JPS6319237B2 - - Google Patents

Info

Publication number
JPS6319237B2
JPS6319237B2 JP9087081A JP9087081A JPS6319237B2 JP S6319237 B2 JPS6319237 B2 JP S6319237B2 JP 9087081 A JP9087081 A JP 9087081A JP 9087081 A JP9087081 A JP 9087081A JP S6319237 B2 JPS6319237 B2 JP S6319237B2
Authority
JP
Japan
Prior art keywords
chlorine
residual salt
raw water
residual
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9087081A
Other languages
Japanese (ja)
Other versions
JPS57207588A (en
Inventor
Tetsuro Haga
Yukio Saito
Juichi Kondo
Norihisa Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP9087081A priority Critical patent/JPS57207588A/en
Publication of JPS57207588A publication Critical patent/JPS57207588A/en
Publication of JPS6319237B2 publication Critical patent/JPS6319237B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

【発明の詳細な説明】 本発明は浄水場の塩素注入制御法の改良に係
り、更に詳しくは、処理水中の残留塩素濃度を目
標値に維持するに好適な塩素注入制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved chlorine injection control method for water purification plants, and more particularly to a chlorine injection control method suitable for maintaining the residual chlorine concentration in treated water at a target value.

浄水場においては、取水した原水中の有機物の
除去、または細菌等の除去、更には、鉄、マンガ
ン等の除去を目的として塩素注入処理が行われて
いる。そして、塩素注入後の処理水中に所定濃度
の塩素を残留させることによつて処理水質の安全
確保がなされている。
At water purification plants, chlorine injection treatment is performed for the purpose of removing organic matter, bacteria, etc., and further removing iron, manganese, etc. in raw water taken from the water. The safety of the quality of the treated water is ensured by allowing a predetermined concentration of chlorine to remain in the treated water after chlorine injection.

ところで、この塩素注入処理を良好に行なうた
めには、処理対象とする原水流量及び原水水質に
対応して適切に塩素の注入量を制御することが必
要である。一般に、塩素注入量の制御は、塩素と
被酸化物との反応が略終了する時点での沈殿池出
口、または過池出口での処理水中の残留塩素濃
度(以下、単に残塩と称する。)が所定値になる
ように制御される。更に詳述すれば、原水の塩素
要求量及び残塩の目標値等を加算して基準塩素注
入率を設定し、原水流量に応じた塩素注入量で塩
素を注入する。そして、塩素注入後、沈殿池出口
(または、過池出口)の処理水中の残塩を測定
し、その測定値と測定点における残塩の目標値と
の偏差に従つて塩素注入率を補正する方法が採ら
れている。しかしながら、塩素注入点から残塩測
定点までの滞留時間が2〜4時間程度あるため、
塩素注入率を補正してからその結果が判明するま
で滞留時間分の遅れが生じる。従つて、このよう
な方法においては、原水水質の変動等によつて塩
素の消費量が変化すると、目標地点での残塩も変
化し、目標残塩から大きく外れることになる。目
標値を上回る残塩となるカルキ臭の強い水が需要
家に提供されるばかりでなく、薬品消費量が多く
なり不経済となる。一方、残塩が目標値を下回る
と、細菌等が賦活する可能性が強くなり、処理水
質の安全性の確保が不充分となる。
By the way, in order to perform this chlorine injection treatment satisfactorily, it is necessary to appropriately control the amount of chlorine injection in accordance with the raw water flow rate and raw water quality to be treated. Generally, the amount of chlorine injection is controlled by controlling the residual chlorine concentration (hereinafter simply referred to as residual salt) in the treated water at the outlet of the settling tank or at the outlet of the filter tank at the time when the reaction between chlorine and the oxidized substance is almost completed. is controlled so that it becomes a predetermined value. More specifically, the standard chlorine injection rate is set by adding the chlorine demand amount of raw water, the target value of residual salt, etc., and chlorine is injected at a chlorine injection amount according to the raw water flow rate. After chlorine injection, the residual salt in the treated water at the settling tank outlet (or filter pond outlet) is measured, and the chlorine injection rate is corrected according to the deviation between the measured value and the target value of residual salt at the measurement point. method is being adopted. However, since the residence time from the chlorine injection point to the residual salt measurement point is about 2 to 4 hours,
There is a delay of residence time after correcting the chlorine injection rate until the result is known. Therefore, in such a method, if the amount of chlorine consumed changes due to changes in raw water quality, etc., the residual salt at the target point will also change, resulting in a significant deviation from the target residual salt. Not only is water with a strong chlorine odor with residual salt exceeding the target value provided to consumers, but also the amount of chemicals consumed increases, making it uneconomical. On the other hand, if the residual salt falls below the target value, there is a strong possibility that bacteria etc. will be activated, making it insufficient to ensure the safety of the treated water quality.

本発明は前記した不具合に鑑みてなされたもの
で、その目的とするところは、処理水中の残塩を
目標値に精度良く維持できる浄水場の塩素注入制
御方法を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a chlorine injection control method for a water purification plant that can maintain the residual salt in treated water at a target value with high accuracy.

まず、本発明の基本的な考え方を説明する。 First, the basic idea of the present invention will be explained.

滞留時間、所謂、時間遅れの問題を解消するに
は、塩素注入を行つてからできるだけ早い時期、
例えば薬品混和池の出口等で残塩を検出し、検出
地点での目標値との偏差に従つて塩素注入率を補
正するようにすればよい。ところで、被酸化物に
よる塩素消費特性は第1図に示すような傾向を示
す。塩素と被酸化物との酸化反応が終了するまで
約30分から60分程度の時間を要し、その後残塩が
一定となる。薬品混和池の出口、またはそれより
も前の地点で残塩を測定しても、滞留時間が短い
ためにまだ塩素と被酸化物との反応が進行中の段
階であり、安定した残塩とならない。このような
ことから、時間遅れの不具合を解消するため、早
期に残塩を検出して、そこでの目標値に対する偏
差に従つて塩素注入率を補正しても、偏差に不確
定な要素があるため精度の高い補正を成し得な
い。結局、単に残塩の検出を塩素注入後に早くす
るだけでは制御の不安定化を招く原因となる。
To solve the problem of residence time, so-called time lag, as soon as possible after chlorine injection,
For example, residual salt may be detected at the outlet of a chemical mixing pond, and the chlorine injection rate may be corrected according to the deviation from the target value at the detection point. By the way, the chlorine consumption characteristics by oxidizable substances exhibit a tendency as shown in FIG. It takes approximately 30 to 60 minutes for the oxidation reaction between chlorine and the oxidized substance to complete, after which the amount of residual salt becomes constant. Even if the residual salt is measured at the outlet of the chemical mixing pond or at a point earlier than that, the reaction between chlorine and oxidized substances is still in progress due to the short residence time, and the residual salt is not stable. No. For this reason, even if residual salt is detected early and the chlorine injection rate is corrected according to the deviation from the target value in order to eliminate the time delay problem, there is an element of uncertainty in the deviation. Therefore, highly accurate correction cannot be achieved. After all, simply detecting residual salt earlier after chlorine injection will cause control to become unstable.

本発明者達は、前述の不具合に鑑み、幾つかの
実験を行ない、かつ検討を重ねた結果、塩素を注
入してから残塩が一定となるまでの被酸化物と塩
素の反応は塩素注入時点での原水PHによつて左右
されることを見い出した。すなわち、第2図に実
験結果を示すように、原水PHが変わると被酸化物
と塩素との反応変度が変わり、同じ塩素注入率で
あつても、反応が進行中の段階では残塩が大きく
異なる。塩素注入率と残塩との関係から塩素消費
率を求めると、第3図に示すように、所定のPHを
ピークにして塩素消費率が低下することがわか
る。これは、被酸化物と塩素との反応に最適PHが
存在することを意味し、最適PHから外れると反応
が遅くなる傾向にある。従つて、第4図に示す如
く、接触時間(滞留時間)Toの転点で残塩を検
出し、そこでの残塩目標値Kpと比較しても原水
水質の変化によつてPHがPHwからPHvまたはPHx
と変わると、そのとき残塩も変わるので、目標値
Kpとの偏差(±ΔRCL)は不正確なものとなる。
In view of the above-mentioned problems, the inventors of the present invention conducted several experiments and as a result of repeated studies, they found that the reaction between the oxidized substance and chlorine after the injection of chlorine until the residual salt becomes constant is We found that it depends on the PH of the raw water at the time. In other words, as shown in the experimental results in Figure 2, when the pH of the raw water changes, the degree of reaction between the oxidized material and chlorine changes, and even if the chlorine injection rate remains the same, residual salt remains at the stage where the reaction is in progress. to differ greatly. When the chlorine consumption rate is determined from the relationship between the chlorine injection rate and the residual salt, as shown in FIG. 3, it is found that the chlorine consumption rate peaks at a predetermined pH and then decreases. This means that there is an optimum pH for the reaction between the oxidized substance and chlorine, and when the pH deviates from the optimum pH, the reaction tends to slow down. Therefore, as shown in Figure 4, even if residual salt is detected at the turning point of the contact time (residence time) T o and compared with the target residual salt value K p at that point, the PH will not change due to changes in raw water quality. PHw to PHv or PHx
If it changes, the residual salt will also change, so the target value
The deviation (±ΔRCL) from K p will be inaccurate.

本発明は上述の検討に基づき、残塩の目標値を
PHによつて補正して、補正された目標値と残塩と
の偏差によつて塩素注入率を補正するようにした
ことにある。本発明は、このようにすることによ
つて早期に残塩を検出する際の不具合を解消し、
これによつて時間遅れが短縮できるようにしたも
のである。
The present invention is based on the above-mentioned study, and the target value of residual salt is
The chlorine injection rate is corrected based on the deviation between the corrected target value and the residual salt after correction based on the pH. By doing so, the present invention solves the problem of early detection of residual salt,
This makes it possible to shorten the time delay.

以下、本発明の一実施例について説明するに、
前述した構成物と同一のものは同符号を用いる。
An embodiment of the present invention will be described below.
The same reference numerals are used for the same components as those described above.

第6図は浄水場の処理プロセスフローで、1は
着水井、2は薬品混和池で、この混和池では、
PAC等の凝集剤(表示せず)が注入され、撹拌
機3によつて原水との混和が実施される。なお、
必要に応じて、凝集剤注入前アルカリ剤が注入さ
れる。4はフロツク形成池で、薬品混和池2から
のフロツク(図示せず)を含んだ凝集水が流入す
る。そして、ここで、フロキユレータ5によつて
緩速撹拌が行われる。6は沈殿池でフロツクが沈
降分離される。7は過池である。1〜7は一般
的な浄水場の処理プロセスを構成している。8は
サンプリングポンプで、このポンプ8によつてサ
ンプリングされた原水RWは塩素要求量計9に送
られる。塩素要求量計9は原水RWの塩素要求量
K2を測定し注入率演算回路10に入力する。尚、
塩素要求量K2は手分析等によつて求めて与えて
もよい。注入率演算回路10には沈殿池6の出口
または過池7出口等における残塩の目標値K1
も入力され、基本塩素注入率CLを求める。11
は加算回路で、基本塩素注入率CLと後述する補
正値ΔRCLを入力し塩素注入率DCLを求め、乗算
回路12に加える。乗算回路12は流量計13で
測定された原水流量Fと塩素注入率DCLを乗算
し乗算器塩素注入量FDCLを求める。14は塩素
注入機で、簡略化して図示されているが、塩素注
入量FDCLに応じて塩素を原水PWに注入する。
なお、この実施例では着水井1の中に注入してい
るが、着水井1の前後でもよいことは勿論であつ
て、凝集剤及びアルカリ剤注入前であればよい。
Figure 6 shows the treatment process flow of a water treatment plant, where 1 is the receiving well, 2 is the chemical mixing pond, and in this mixing pond,
A flocculant (not shown) such as PAC is injected and mixed with the raw water by the stirrer 3. In addition,
If necessary, an alkaline agent is injected before the flocculant is injected. 4 is a flocculation pond into which flocculated water containing flocs (not shown) from the chemical mixing pond 2 flows. At this point, the flocculator 5 performs slow stirring. 6 is a sedimentation tank where the flocs are sedimented and separated. 7 is Kagaike. 1 to 7 constitute the treatment process of a general water purification plant. 8 is a sampling pump, and raw water RW sampled by this pump 8 is sent to a chlorine demand meter 9. Chlorine demand meter 9 is the chlorine demand of raw water RW
K 2 is measured and input to the injection rate calculation circuit 10. still,
The chlorine requirement K 2 may be determined and given by manual analysis or the like. The injection rate calculation circuit 10 stores a target value K 1 of residual salt at the outlet of the settling tank 6 or the outlet of the filter tank 7, etc.
is also input to calculate the basic chlorine injection rate CL. 11
is an adder circuit which inputs the basic chlorine injection rate CL and a correction value ΔRCL to be described later to obtain the chlorine injection rate DCL, which is added to the multiplier circuit 12. The multiplier circuit 12 multiplies the raw water flow rate F measured by the flow meter 13 by the chlorine injection rate DCL to obtain the multiplier chlorine injection amount FDCL. Reference numeral 14 denotes a chlorine injection machine, which is shown in a simplified manner, but injects chlorine into the raw water PW according to the chlorine injection amount FDCL.
In this embodiment, the water is injected into the landing well 1, but it goes without saying that the water may be poured before or after the water landing well 1, as long as it is before the flocculant and the alkaline agent are injected.

15はサンプリングポンプで、塩素が注入され
た後の処理水をサンプリングする。処理水をサン
プリングする地点は薬品混和池2の出口に限るこ
とはなく、塩素注入後であればよく、例えば薬品
混和池2の入口でもよい。16は残塩を測定する
残留塩素濃度計(以下、単に残塩計と称する。)
で、サンプリングポンプ15でサンプルされた処
理水が導かれる。残塩計16は塩素を注入した後
の処理水中の残塩RCLを測定する。残塩計16
で測定された処理水中の残塩RCLは比較回路2
0に入力される。
15 is a sampling pump that samples the treated water after chlorine has been injected. The point at which the treated water is sampled is not limited to the outlet of the chemical mixing pond 2, and may be any point after chlorine has been injected, for example, the inlet of the chemical mixing pond 2. 16 is a residual chlorine concentration meter that measures residual salt (hereinafter simply referred to as a residual salt meter).
Then, the treated water sampled by the sampling pump 15 is introduced. The residual salt meter 16 measures the residual salt RCL in the treated water after chlorine is injected. Residual salt total 16
The residual salt RCL in the treated water measured in Comparison circuit 2
It is input to 0.

17はPH計で、サンプリングポンプ8によつて
原水RWが導かれ、原水のPHを測定する。PH計で
測定された原水PHは消費率演算回路18に入力さ
れる。この消費率演算回路18には残塩RCL測
定点までの滞留時間Toが入力される。滞留時間
Toは塩素を注入してから残塩RCLを測定するま
での時間で、更に詳細には塩素注入点から処理水
のサンプリング地点に至る時間とサンプリング地
点から残塩計16に至るまでの時間である。消費
率演算回路18は時間To前の原水PHと滞留時間
Toに基づき塩素消費率CCLを求める。第6図は
消費率演算回路18の一例を示すもので、測定さ
れた原水PHとそのときの滞留時間Toとに対応し
て塩素消費率CCLを演算する。たとえば、滞留
時間Toで、PHが7.5であれば塩素消費率特性曲線
CLCとの交点から塩素消費率CCLは50%となる。
第6図に示した塩素消費率特性曲線、予めジヤー
テスト(水質テスト)等によつて求め、それを入
力とすればよい。塩素消費率特性曲線の一例は第
3図に示される。これは、本発明者達がジヤージ
テストによつて求めた塩素消費率特性曲線であ
る。19は残塩指令演算回路で、消費率演算回路
18で求められた塩素消費率CCLとTo時間前の
塩素注入率DCLTが入力され、次式(1)に従つて、
塩素指令値K3を求める。
Reference numeral 17 denotes a PH meter, into which the raw water RW is introduced by the sampling pump 8, and measures the PH of the raw water. The raw water PH measured by the PH meter is input to the consumption rate calculation circuit 18. The residence time T o up to the residual salt RCL measurement point is input to the consumption rate calculation circuit 18 . Residence time
T o is the time from injecting chlorine to measuring the residual salt RCL, and more specifically, the time from the chlorine injection point to the sampling point of the treated water, and the time from the sampling point to the residual salt meter 16. be. The consumption rate calculation circuit 18 calculates the raw water PH and residence time before time T o
Calculate the chlorine consumption rate CCL based on T o . FIG. 6 shows an example of the consumption rate calculation circuit 18, which calculates the chlorine consumption rate CCL in accordance with the measured raw water PH and the residence time T o at that time. For example, if the residence time T o is PH 7.5, the chlorine consumption rate characteristic curve
From the intersection with CLC, the chlorine consumption rate CCL becomes 50%.
The chlorine consumption rate characteristic curve shown in FIG. 6 may be obtained in advance by a jar test (water quality test), etc., and used as input. An example of a chlorine consumption rate characteristic curve is shown in FIG. This is a chlorine consumption rate characteristic curve determined by the present inventors through a jersey test. Reference numeral 19 denotes a residual salt command calculation circuit, into which the chlorine consumption rate CCL obtained by the consumption rate calculation circuit 18 and the chlorine injection rate DCLT before T o time are input, and according to the following equation (1),
Find the chlorine command value K3 .

K3=DCLT−(DCLT×CCL) ……(1) 残塩指令演算回路19で求められた残塩指令値
K3は比較回路20に加えられる。比較回路20
は残塩指令値K3と残塩計16からの残塩実際値
RCLとを図示の極性で比較し、その偏差ΔRCLを
出力する。この偏差ΔRCLは加算回路11に入力
されて、塩素注入率CLを補正する。
K 3 =DCLT−(DCLT×CCL) ……(1) Residual salt command value obtained by the residual salt command calculation circuit 19
K 3 is applied to comparator circuit 20. Comparison circuit 20
is the residual salt command value K3 and the actual residual salt value from the residual salt meter 16
RCL is compared with the polarity shown in the figure, and the deviation ΔRCL is output. This deviation ΔRCL is input to the addition circuit 11 to correct the chlorine injection rate CL.

以上のようにして塩素注入制御を行なうのであ
るが、原水水質が変動してPHが変化すると被酸化
物と塩素の反応速度が異なるため、塩素注入後の
残塩の値も異なつてくる。このため、残塩RCL
の指令値K0を従来の如く固定したものとすると、
第4図に示す如くPHの変化によつて残塩RCLと
目標値Kpとの偏差ΔRCLが不正確な値となつて
しまう。ところで、本発明においては塩素を注入
した時点のPHから塩素消費率を求め、その時点の
塩素注入率と塩素消費率の関係から塩素注入後の
残塩の指令値K3を求めるようにしている。すな
わち、PHによつて塩素注入後の残塩が変るのを考
慮して残塩の指令値K3を設定し、PHに対応した
指令値K3としている。このため、原水水質が変
動して、PHが変化し被酸化物と塩素との反応速度
が変つても、そのときのPHに対応した指令値K3
を与えているので、検出した残塩RCLとそのと
きの指令値K3との偏差ΔRCLは正確なものとな
る。
Chlorine injection is controlled as described above, but if the raw water quality fluctuates and the pH changes, the reaction rate between the oxidized material and chlorine will differ, so the value of residual salt after chlorine injection will also differ. For this reason, the residual salt RCL
Assuming that the command value K 0 of is fixed as before,
As shown in FIG. 4, the deviation ΔRCL between the residual salt RCL and the target value K p becomes an inaccurate value due to a change in PH. By the way, in the present invention, the chlorine consumption rate is determined from the pH at the time of chlorine injection, and the command value K 3 of residual salt after chlorine injection is determined from the relationship between the chlorine injection rate and the chlorine consumption rate at that time. . That is, the command value K3 for residual salt is set taking into consideration that the residual salt after chlorine injection changes depending on the pH, and is set as the command value K3 corresponding to the pH. Therefore, even if the raw water quality fluctuates, the PH changes, and the reaction rate between oxidized substances and chlorine changes, the command value K 3 corresponding to the PH at that time changes.
Therefore, the deviation ΔRCL between the detected residual salt RCL and the command value K3 at that time is accurate.

従つて、本発明によれば、早期に残塩を検出し
て、それに基づいて塩素注入率を補正できるよう
になるので、時間遅れを短縮でき、より一層精度
の高い塩素注入制御ができる。
Therefore, according to the present invention, residual salt can be detected early and the chlorine injection rate can be corrected based on it, so that time delays can be shortened and chlorine injection control can be performed with even higher precision.

尚、上述の実施例においては、原水PHに対応し
て残塩の指令値を補正しているが、凝集剤及びア
ルカリ剤が注入される場合は、塩素注入後のPHが
更に変化する。従つて、各種薬品が注入された後
の着水井水または混和池水のPHを測定して、その
PHに対応して残塩指令値を補正するようにしても
よいのは勿論である。
In the above-described embodiment, the command value of residual salt is corrected in accordance with the raw water PH, but when a flocculant and an alkaline agent are injected, the PH after chlorine injection changes further. Therefore, the PH of landing well water or mixing pond water after various chemicals are injected is measured and its PH is determined.
Of course, the residual salt command value may be corrected in accordance with the pH.

また、原水水質によつて塩素要求量を求めるよ
うにしているが固定の目標値を与えるものであつ
ても同様な効果を奏し得るのは明らかであろう。
Further, although the amount of chlorine required is determined based on the quality of raw water, it is clear that the same effect can be achieved even if a fixed target value is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は残留塩素の特性図、第2図は塩素消費
の特性図、第3図は塩素消費率の特性図、第4図
は残留塩素とPHの関係を示す特性図、第5図は本
発明の一実施例を示すブロツク図、第6図は、第
5図の部分詳細図である。 1……着水井、2……薬品混和池、10……加
算器、11……演算器、13……流量計、16…
…残塩計、17……PH計、18……消費率演算回
路、19……残塩指令演算回路、20……比較回
路。
Figure 1 is a characteristic diagram of residual chlorine, Figure 2 is a characteristic diagram of chlorine consumption, Figure 3 is a characteristic diagram of chlorine consumption rate, Figure 4 is a characteristic diagram showing the relationship between residual chlorine and PH, and Figure 5 is a characteristic diagram of chlorine consumption. FIG. 6, a block diagram showing one embodiment of the present invention, is a partially detailed view of FIG. 5. 1... Water landing well, 2... Chemical mixing pond, 10... Adder, 11... Arithmetic unit, 13... Flow meter, 16...
...Residual salt meter, 17...PH meter, 18...Consumption rate calculation circuit, 19...Residual salt command calculation circuit, 20...Comparison circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 原水に塩素を注入した処理水中の残留塩素濃
度を前記原水中の被酸化物と塩素の反応過程の任
意地点で検出し、この検出地点における残留塩素
濃度が目標値となるように塩素を注入するものに
おいて、前記原水のPHに応じて前記残留塩素濃度
の目標値を修正し、残留塩素濃度実際値と残留塩
素濃度の修正目標値との偏差に応じて前記原水へ
注入する塩素の注入率を補正することを特徴とす
る浄水場の塩素注入制御方法。
1 Detect the residual chlorine concentration in the treated water by injecting chlorine into the raw water at any point in the reaction process between the oxidizable substance and chlorine in the raw water, and inject chlorine so that the residual chlorine concentration at this detection point becomes the target value. The target value of the residual chlorine concentration is corrected according to the pH of the raw water, and the injection rate of chlorine to be injected into the raw water according to the deviation between the actual value of the residual chlorine concentration and the corrected target value of the residual chlorine concentration. A method for controlling chlorine injection in a water treatment plant, characterized by correcting.
JP9087081A 1981-06-15 1981-06-15 Controlling method for chlorination in water purification plant Granted JPS57207588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9087081A JPS57207588A (en) 1981-06-15 1981-06-15 Controlling method for chlorination in water purification plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9087081A JPS57207588A (en) 1981-06-15 1981-06-15 Controlling method for chlorination in water purification plant

Publications (2)

Publication Number Publication Date
JPS57207588A JPS57207588A (en) 1982-12-20
JPS6319237B2 true JPS6319237B2 (en) 1988-04-21

Family

ID=14010545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9087081A Granted JPS57207588A (en) 1981-06-15 1981-06-15 Controlling method for chlorination in water purification plant

Country Status (1)

Country Link
JP (1) JPS57207588A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150888A (en) * 1984-01-17 1985-08-08 Toshiba Corp Device for controlling injection of chlorine in water purification plant
JPS60212201A (en) * 1984-04-09 1985-10-24 Toshiba Corp Chlorine injection control apparatus of water purification plant

Also Published As

Publication number Publication date
JPS57207588A (en) 1982-12-20

Similar Documents

Publication Publication Date Title
US9682872B2 (en) Wastewater treatment system
US8916046B2 (en) Method for controlling oxygen supply for treating wastewater, and facility for implementing same
US4170553A (en) Process and apparatus for the controlled flocculating or precipitating of foreign substances from a liquid
JP2008161809A (en) Coagulant injection control system
JP2004223357A (en) Flocculant injecting/controlling apparatus
Cecconi et al. ISE-ammonium sensors in WRRFs: field assessment of their influencing factors
CN112919599A (en) Chemical phosphorus removal and medicine adding control method and equipment
KR101274983B1 (en) Method and apparatus for determining of the remained chlorine concentration using a sensor, and purified-water treatment system using the same
JPS6319237B2 (en)
JP5769300B2 (en) Flocculant injection amount determination device and flocculant injection amount control system
JP2836838B2 (en) Control method of adding amount of oxidizing agent or reducing agent
JPH0389993A (en) Method for controlling concentration of phosphorus in waste water
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
WO2022009481A1 (en) Apparatus and method for controlling injection of coagulant in water treatment plant
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
JPH0377460B2 (en)
US4713156A (en) Process for regulating an electro-dialyzer and improved electrodialysis apparatus
JPH0415002B2 (en)
RU2071951C1 (en) Method for automatic control of industrial sewage cleaning process
JPS5888091A (en) Method for controlling injection of chlorine in water purification plant
JPH11244889A (en) Biological phosphorous removing device
JPS6319236B2 (en)
JPH0739000B2 (en) Sludge control device for sedimentation pond
SU1604749A1 (en) Method of automatic control of process of cleaning of effluents from hexavalent chromium
JPS60161707A (en) Flocculant injection control of water purification plant