JP5077065B2 - Continuous treatment apparatus and continuous treatment method for waste water containing COD component - Google Patents

Continuous treatment apparatus and continuous treatment method for waste water containing COD component Download PDF

Info

Publication number
JP5077065B2
JP5077065B2 JP2008134421A JP2008134421A JP5077065B2 JP 5077065 B2 JP5077065 B2 JP 5077065B2 JP 2008134421 A JP2008134421 A JP 2008134421A JP 2008134421 A JP2008134421 A JP 2008134421A JP 5077065 B2 JP5077065 B2 JP 5077065B2
Authority
JP
Japan
Prior art keywords
cod
oxidant
value
cod concentration
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008134421A
Other languages
Japanese (ja)
Other versions
JP2009006316A (en
Inventor
洋平 冨田
俊明 局
知道 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008134421A priority Critical patent/JP5077065B2/en
Publication of JP2009006316A publication Critical patent/JP2009006316A/en
Application granted granted Critical
Publication of JP5077065B2 publication Critical patent/JP5077065B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、COD成分を含有する廃水の連続処理装置および方法に関するものであり、特に、処理すべき廃水中のCOD濃度が大きく変動した場合であっても、タイムラグが少なく、COD濃度を排水基準以下の適正範囲内に安定させることができるイオウ系廃水の連続処理装置および連続処理方法に関するものである。   The present invention relates to a continuous treatment apparatus and method for wastewater containing a COD component, and in particular, even when the COD concentration in the wastewater to be treated fluctuates greatly, the time lag is small and the COD concentration is determined based on the drainage standard. The present invention relates to a continuous treatment apparatus and a continuous treatment method for sulfur wastewater that can be stabilized within the following appropriate range.

COD成分を含有する廃水処理には従来から酸化剤が広く用いられており、酸化剤の注入量制御に関しては、例えば、特許文献1には酸化剤として過酸化水素を用い、JIS K0102:1998に規定する方法に準拠して測定した廃水のCODMn濃度値に対して過酸化水素を0.5〜50倍添加し、かつ紫外線を照射して廃水処理する方法が開示されている。
特開平8−141581号公報
Conventionally, an oxidizing agent has been widely used for the treatment of wastewater containing a COD component. Regarding control of the injection amount of the oxidizing agent, for example, Patent Document 1 uses hydrogen peroxide as an oxidizing agent, and JIS K0102: 1998. Disclosed is a method of treating wastewater by adding 0.5 to 50 times the hydrogen peroxide to the COD Mn concentration value measured in accordance with the prescribed method and irradiating with ultraviolet rays.
Japanese Patent Laid-Open No. 8-141581

また、特許文献2には、酸化剤として過酸化水素とオゾンの双方を用い、第1工程出口および/または第2工程出口の被処理水中の溶存オゾン濃度が実験的・経験的に算出した溶存オゾン濃度の目標値である0.1〜10mg/Lとなるようオゾンを添加する2段のフィードバック制御による廃水処理方法が開示されている。
特開平11−10171号公報
Further, Patent Document 2 uses both hydrogen peroxide and ozone as oxidizing agents, and the dissolved ozone concentration calculated in the treated water at the first process outlet and / or second process outlet is experimentally and empirically calculated. A wastewater treatment method by two-stage feedback control in which ozone is added so as to be 0.1 to 10 mg / L that is a target value of ozone concentration is disclosed.
Japanese Patent Laid-Open No. 11-10171

しかし、特許文献1に記載の方法は、処理水質の分析を行っていないため、廃水のCOD濃度が急激に変動した場合に、COD濃度を排水基準以下に抑制する手段がない。また、特許文献2に記載の2段のフィードバック制御による方法は、流入する廃水のCOD濃度が大きく変動した場合に、フィードバック制御だけではタイムラグが生じて迅速にCOD濃度を排水基準以下に制御することができず、オゾン添加量に一時的に過不足が生じるという問題があった。   However, since the method described in Patent Document 1 does not analyze the quality of the treated water, there is no means for suppressing the COD concentration below the drainage standard when the COD concentration of wastewater fluctuates rapidly. Further, in the method based on the two-stage feedback control described in Patent Document 2, when the COD concentration of the inflowing wastewater largely fluctuates, a time lag occurs only with the feedback control, and the COD concentration is quickly controlled below the drainage standard. There was a problem that the amount of ozone added temporarily excessively or insufficiently.

本発明の目的は、処理すべき廃水中に所要量の酸化剤を、少なくとも2段の異なるフィードフォワード制御により決定することで、処理すべき廃水中のCOD濃度が大きく変動した場合であっても、タイムラグが少なく、COD濃度を排水基準以下の適正範囲内に安定させることができるイオウ系廃水の連続処理装置および連続処理方法を提供することにある。   The object of the present invention is to determine the required amount of oxidant in the wastewater to be treated by at least two different feedforward controls, so that even if the COD concentration in the wastewater to be treated varies greatly. Another object of the present invention is to provide a continuous treatment apparatus and a continuous treatment method for sulfur-based wastewater that have a small time lag and can stabilize the COD concentration within an appropriate range below the drainage standard.

上記目的を達成するため、本発明の要旨構成は以下の通りである。
(1)COD成分を含有する廃水を流入させる第1流入口と前記廃水の処理水である1次処理水を流出させる第1流出口とを有する第1処理槽、前記第1流入口の上流側に設けられた、廃水のCOD濃度と相関関係を有する第1の物性値を測定するUV計からなる第1モニタリング手段、前記第1処理槽へ第1酸化剤を添加する第1酸化剤注入手段、および、前記第1物性値から前記第1モニタリング手段で予測した第1COD濃度予測値に基づいて前記第1処理槽へ添加する第1酸化剤の添加量を決定し、かつ前記第1酸化剤注入手段による前記第1処理槽への第1酸化剤の添加量を制御する第1制御手段を有する1つの前処理系装置、ならびに前記第1処理槽の第1流出口から流出する1次処理水を流入させる第2流入口と前記1次処理水の処理水である2次処理水を流出させる第2流出口とを有する第2処理槽、前記第2流入口の上流側に設けられた、1次処理水のCOD濃度を測定する1台または複数台のCOD計からなる第2モニタリング手段、前記第2処理槽へ第2酸化剤を添加する第2酸化剤注入手段、および、前記第2モニタリング手段で測定した第2COD濃度測定値に基づいて前記第2処理槽へ添加する第2酸化剤の添加量を決定し、かつ前記第2酸化剤注入手段による前記第2処理槽への第2酸化剤の添加量を制御する第2制御手段を有する少なくとも1つの後処理系装置を有することを特徴とするCOD成分を含有する廃水の連続処理装置。
In order to achieve the above object, the gist of the present invention is as follows.
(1) A first treatment tank having a first inlet through which waste water containing a COD component flows in and a first outlet through which primary treated water that is treated water of the waste water flows out, upstream of the first inlet. A first monitoring means comprising a UV meter for measuring a first physical property value having a correlation with the COD concentration of wastewater provided on the side, a first oxidant injection for adding a first oxidant to the first treatment tank And an amount of the first oxidant added to the first treatment tank based on the first COD concentration predicted value predicted by the first monitoring means from the first physical property value, and the first oxidation One pretreatment system device having first control means for controlling the amount of the first oxidizing agent added to the first treatment tank by the agent injection means, and the primary flowing out from the first outlet of the first treatment tank A second inlet through which treated water flows and the primary treatment The second treatment tank having a second outlet for discharging the treated water at a secondary treated water, wherein provided upstream of the second inlet, one measures the COD concentration of the primary treated water or Based on a second monitoring means comprising a plurality of COD meters, a second oxidizing agent injection means for adding a second oxidizing agent to the second treatment tank, and a second COD concentration measurement value measured by the second monitoring means. Second control means for determining an addition amount of the second oxidant to be added to the second treatment tank and controlling an addition amount of the second oxidant to the second treatment tank by the second oxidant injection means; A continuous treatment apparatus for wastewater containing a COD component, comprising at least one aftertreatment system apparatus.

)COD成分を含有する廃水のCOD濃度と一次比例の相関関係を有する第1の物性値をUV計で測定し、この測定値から予測した第1COD濃度予測値に基づいて目標COD濃度にするために必要な第1酸化剤の添加量を決定し、決定された量の第1酸化剤を前記廃水に添加して1次処理水とする、フィードフォワード制御による1つの前処理工程と、前記1次処理水のCOD濃度をCOD計で測定し、この測定した第2COD濃度測定値に基づいて目標COD濃度にするために必要な第2酸化剤の添加量を決定し、決定された量の第2酸化剤を前記1次処理水に添加して2次処理水とする、フィードフォワード制御による少なくとも1つの後処理工程とを有することを特徴とするCOD成分を含有する廃水の処理方法。( 2 ) The first physical property value having a linear proportional correlation with the COD concentration of the wastewater containing the COD component is measured with a UV meter, and the target COD concentration is obtained based on the predicted first COD concentration value predicted from the measured value. A pre-treatment step by feedforward control that determines the amount of the first oxidant necessary for the addition, and adds the determined amount of the first oxidant to the wastewater to form primary treated water; The COD concentration of the primary treated water is measured with a COD meter, and the addition amount of the second oxidant necessary for achieving the target COD concentration is determined based on the measured second COD concentration measurement value, and the determined amount A method for treating wastewater containing a COD component, comprising: adding at least one post-treatment step by feedforward control to add secondary oxidant to secondary treated water.

)前記第2COD濃度測定値が、2台以上のCOD計で所定時間ずらして測定し
た値であることを特徴とする上記()に記載のCOD成分を含有する廃水の連続処理
方法。
( 3 ) The continuous treatment method for wastewater containing a COD component according to ( 2 ) above, wherein the second COD concentration measurement value is a value measured by shifting a predetermined time with two or more COD meters.

(16)前記廃水がイオウ系の廃水であることを特徴とする上記(8)〜(15)のいずれか一に記載のCOD成分を含有する廃水の連続処理方法。   (16) The continuous treatment method for wastewater containing a COD component according to any one of (8) to (15) above, wherein the wastewater is sulfur-based wastewater.

本発明によれば、処理すべき廃水中に所要量の酸化剤を、少なくとも2段の異なるフィードフォワード制御により決定することで、処理すべき廃水中のCOD濃度が大きく変動した場合であっても、タイムラグが少なく、COD濃度を排水基準以下の適正範囲内に安定させることができるイオウ系廃水の連続処理装置および連続処理方法の提供が可能になる。   According to the present invention, even if the COD concentration in the wastewater to be treated varies greatly by determining the required amount of oxidizer in the wastewater to be treated by at least two different feedforward controls. Therefore, it is possible to provide a continuous treatment apparatus and a continuous treatment method for sulfur-based wastewater with a small time lag and capable of stabilizing the COD concentration within an appropriate range below the drainage standard.

以下、本発明の実施形態を詳細に説明する。
図1は、本発明に係るCOD成分を含有する廃水の連続処理装置の実施形態を示す工程図である。COD成分を含有する廃水は、イオウ系廃水であるのが好ましい。図1に示す装置は、前処理系装置Iと後処理系装置IIとで主に構成されている。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a process diagram showing an embodiment of a continuous treatment apparatus for wastewater containing a COD component according to the present invention. The waste water containing the COD component is preferably a sulfur waste water. The apparatus shown in FIG. 1 is mainly composed of a pre-processing system apparatus I and a post-processing system apparatus II.

前処理系装置Iは、第1処理槽3と、第1モニタリング手段5と、第1酸化剤注入手段7と、第1制御手段6とで主に構成されている。
第1処理槽3は、COD成分を含有する廃水1を流入させる第1流入口2と前記廃水の処理水である1次処理水9を流出させる第1流出口4とを有する。
第1モニタリング手段5は、第1流入口2の上流側に設けられた廃水1のCOD濃度と相関関係を有する第1の物性値を測定する。
第1酸化剤注入手段7は、第1処理槽3へ第1酸化剤を添加する。第1酸化剤注入手段7としては、例えば、ポンプが挙げられる。
第1制御手段6は、第1物性値から第1モニタリング手段5で予測した第1COD濃度予測値に基づいて第1処理槽3へ添加する第1酸化剤の添加量を決定し、かつ第1酸化剤注入手段7による第1処理槽3への第1酸化剤の添加量を決定された添加量となる様に制御するフィードフォワード制御である。
The pretreatment system apparatus I is mainly composed of a first treatment tank 3, first monitoring means 5, first oxidant injection means 7, and first control means 6.
The 1st processing tank 3 has the 1st inflow port 2 which flows in the waste water 1 containing a COD component, and the 1st outflow port 4 which flows out the primary treated water 9 which is the treated water of the said waste water.
The first monitoring means 5 measures a first physical property value having a correlation with the COD concentration of the wastewater 1 provided on the upstream side of the first inflow port 2.
The first oxidant injection means 7 adds the first oxidant to the first treatment tank 3. An example of the first oxidant injection means 7 is a pump.
The first control means 6 determines the addition amount of the first oxidant to be added to the first treatment tank 3 based on the first COD concentration predicted value predicted by the first monitoring means 5 from the first physical property value, and the first This is feedforward control for controlling the amount of the first oxidant added to the first treatment tank 3 by the oxidant injection means 7 so as to be the determined amount added.

後処理系装置IIは、第2処理槽11と、第2モニタリング手段13と、第2酸化剤注入手段15と、第2制御手段14とで主に構成されている。
第2処理槽11は、第1処理槽3の第1流出口4から流出する1次処理水9を流入させる第2流入口10と1次処理水9の処理水である2次処理水16を流出させる第2流出口12とを有する。
第2モニタリング手段13は、第2流入口10の上流側に設けられた1次処理水9のCOD濃度を測定する。
第2酸化剤注入手段15は、第2処理槽11へ第2酸化剤を添加する。第2酸化剤注入手段15としては、例えば、ポンプが挙げられる。
第2制御手段14は、第2モニタリング手段13で測定した第2COD濃度測定値に基づいて第2処理槽11へ添加する第2酸化剤の添加量を決定し、かつ第2酸化剤注入手段15による第2処理槽11への第2酸化剤の添加量を決定された添加量となる様に制御するフィードフォワード制御である。
The post-treatment system apparatus II is mainly composed of a second treatment tank 11, second monitoring means 13, second oxidant injection means 15, and second control means 14.
The second treatment tank 11 is a second treated water 16 that is treated water of the second treated inlet 10 and the first treated water 9 for flowing in the first treated water 9 flowing out from the first outlet 4 of the first treating tank 3. And a second outlet 12 through which the gas flows out.
The second monitoring unit 13 measures the COD concentration of the primary treated water 9 provided on the upstream side of the second inlet 10.
The second oxidant injection means 15 adds the second oxidant to the second treatment tank 11. An example of the second oxidant injection means 15 is a pump.
The second control means 14 determines the amount of the second oxidant added to the second treatment tank 11 based on the second COD concentration measurement value measured by the second monitoring means 13, and the second oxidant injection means 15. Is a feedforward control for controlling the amount of the second oxidizing agent added to the second treatment tank 11 to be the determined amount added.

本発明によるCOD成分を含有する廃水の連続処理装置は、追加処理系装置IIをさらに有するのが好ましい。
追加処理系装置IIIは、第3モニタリング手段17と、第3制御手段18とで主に構成されている。
第3モニタリング手段17は、最も後段に位置する後処理系装置IIの第2処理槽11の第2流出口12から流出する2次処理水16のCOD濃度と所定の関係を有する第2の物性値を測定する。
第3制御手段18は、第3モニタリング手段17で測定した第2物性測定値に基づいて、最も後段に位置する後処理系装置IIの第2酸化剤注入手段15による第2処理槽11への第2酸化剤の添加量を制御するフィードバック制御、例えばPID制御である。
The continuous treatment apparatus for wastewater containing a COD component according to the present invention preferably further includes an additional treatment system apparatus II.
The additional processing system apparatus III is mainly composed of third monitoring means 17 and third control means 18.
The third monitoring means 17 has a second physical property having a predetermined relationship with the COD concentration of the secondary treated water 16 flowing out from the second outlet 12 of the second treatment tank 11 of the post-treatment system apparatus II located at the most subsequent stage. Measure the value.
Based on the second physical property measurement value measured by the third monitoring means 17, the third control means 18 is supplied to the second treatment tank 11 by the second oxidant injection means 15 of the post-treatment system apparatus II located at the most rear stage. Feedback control for controlling the amount of the second oxidant added, for example, PID control.

第1酸化剤および第2酸化剤としては、例えば、次亜塩素酸ナトリウム水溶液、オゾン、過酸化水素等が挙げられるが、特に、反応速度が速く、大容量の反応槽を必要としない点から、次亜塩素酸ナトリウム水溶液であるのが好ましい。
また、次亜塩素酸ナトリウムの濃度は、適切な反応速度を確保するために2〜15質量%とすることが好ましい。さらに好ましいのは5〜12質量%である。
Examples of the first oxidizing agent and the second oxidizing agent include sodium hypochlorite aqueous solution, ozone, hydrogen peroxide, and the like. In particular, the reaction rate is fast and a large-capacity reaction tank is not required. A sodium hypochlorite aqueous solution is preferable.
Moreover, it is preferable that the density | concentration of sodium hypochlorite shall be 2-15 mass% in order to ensure a suitable reaction rate. More preferred is 5 to 12% by mass.

第1モニタリング手段5は、UV計であるUV計は、COD成分が紫外領域に吸収光を有するという特性から、吸光度とCOD濃度値に線形の相関関係があることを利用して、吸光度の測定値からCOD濃度値を予測することができ、比較的測定時間が短く、連続測定が可能である。The first monitoring means 5 is a UV meter . The UV meter can predict the COD concentration value from the measured value of absorbance by utilizing the fact that the COD component has absorption light in the ultraviolet region and utilizing the linear correlation between the absorbance and the COD concentration value. The measurement time is relatively short and continuous measurement is possible.

第2モニタリング手段13は、1台または複数台のCOD計であるCOD計は、JIS K0102:1998に定められた方法、すなわち、試料(被処理水)に規定量の過マンガン酸カリウム、硫酸および硝酸銀を加え、沸騰水浴中で30分間反応させたときに消費された過マンガン酸カリウム量から、酸素要求量(COD)を高精度で測定することができる。これは、1回の測定時間が約1時間と比較的長い測定時間となる。The second monitoring means 13 is one or a plurality of COD meters . The COD meter is consumed by the method specified in JIS K0102: 1998, that is, when a specified amount of potassium permanganate, sulfuric acid and silver nitrate is added to a sample (treated water) and reacted in a boiling water bath for 30 minutes. From the amount of potassium permanganate, the oxygen demand (COD) can be measured with high accuracy. This is a relatively long measurement time of about 1 hour for one measurement time.

第3モニタリング手段17は、ORP計および/または残留塩素計であるのが好ましい。
ORP計は、金属電極(金、白金など)をセンサーとして用い、被処理水中の酸化還元電位を測定するものである。比較的測定時間が短く、連続的に予測することができる。また、ORP計で測定した酸化還元電位は、COD濃度と所定の関係を有するので最終の後処理系装置の酸化剤添加へのフィードバックのためのモニタリング手段として好ましい。
残留塩素計は、酸化剤として次亜塩素酸ナトリウムを用いる場合に使用できる。残留した酸化剤である残留塩素濃度はCOD濃度と所定の関係を有する。
残留塩素計としては、以下の2つの方法が挙げられる。
1)DPD試薬と混合して、528nmの吸光度を測定することにより、残留塩素濃度を予測する方法。
2)ヨウ化カリウムを加え塩素とヨウ化カリウムを反応させ、ヨウ素を遊離させた後に、この遊離したヨウ素を還元剤で滴定し、この滴定した溶液に電極を浸したとき、残留塩素(酸化剤)がある場合には電流が流れ、残留塩素濃度の低下に伴い電流値も低下するという現象を利用し、電流の低下が起こらなくなるまでに要した還元剤の添加量を用いて、残留塩素濃度を測定する方法。
残留塩素計による1回の予測時間は、5分と短時間であるのが特徴である。したがって残留塩素計は最終の後処理系装置の酸化剤添加へのフィードバックのためのモニタリング手段として好ましい。
The third monitoring means 17 is preferably an ORP meter and / or a residual chlorine meter.
The ORP meter uses a metal electrode (gold, platinum, etc.) as a sensor and measures the oxidation-reduction potential in the water to be treated. The measurement time is relatively short and prediction can be made continuously. Further, the oxidation-reduction potential measured with the ORP meter has a predetermined relationship with the COD concentration, and therefore is preferable as a monitoring means for feedback to the addition of the oxidizing agent in the final post-treatment system.
The residual chlorine meter can be used when sodium hypochlorite is used as the oxidizing agent. The residual chlorine concentration which is the remaining oxidizing agent has a predetermined relationship with the COD concentration.
As the residual chlorine meter, the following two methods can be mentioned.
1) A method for predicting the residual chlorine concentration by mixing with a DPD reagent and measuring the absorbance at 528 nm.
2) After adding potassium iodide to react chlorine and potassium iodide to liberate iodine, titrate the liberated iodine with a reducing agent, and immerse the electrode in the titrated solution to obtain residual chlorine (oxidant) ), The current flows and the current value decreases as the residual chlorine concentration decreases. Using the amount of reducing agent added until the current does not decrease, the residual chlorine concentration How to measure.
One prediction time by the residual chlorine meter is characterized by being as short as 5 minutes. Therefore, the residual chlorine meter is preferable as a monitoring means for feedback to the oxidizer addition of the final aftertreatment system.

次に、本発明に係るCOD成分を含有する廃水の連続処理方法の実施形態について、イオウ系廃水を連続処理する場合を例として説明する。   Next, an embodiment of a continuous treatment method for wastewater containing a COD component according to the present invention will be described by taking as an example the case of continuously treating sulfur wastewater.

第2モニタリング手段13は、1台または複数台のCOD計であるCOD計は、JIS K0102:1998に定められた方法、すなわち、試料(被処理水)に規定量の過マンガン酸カリウム、硫酸および硝酸銀を加え、沸騰水浴中で30分間反応させたときに消費された過マンガン酸カリウム量から、酸素要求量(COD)を高精度で測定することができる。これは、1回の測定時間が約1時間と比較的長い測定時間となる。The second monitoring means 13 is one or a plurality of COD meters . The COD meter is consumed by the method specified in JIS K0102: 1998, that is, when a specified amount of potassium permanganate, sulfuric acid and silver nitrate is added to a sample (treated water) and reacted in a boiling water bath for 30 minutes. From the amount of potassium permanganate, the oxygen demand (COD) can be measured with high accuracy. This is a relatively long measurement time of about 1 hour for one measurement time.

前記1次処理水9は第2流入口10から第2処理槽11内へ流入する。第2流入口10の上流側を流れる1次処理水9の一部を採取し、第2モニタリング手段13により1次処理水9のCOD濃度を測定する。次に、この第2COD濃度測定値に基づいて目標COD濃度値にするために必要な第2酸化剤の添加量を決定し、決定された量の第2酸化剤を第2処理槽11内の1次処理水9に添加する。このようにして2次処理水とするフィードフォワード制御による少なくとも1つの後処理工程を有する。第2酸化剤は酸化剤貯留手段8に保管されている。第2注入手段15により前記第2酸化剤と1次処理水9とを第2処理槽11内で混合して2次処理水16を得、該2次処理水16が第2処理槽11の第2流出口12より流出する。   The primary treated water 9 flows into the second treatment tank 11 from the second inlet 10. A part of the primary treated water 9 flowing upstream from the second inlet 10 is collected, and the COD concentration of the primary treated water 9 is measured by the second monitoring means 13. Next, the addition amount of the second oxidant necessary for achieving the target COD concentration value is determined based on the second COD concentration measurement value, and the determined amount of the second oxidant is stored in the second treatment tank 11. Add to primary treated water 9. Thus, it has at least 1 post-processing process by feedforward control made into secondary treated water. The second oxidant is stored in the oxidant storage means 8. The second injection means 15 mixes the second oxidant and the primary treated water 9 in the second treatment tank 11 to obtain the secondary treated water 16, and the secondary treated water 16 is added to the second treatment tank 11. It flows out from the second outlet 12.

最も後段に位置する後処理工程の2次処理水16のCOD濃度と所定の関係を有する第2物性値を測定し、この測定した第2物性測定値と目標COD濃度との関係に基づいて最も後段に位置する後処理工程の第2酸化剤注入手段15による第2処理槽11内の1次処理水9への第2酸化剤の添加量を制御する、フィードバック制御による追加処理工程をさらに有するのが好ましい。ここで、後処理工程を複数段有する場合、追加処理工程において制御される第2酸化剤は、最も後段に位置する第2処理槽11内の1次処理水9に添加するものであるが、この1次処理水は、最も後段に位置する後処理工程より前段の後処理工程により順次処理された処理水であって、便宜上、1次処理水と称するものである。   The second physical property value having a predetermined relationship with the COD concentration of the secondary treated water 16 in the post-treatment step located in the most subsequent stage is measured, and the most based on the relationship between the measured second physical property measured value and the target COD concentration. It further has an additional processing step by feedback control for controlling the amount of the second oxidant added to the primary treated water 9 in the second treatment tank 11 by the second oxidant injection means 15 of the post-treatment step located in the subsequent stage. Is preferred. Here, in the case of having a plurality of post-treatment steps, the second oxidant controlled in the additional treatment step is added to the primary treatment water 9 in the second treatment tank 11 located at the most subsequent stage, This primary treated water is treated water that has been sequentially treated in the post-treatment process preceding the post-treatment process located in the most subsequent stage, and is referred to as primary treated water for convenience.

第1酸化剤および第2酸化剤としては、例えば、次亜塩素酸ナトリウム水溶液、オゾン、過酸化水素等が挙げられるが、特に、反応速度が速く、大容量の反応槽を必要としない点から、次亜塩素酸ナトリウム水溶液であるのが好ましい。
また、次亜塩素酸ナトリウムの濃度は、適切な反応速度を確保するために2〜15質量%とすることが好ましい。さらに好ましいのは5〜12質量%である。
Examples of the first oxidizing agent and the second oxidizing agent include sodium hypochlorite aqueous solution, ozone, hydrogen peroxide, and the like. In particular, the reaction rate is fast and a large-capacity reaction tank is not required. A sodium hypochlorite aqueous solution is preferable.
Moreover, it is preferable that the density | concentration of sodium hypochlorite shall be 2-15 mass% in order to ensure a suitable reaction rate. More preferred is 5 to 12% by mass.

第1COD濃度予測値は、UV計によって予測した値であるUV計は比較的短時間で測定でき、COD濃度が急激に変動した場合にもモニタリングできるからである。The first COD concentration predicted value is a value predicted by a UV meter . This is because the UV meter can measure in a relatively short time and can monitor even when the COD concentration fluctuates rapidly.

第2COD濃度測定値は、COD計によって測定した値であるCOD計は測定に比較的長時間を要するが高精度であり、第2処理槽で確実に処理するために必要な値となるからである。The second COD concentration measurement value is a value measured by a COD meter . This is because the COD meter requires a relatively long time for measurement but is highly accurate and has a value necessary for reliable processing in the second processing tank.

第2COD濃度測定値は、2台以上のCOD計で所定時間ずらして測定した値であるのが好ましい。2台以上のCOD計で測定することにより、より精密なCOD濃度の測定が可能となるからである。   The second COD concentration measurement value is preferably a value measured by shifting by a predetermined time with two or more COD meters. This is because a more precise measurement of COD concentration is possible by measuring with two or more COD meters.

第2物性測定値はORP計および/または残留塩素計で測定した値であるのが好ましい。これらの値は連続的にモニタリング可能であり、最終処理として酸化剤添加へのフィードバックが可能となるからである。   The second physical property measurement value is preferably a value measured with an ORP meter and / or a residual chlorine meter. This is because these values can be continuously monitored, and feedback to the addition of the oxidizing agent can be performed as a final treatment.

第2物性測定値の測定にORP計と残留塩素計を用いる場合、測定した残留塩素濃度値と目標COD濃度との関係に基づいて最も後段に位置する後処理工程の第2酸化剤注入手段による第2処理槽内の1次処理水への第2酸化剤の添加量を制御することが好ましい。   When an ORP meter and a residual chlorine meter are used to measure the second physical property measurement value, the second oxidant injection means in the post-processing step located at the most subsequent stage based on the relationship between the measured residual chlorine concentration value and the target COD concentration It is preferable to control the amount of the second oxidizing agent added to the primary treated water in the second treatment tank.

前記第2物性測定値の測定に残留塩素計を用いる場合は、第2酸化剤として、例えば、次亜塩素酸ナトリウム溶液のような塩素含有酸化剤を用いることが前提となるが、この場合は、残留塩素計で測定した2次処理水16の残留塩素濃度が、設定した残留塩素濃度範囲よりも低い場合には第2酸化剤の添加量を増加させ、前記残留塩素濃度範囲よりも高い場合には第2酸化剤の添加量を減少させる。また、前記第2物性測定値の測定にORP計を用いる場合、該ORP計で測定した2次処理水16の酸化還元電位が、設定した酸化還元電位範囲よりも低い場合には第2酸化剤の添加量を増加させ、前記酸化還元電位範囲よりも高い場合には第2酸化剤の添加量を減少させる。さらに、前記第2物性測定値の測定にORP計と残留塩素計の双方を用いる場合、前記残留塩素計で測定した2次処理水16の残留塩素濃度に応じて制御することが好ましい。 When a residual chlorine meter is used for measurement of the second physical property measurement value, it is assumed that a chlorine-containing oxidizing agent such as a sodium hypochlorite solution is used as the second oxidizing agent. When the residual chlorine concentration of the secondary treated water 16 measured by the residual chlorine meter is lower than the set residual chlorine concentration range, the amount of addition of the second oxidant is increased and is higher than the residual chlorine concentration range. The amount of the second oxidant added is decreased. When an ORP meter is used to measure the second physical property measurement value, the second oxidizing agent is used when the redox potential of the secondary treated water 16 measured by the ORP meter is lower than the set redox potential range. The amount of the second oxidant is decreased when the amount is higher than the range of the oxidation-reduction potential. Furthermore, when using both an ORP meter and a residual chlorine meter for the measurement of the second physical property measurement value, it is preferable to control according to the residual chlorine concentration of the secondary treated water 16 measured by the residual chlorine meter.

次に、CODモニタリング手段による測定値の相関関係について説明する。
図2は、イオウ系廃水におけるUV計の測定値(254nmでの吸光度)とCOD計による測定値の相関を示す。廃水によって若干比例定数は異なるものの一次比例の相関が得られていることがわかる。
また、図3はUV計の測定値(254nmでの吸光度)とチオ硫酸イオン濃度の相関を示し、図4はUV計の測定値(254nmでの吸光度)と硫化物イオン濃度の相関を示す。これらの図より、両者共に一次比例の関係があることがわかる。しかし、硫化物イオンとチオ硫酸イオンの組成が変化すると、UV計の測定値とCOD計による測定値が一次比例関係からずれることおよび塩素が存在すると塩素がUV計で検出され、誤差を生じるという特徴を考慮し、後処理槽への流入水である1次処理水を測定する第2モニタリング手段としては、高精度の測定が可能なCOD計を用いてCOD濃度を測定するのが好ましい。
Next, the correlation between measured values by the COD monitoring means will be described.
FIG. 2 shows the correlation between the measured value of the UV meter (absorbance at 254 nm) and the measured value of the COD meter in sulfur wastewater. It can be seen that a linear proportional correlation is obtained although the proportionality constant is slightly different depending on the wastewater.
3 shows the correlation between the measured value of the UV meter (absorbance at 254 nm) and the thiosulfate ion concentration, and FIG. 4 shows the correlation between the measured value of the UV meter (absorbance at 254 nm) and the sulfide ion concentration. From these figures, it can be seen that both have a linear proportional relationship. However, when the composition of sulfide ions and thiosulfate ions changes, the measured value of the UV meter and the measured value of the COD meter deviate from the linear proportional relationship, and if chlorine is present, chlorine is detected by the UV meter, resulting in an error. Considering the characteristics, it is preferable to measure the COD concentration using a COD meter capable of measuring with high accuracy as the second monitoring means for measuring the primary treated water which is the inflow water to the post-treatment tank.

しかし、COD計は1回の測定に約1時間を要するため、急激な水質変動に対してタイムラグをできるだけ小さくしてより正確に酸化剤添加量を決定するには、COD計を2台以上用いて交互に分析を行い、分析時間間隔を狭くするのが好ましい。   However, since the COD meter takes about one hour for one measurement, two or more COD meters are used to determine the amount of oxidizer added more accurately by making the time lag as small as possible against sudden water quality fluctuations. It is preferable to perform the analysis alternately to narrow the analysis time interval.

また、図5にCOD計による測定値とORP計の測定値の相関関係を示す。なお、図5中の浸出水Aはチオ硫酸ナトリウムを水に添加したもの、浸出水Bは硫化ナトリウムを水に添加したもの、そして、浸出水Cはイオウ系廃水である。この結果より、COD濃度が0mg/Lに近い値となると、ORP計の測定値は急激に増加し、+400mV以上の値をとることが分かる。更に、図6に酸化剤として次亜塩素酸ナトリウム用いた場合のCOD計による測定値と残留塩素濃度値の相関を示す。CODが残存している場合には、塩素が消費され、COD成分がなくなってくると次亜塩素酸ナトリウムが酸化還元反応に利用されずに、残留塩素として浸出水中に残るようになるため残留塩素が検出される。以上、図5および図6の結果から、ORPが+400mV以上もしくは残留塩素が検出された場合に、CODは排水基準である20mg/L以下を満たしていると予測できる。   FIG. 5 shows the correlation between the measured value by the COD meter and the measured value by the ORP meter. In addition, the leachate A in FIG. 5 is obtained by adding sodium thiosulfate to water, the leachate B is obtained by adding sodium sulfide to water, and the leachate C is sulfur waste water. From this result, it is understood that when the COD concentration is close to 0 mg / L, the measured value of the ORP meter increases rapidly and takes a value of +400 mV or more. Further, FIG. 6 shows the correlation between the measured value by the COD meter and the residual chlorine concentration value when sodium hypochlorite is used as the oxidizing agent. When COD remains, when chlorine is consumed and the COD component disappears, sodium hypochlorite is not used for the oxidation-reduction reaction and remains in the leachate as residual chlorine. Is detected. As described above, from the results of FIGS. 5 and 6, when the ORP is +400 mV or more or the residual chlorine is detected, it can be predicted that the COD satisfies the drainage standard of 20 mg / L or less.

(実施例1)
処理フローの検討
図7、図8および図9に、イオウ系廃水のモデルとして、廃水発生量10L/hおよび表1に示すCOD濃度変動パターンをかけた例について検討する処理フローを示す。図7は本発明に従う処理フロー(実施例)、図8は1段のフィードフォワード制御のみを実施した処理フロー(比較例1)、図9は1段のフィードバック制御のみを実施した処理フロー(比較例2)である。なお、酸化剤として、濃度が10質量%の次亜塩素酸ナトリウム水溶液を用いた。
Example 1
Examination of Treatment Flow FIGS. 7, 8 and 9 show the treatment flow for examining an example of applying the wastewater generation amount of 10 L / h and the COD concentration fluctuation pattern shown in Table 1 as a model of sulfur wastewater. 7 is a processing flow according to the present invention (Example), FIG. 8 is a processing flow (Comparative Example 1) in which only one-stage feedforward control is performed, and FIG. 9 is a processing flow (Comparison) in which only one-stage feedback control is performed. Example 2). In addition, the sodium hypochlorite aqueous solution whose density | concentration is 10 mass% was used as an oxidizing agent.

Figure 0005077065
Figure 0005077065

図7に示す実施例においては、第1処理槽21および第2処理槽27は内容積が20Lのものを用いる。また、第1モニタリング手段としてはUV計22を用い、第1処理槽21では予測されたCOD濃度値に対して100%酸化されるよう酸化剤を添加するものとする。第2モニタリング手段としては測定間隔1回/1時間の1台のCOD計28を用い、このCOD計28の誤差は約0%である。第2処理槽27では、COD計28の最新の出力値に対して、2次処理水31のCOD濃度値が10mg/Lとなるように酸化剤を添加するものとする。また、前述したとおり、COD計28は測定に約1時間要するため、実験開始後1時間は出力値が得られない。この間の第2処理槽27での第2酸化剤は、UV計22の出力値と第1処理槽21での酸化剤添加量から計算される1次処理水26のCOD濃度値に対して、2次処理水31のCOD濃度値が10mg/Lとなるように添加される。フィードバック制御用の第3モニタリング手段としてはORP計32を用い、設定値はORP計32の測定値から換算されるCOD濃度値が10±5mg/Lとし、設定値の範囲から外れた場合には、COD濃度値が10分あたり2mg/L変化するように第3酸化剤の添加量を設定する。   In the embodiment shown in FIG. 7, the first treatment tank 21 and the second treatment tank 27 have an internal volume of 20L. Further, a UV meter 22 is used as the first monitoring means, and an oxidizing agent is added in the first treatment tank 21 so as to be 100% oxidized with respect to the predicted COD concentration value. As the second monitoring means, one COD meter 28 with a measurement interval of once / hour is used, and the error of this COD meter 28 is about 0%. In the second treatment tank 27, an oxidizing agent is added so that the COD concentration value of the secondary treated water 31 becomes 10 mg / L with respect to the latest output value of the COD meter 28. As described above, since the COD meter 28 takes about 1 hour to measure, an output value cannot be obtained for 1 hour after the start of the experiment. During this time, the second oxidant in the second treatment tank 27 has a COD concentration value of the primary treatment water 26 calculated from the output value of the UV meter 22 and the oxidant addition amount in the first treatment tank 21. It is added so that the COD concentration value of the secondary treated water 31 is 10 mg / L. When the ORP meter 32 is used as the third monitoring means for feedback control and the set value is 10 ± 5 mg / L, the COD concentration value converted from the measured value of the ORP meter 32 is out of the set value range. The amount of the third oxidizing agent added is set so that the COD concentration value changes by 2 mg / L per 10 minutes.

図8に示す比較例1においては、イオウ系廃水101のCOD濃度値の測定をCOD計103により行い、処理水107のCOD濃度値が10mg/Lとなるように酸化剤を添加する。この比較例1においても、COD計103の分析頻度は1回/1時間であり、実験開始後1時間は測定結果がでないため、発生した廃水のCOD初期値が既知のものであると仮定する。   In Comparative Example 1 shown in FIG. 8, the COD concentration value of the sulfur waste water 101 is measured by the COD meter 103, and an oxidizing agent is added so that the COD concentration value of the treated water 107 becomes 10 mg / L. Also in this comparative example 1, since the analysis frequency of the COD meter 103 is 1 time / 1 hour and there is no measurement result for 1 hour after the start of the experiment, it is assumed that the initial COD value of the generated wastewater is known. .

図9に示す比較例2においては、イオウ系廃水201のCOD濃度値の測定は行わず、処理水207のCOD濃度値が10±5mg/Lとなるように、ORP計206で酸化剤添加量を調整する。実施例に、ORP計206による測定値から換算されるCOD濃度値が、設定範囲から外れた場合には、COD濃度値が10分あたり、2mg/L変化するように添加量を設定する。   In Comparative Example 2 shown in FIG. 9, the COD concentration value of the sulfur-based wastewater 201 is not measured, and the oxidizer addition amount by the ORP meter 206 so that the COD concentration value of the treated water 207 becomes 10 ± 5 mg / L. Adjust. In the example, when the COD concentration value converted from the measured value by the ORP meter 206 is out of the set range, the addition amount is set so that the COD concentration value changes by 2 mg / L per 10 minutes.

図10は、表1に示す廃水のCOD濃度変動パターン1における各例の処理水のCOD濃度を示し、同様に、図11は表1に示す廃水のCOD濃度変動パターン2における各例の処理水のCOD濃度を示す。尚、図10では、酸化剤を過剰に入れた場合には、酸化剤添加量から計算される酸化可能なCOD濃度を負の値として示す。図10の結果から、COD濃度が急激に低い廃水が流入した場合であっても、本発明の実施例では、1段のフィードフォワード制御もしくはフィードバック制御の一方を行った場合である比較例1および2に比べて、COD濃度の負値が小さく、酸化剤の入れすぎを回避できることがわかる。また、図11の結果から、COD濃度が急激に高い廃水が流入した場合であっても、1段のフィードフォワード制御もしくはフィードバック制御の一方を行った場合である比較例1および2に比べて、本発明では、COD濃度が目標値を大幅に上回る可能性も小さく抑えられている。   FIG. 10 shows the COD concentration of the treated water in each example in the COD concentration fluctuation pattern 1 of the wastewater shown in Table 1. Similarly, FIG. 11 shows the treated water of each example in the COD concentration fluctuation pattern 2 of the wastewater shown in Table 1. COD concentration is shown. In FIG. 10, when an oxidizing agent is excessively added, the oxidizable COD concentration calculated from the oxidizing agent addition amount is shown as a negative value. From the results of FIG. 10, even when waste water with a low COD concentration flows in, in the example of the present invention, the comparative example 1 and the case where either one-stage feedforward control or feedback control is performed and Compared to 2, the negative value of the COD concentration is small, and it can be seen that excessive addition of the oxidizing agent can be avoided. Further, from the results of FIG. 11, even when wastewater having a high COD concentration flows in, compared to Comparative Examples 1 and 2 in which one of the one-stage feedforward control or feedback control is performed, In the present invention, the possibility that the COD concentration greatly exceeds the target value is also kept small.

(実施例2)
処理槽での酸化剤添加量の検討
第1処理槽での第1酸化剤の添加方式について記載する。表2に第1酸化剤の添加方式を示す。実施例Aとしては、廃水のCOD濃度に対して、100%が酸化処理できるように添加した。実施例Bとしては、第1処理槽から流出する2次処理水のCOD濃度値が30mg/Lとなるように酸化剤を注入するものとした。ここで、モデル廃水は、廃水発生量を10L/hとし、COD濃度変動パターンは表3に示したとおりである。その他の運転項目(UV計の誤差、COD計の時間間隔、第2処理槽における酸化剤添加量の初期値の決定方法、処理水COD目標値、ORP計設定値など)は実施例1と同様である。
(Example 2)
Examination of Addition Amount of Oxidant in Treatment Tank The method of adding the first oxidant in the first treatment tank is described. Table 2 shows the method of adding the first oxidizing agent. As Example A, it was added so that 100% of the COD concentration of wastewater could be oxidized. As Example B, the oxidizing agent was injected so that the COD concentration value of the secondary treated water flowing out from the first treatment tank was 30 mg / L. Here, the model wastewater has a wastewater generation amount of 10 L / h, and the COD concentration fluctuation pattern is as shown in Table 3. Other operation items (UV meter error, time interval of COD meter, determination method of initial value of oxidizer addition amount in second treatment tank, treated water COD target value, ORP meter set value, etc.) are the same as in Example 1. It is.

Figure 0005077065
Figure 0005077065

Figure 0005077065
Figure 0005077065

図12に廃水のCOD濃度変動パターン3における各酸化剤添加方式での処理水のCOD濃度値を示し、同様に、図13に廃水のCOD濃度変動パターン4における各酸化剤添加方式での処理水のCOD濃度値を示す。図12より、実施例Aでは、流入するCOD濃度が急激に低下した場合に、酸化剤を入れすぎてしまうことがわかる。また、図13より、流入COD濃度が急激に増加した場合に、実施例Aでは処理水COD濃度が高くなることがわかる。これらの原因としては、第2モニタリング手段にCOD計を用いていることが挙げられる。COD計は、測定精度は高いものの1時間に約1回の分析頻度でしか測定できないため、流入CODに対して定率で酸化剤を投入した場合には、流入CODの変動にあわせて第1処理槽中の処理水COD濃度が変動するために、COD計の測定間隔である1時間でのCOD濃度変化が影響することが挙げられる。一方で、実施例Bでは、廃水のCOD第1モニタリング手段であるUV計の誤差が影響するだけとなるため、処理水濃度が一定となるように酸化剤を注入した場合の方が、処理水のCOD濃度値が安定して、目標値により近い値を得やすいことがわかる。   FIG. 12 shows the COD concentration value of the treated water in each oxidizer addition method in the COD concentration fluctuation pattern 3 of the wastewater. Similarly, FIG. 13 shows the treated water in each oxidizer addition method in the COD concentration fluctuation pattern 4 of the wastewater. The COD concentration value is shown. From FIG. 12, it can be seen that in Example A, when the inflowing COD concentration is drastically reduced, the oxidant is excessively added. In addition, FIG. 13 shows that the treated water COD concentration becomes higher in Example A when the inflow COD concentration increases rapidly. As these causes, a COD meter is used as the second monitoring means. Although the COD meter has high measurement accuracy, it can only measure with an analysis frequency of about once per hour. Therefore, when an oxidant is introduced at a constant rate with respect to the inflow COD, the first processing is performed in accordance with the fluctuation of the inflow COD. Since the treated water COD concentration in the tank fluctuates, a change in the COD concentration in one hour, which is the measurement interval of the COD meter, is affected. On the other hand, in Example B, since the error of the UV meter which is the COD first monitoring means of the wastewater is only affected, the treatment water is injected when the oxidizing agent is injected so that the treatment water concentration becomes constant. It can be seen that the COD concentration value is stable and a value closer to the target value can be easily obtained.

ただし、廃水のCOD測定予測値に対して、第1処理槽でのCOD除去率が設定値(目標除去率)となるように次亜塩素酸ナトリウム溶液を添加する方式についても、各処理槽流入水のCOD計台数を増やすことで、測定間隔が短くなり、目標値を満足できるようになる。さらに、廃水のCOD濃度が高い場合には、COD濃度予測値に誤差を生じやすくなるため、例えば、COD1000mg/Lの廃水の処理において、方式1)第1処理槽の処理水COD濃度値を50mg/L(一定)とする方式と方式2)第1処理槽で100%のCODを処理する方式とを比較する。このときに、測定値に10%誤差があり、実際の廃水COD濃度が900mg/Lであった場合、実際の処理水COD濃度は方式1)では−50mg/L、方式2)では−100mg/Lとなる。つまり、COD測定値に対してCOD除去率を一定とした場合が有効となることがある。   However, the sodium hypochlorite solution is added to the treatment tank so that the COD removal rate in the first treatment tank becomes a set value (target removal rate) with respect to the COD measurement predicted value of the wastewater. By increasing the number of water COD meters, the measurement interval is shortened and the target value can be satisfied. Furthermore, when the COD concentration of wastewater is high, an error is likely to occur in the predicted COD concentration. For example, in the treatment of wastewater with a COD of 1000 mg / L, the method 1) the treated water COD concentration value of the first treatment tank is 50 mg. / L (constant) method and method 2) A method of treating 100% COD in the first treatment tank is compared. At this time, if the measured value has a 10% error and the actual wastewater COD concentration is 900 mg / L, the actual treated water COD concentration is -50 mg / L in Method 1) and -100 mg / L in Method 2). L. That is, the case where the COD removal rate is constant with respect to the COD measurement value may be effective.

図1は、COD成分を含有する廃水の連続処理装置の工程図である。FIG. 1 is a process diagram of a continuous treatment apparatus for wastewater containing a COD component. 図2は、COD成分を含有する廃水におけるUV計の測定値とCOD計による測定値の相関を示すグラフである。FIG. 2 is a graph showing the correlation between the measured value of the UV meter and the measured value of the COD meter in wastewater containing a COD component. 図3は、UV計の測定値とチオ硫酸イオン濃度の相関を示すグラフである。FIG. 3 is a graph showing the correlation between the measured value of the UV meter and the thiosulfate ion concentration. 図4は、UV計の測定値と硫化物イオン濃度の相関を示すグラフである。FIG. 4 is a graph showing the correlation between the measured value of the UV meter and the sulfide ion concentration. 図5は、COD濃度とORP計の測定値の相関を示すグラフである。FIG. 5 is a graph showing the correlation between the COD concentration and the measured value of the ORP meter. 図6は、COD濃度と残留塩素濃度値の相関を示すグラフである。FIG. 6 is a graph showing the correlation between the COD concentration and the residual chlorine concentration value. 図7は、実施例を示す工程図である。FIG. 7 is a process diagram showing an example. 図8は、1段のフィードフォワード制御のみを実施した比較例1を示す工程図である。FIG. 8 is a process diagram showing Comparative Example 1 in which only one-stage feedforward control is performed. 図9は、1段のフィードバック制御のみを実施した比較例2を示す工程図である。FIG. 9 is a process diagram showing a comparative example 2 in which only one-stage feedback control is performed. 図10は、廃水のCOD濃度変動パターン1における実施例ならびに比較例1および2で処理したときのCOD濃度変化を示すグラフである。FIG. 10 is a graph showing the COD concentration change when the waste water is treated in the COD concentration fluctuation pattern 1 of the example and the comparative examples 1 and 2. 図11は、廃水のCOD濃度変動パターン2における実施例ならびに比較例1および2で処理したときのCOD濃度変化を示すグラフである。FIG. 11 is a graph showing the COD concentration change when the wastewater is treated in the COD concentration fluctuation pattern 2 of the example and the comparative examples 1 and 2. 図12は、廃水のCOD濃度変動パターン3における実施例AおよびBで処理したときのCOD濃度変化を示すグラフである。FIG. 12 is a graph showing changes in COD concentration when treated in Examples A and B in the COD concentration fluctuation pattern 3 of wastewater. 図13は、廃水のCOD濃度変動パターン4における実施例AおよびBで処理したときのCOD濃度変化を示すグラフである。FIG. 13 is a graph showing changes in COD concentration when treated in Examples A and B in the COD concentration fluctuation pattern 4 of wastewater.

符号の説明Explanation of symbols

1 廃水
2 第1流入口
3 第1処理槽
4 第1流出口
5 第1モニタリング手段
6 第1制御手段
7 第1酸化剤注入手段
8 酸化剤貯留手段
9 1次処理水
10 第2流入口
11 第2処理槽
12 第2流出口
13 第2モニタリング手段
14 第2制御手段
15 第2酸化剤注入手段
16 2次処理水
17 第3モニタリング手段
18 第3制御手段
20 廃水
21 第1処理槽
22 UV計
23 第1制御手段
24 第1酸化剤注入手段
25 酸化剤貯留手段
26 1次処理水
27 第2処理槽
28 COD計
29 第2制御手段
30 第2酸化剤注入手段
31 2次処理水
32 ORP計
33 第3制御手段
101 イオウ系廃水
102 第1処理槽
103 COD計
104 制御手段
105 注入手段
106 酸化剤貯留手段
107 処理水
201 イオウ系廃水
202 第1処理槽
203 注入手段
204 酸化剤貯留手段
205 制御手段
206 ORP計
207 処理水
DESCRIPTION OF SYMBOLS 1 Waste water 2 1st inflow port 3 1st processing tank 4 1st outflow port 5 1st monitoring means 6 1st control means 7 1st oxidizing agent injection | pouring means 8 Oxidant storage means 9 Primary treated water 10 2nd inflow port 11 Second treatment tank 12 Second outlet 13 Second monitoring means 14 Second control means 15 Second oxidant injection means 16 Secondary treated water 17 Third monitoring means 18 Third control means 20 Waste water 21 First treatment tank 22 UV Total 23 First control means 24 First oxidant injection means 25 Oxidant storage means 26 Primary treated water 27 Second treatment tank 28 COD meter 29 Second control means 30 Second oxidant injection means 31 Secondary treated water 32 ORP Total 33 Third control means 101 Sulfur waste water 102 First treatment tank 103 COD meter 104 Control means 105 Injection means 106 Oxidant storage means 107 Treated water 201 Sulfur system Waste water 202 First treatment tank 203 Injection means 204 Oxidant storage means 205 Control means 206 ORP meter 207 Treated water

Claims (3)

COD成分を含有する廃水を流入させる第1流入口と前記廃水の処理水である1次処理水を流出させる第1流出口とを有する第1処理槽、前記第1流入口の上流側に設けられた、廃水のCOD濃度と相関関係を有する第1の物性値を測定するUV計からなる第1モニタリング手段、前記第1処理槽へ第1酸化剤を添加する第1酸化剤注入手段、および、前記第1物性値から前記第1モニタリング手段で予測した第1COD濃度予測値に基づいて前記第1処理槽へ添加する第1酸化剤の添加量を決定し、かつ前記第1酸化剤注入手段による前記第1処理槽への第1酸化剤の添加量を制御する第1制御手段を有する1つの前処理系装置、ならびに
前記第1処理槽の第1流出口から流出する1次処理水を流入させる第2流入口と前記1次処理水の処理水である2次処理水を流出させる第2流出口とを有する第2処理槽、前記第2流入口の上流側に設けられた、1次処理水のCOD濃度を測定する1台または複数台 のCOD計からなる第2モニタリング手段、前記第2処理槽へ第2酸化剤を添加する第2酸化剤注入手段、および、前記第2モニタリング手段で測定した第2COD濃度測定値に基づいて前記第2処理槽へ添加する第2酸化剤の添加量を決定し、かつ前記第2酸化剤注入手段による前記第2処理槽への第2酸化剤の添加量を制御する第2制御手段を有する少なくとも1つの後処理系装置を有することを特徴とするCOD成分を含有する廃水の連続処理装置。
A first treatment tank having a first inlet through which waste water containing a COD component flows in and a first outlet through which primary treated water, which is the treated water of the waste water, flows out, is provided upstream of the first inlet. A first monitoring means comprising a UV meter for measuring a first physical property value correlated with the COD concentration of the wastewater, a first oxidant injection means for adding a first oxidant to the first treatment tank, and Determining the addition amount of the first oxidant to be added to the first treatment tank based on the first COD concentration predicted value predicted by the first monitoring means from the first physical property value; and the first oxidant injection means. One pretreatment system device having a first control means for controlling the amount of the first oxidant added to the first treatment tank by the first treatment water, and primary treatment water flowing out from the first outlet of the first treatment tank The second inlet to be introduced and the treatment of the primary treated water A second treatment tank having a second outlet for discharging secondary treated water, which is water, and one or a plurality of units for measuring the COD concentration of the primary treated water provided on the upstream side of the second inlet. Based on the second COD concentration measurement value measured by the second monitoring means comprising a COD meter of the stage, the second oxidant injection means for adding the second oxidant to the second treatment tank, and the second monitoring means A second control unit configured to determine an addition amount of the second oxidant to be added to the second treatment tank and to control an addition amount of the second oxidant to the second treatment tank by the second oxidant injection unit; A continuous treatment apparatus for wastewater containing a COD component, comprising at least one aftertreatment system apparatus.
COD成分を含有する廃水のCOD濃度と一次比例の相関関係を有する第1の物性値をUV計で測定し、この測定値から予測した第1COD濃度予測値に基づいて目標COD濃度にするために必要な第1酸化剤の添加量を決定し、決定された量の第1酸化剤を前記廃水に添加して1次処理水とする、フィードフォワード制御による1つの前処理工程と、
前記1次処理水のCOD濃度をCOD計で測定し、この測定した第2COD濃度測定値に基づいて目標COD濃度にするために必要な第2酸化剤の添加量を決定し、決定された量の第2酸化剤を前記1次処理水に添加して2次処理水とする、フィードフォワード制御による少なくとも1つの後処理工程と
を有することを特徴とするCOD成分を含有する廃水の処理方法。
To measure the first physical property value having a linear proportional correlation with the COD concentration of the wastewater containing the COD component with a UV meter, and to obtain the target COD concentration based on the predicted first COD concentration value predicted from this measured value One pretreatment step by feedforward control for determining a necessary amount of the first oxidant to be added, and adding the determined amount of the first oxidant to the waste water as primary treated water;
The COD concentration of the primary treated water is measured with a COD meter, and the addition amount of the second oxidant necessary for achieving the target COD concentration is determined based on the measured second COD concentration measurement value, and the determined amount A method for treating wastewater containing a COD component, comprising: adding at least one post-treatment step by feedforward control to add secondary oxidant to secondary treated water.
前記第2COD濃度測定値が、2台以上のCOD計で所定時間ずらして測定した値であることを特徴とする請求項に記載のCOD成分を含有する廃水の連続処理方法。3. The continuous treatment method for wastewater containing a COD component according to claim 2 , wherein the second COD concentration measurement value is a value measured with two or more COD meters shifted by a predetermined time.
JP2008134421A 2007-05-30 2008-05-22 Continuous treatment apparatus and continuous treatment method for waste water containing COD component Expired - Fee Related JP5077065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134421A JP5077065B2 (en) 2007-05-30 2008-05-22 Continuous treatment apparatus and continuous treatment method for waste water containing COD component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007143369 2007-05-30
JP2007143369 2007-05-30
JP2008134421A JP5077065B2 (en) 2007-05-30 2008-05-22 Continuous treatment apparatus and continuous treatment method for waste water containing COD component

Publications (2)

Publication Number Publication Date
JP2009006316A JP2009006316A (en) 2009-01-15
JP5077065B2 true JP5077065B2 (en) 2012-11-21

Family

ID=40321962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134421A Expired - Fee Related JP5077065B2 (en) 2007-05-30 2008-05-22 Continuous treatment apparatus and continuous treatment method for waste water containing COD component

Country Status (1)

Country Link
JP (1) JP5077065B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169859A (en) * 2010-02-22 2011-09-01 Nikuni:Kk Method and device for automatically managing chlorine concentration
CN106872658B (en) * 2017-01-22 2019-06-18 华南理工大学 A method of the COD of sewage load prediction based on vector time series model
CN113651413A (en) * 2021-09-22 2021-11-16 中宜环科仪器江苏有限公司 Ozone adding control method and system based on antibiotic on-line monitoring

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144084A (en) * 1981-02-27 1982-09-06 Hitachi Ltd Control method for chlorine injection in water purifying plant
JPH11207368A (en) * 1998-01-26 1999-08-03 Meidensha Corp Ozone injection controlling method
JP2003001265A (en) * 2001-06-19 2003-01-07 Mitsubishi Electric Corp Sewage disinfecting system

Also Published As

Publication number Publication date
JP2009006316A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
US10995021B2 (en) System for oxidation of ammonia
JP5077065B2 (en) Continuous treatment apparatus and continuous treatment method for waste water containing COD component
TWI841582B (en) Systems and methods for measuring composition of water
JP5158524B2 (en) Equipment for measuring the purity of ultrapure water
JP2011169859A (en) Method and device for automatically managing chlorine concentration
US9927268B2 (en) Oxidation/reduction measurement
CN111615498A (en) Oxidation-promoting water treatment system and method
KR101274983B1 (en) Method and apparatus for determining of the remained chlorine concentration using a sensor, and purified-water treatment system using the same
JP5909360B2 (en) Method and apparatus for measuring purity of ultrapure water
WO2024064871A1 (en) Dynamic end-point total organic fluoride measurement
KR100724707B1 (en) Method of Determinnig Injection Amount of Chlorine/Dechlorination Agent, Controller and Wastewater Purification Apparatus Using the same
JP4683977B2 (en) Hydrogen peroxide injection control method and apparatus in accelerated oxidation water treatment method
JP7284624B2 (en) Residual chlorine removal method, controller for residual chlorine removal system, and residual chlorine removal system
CN116157542A (en) Method and device for obtaining gold and/or silver and/or at least one platinum group metal
KR101758823B1 (en) The method for analysis of Chemical Oxygen Demand
JP2016198697A (en) Organic acid solution decomposition system and organic acid solution decomposition method
JP4542815B2 (en) Water treatment equipment
JP2003181461A (en) Water treatment apparatus and water treatment method
JP2017185442A (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
JP2003290789A (en) Anaerobic treatment equipment and its monitoring method
JP2000221165A (en) Apparatus for measuring concentration of residual chlorine
JP2021076403A (en) Processing system and processing method
JP4331048B2 (en) Ozone water treatment control system
JP2011121026A (en) Water treatment apparatus
JP2006023148A (en) Chlorine demand amount measuring instrument, water quality control system, chlorine demand amount measuring method and water quality control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees