Publication Date Title
US5348664A (en) Process for disinfecting water by controlling oxidation/reduction potential
CA2534040C (en) Methods and systems for improved dosing of a chemical treatment, such as chlorine dioxide, into a fluid stream, such as a wastewater stream
US11278880B2 (en) Water softening device and method of operating a water softening device
WO2002038507A1 (en) Method and apparatus for maintaining the water in a swimming pool in a safe state
US8920653B2 (en) Desalination apparatus and desalination method
JPS6319236B2 (en)
CN102057270B (en) Method and device for measuring purity of ultrapure water
JP5843921B2 (en) Desalination apparatus and desalination method
JPH0615278A (en) Control of injection amount of slaked lime in treatment of fluorine-containing waste water and fluorine component removing apparatus
KR101334693B1 (en) Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same
JP2836838B2 (en) Control method of adding amount of oxidizing agent or reducing agent
JP3150182B2 (en) Method for controlling injection amount of sodium carbonate in softening treatment of calcium-containing treated water of fluorine-containing wastewater and fluorine removing device
JP5077065B2 (en) Continuous treatment apparatus and continuous treatment method for waste water containing COD component
US4968436A (en) Method for the treatment of sewage containing nitrites
JP2983305B2 (en) Chlorine injection control device
JPS6319237B2 (en)
JPS5888091A (en) Method for controlling injection of chlorine in water purification plant
JP3053482B2 (en) Method for controlling injection amount of aluminum compound in treatment of wastewater containing fluorine and aluminum and fluorine removing device
JPH0679284A (en) Pre/middle chlorination dosage controller for purification plant
JP2006023148A (en) Chlorine demand amount measuring instrument, water quality control system, chlorine demand amount measuring method and water quality control method
JP2000246259A (en) Water treatment apparatus
JPS56166997A (en) Control method for sludge-digesting vessel
JP2000288585A (en) Injection control method of sodium carbonate and calcium ion-containing water treatment equipment using the same
Denis et al. Continuous determination of residual chlorite in water
JP4358037B2 (en) Water treatment equipment