JP2011169859A - Method and device for automatically managing chlorine concentration - Google Patents

Method and device for automatically managing chlorine concentration Download PDF

Info

Publication number
JP2011169859A
JP2011169859A JP2010036227A JP2010036227A JP2011169859A JP 2011169859 A JP2011169859 A JP 2011169859A JP 2010036227 A JP2010036227 A JP 2010036227A JP 2010036227 A JP2010036227 A JP 2010036227A JP 2011169859 A JP2011169859 A JP 2011169859A
Authority
JP
Japan
Prior art keywords
chlorine concentration
concentration
residual chlorine
control
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010036227A
Other languages
Japanese (ja)
Inventor
Soichiro Osaki
荘一郎 大崎
Yukio Hashimoto
幸雄 橋本
Toru Suyama
徹 須山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikuni KK
Original Assignee
Nikuni KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikuni KK filed Critical Nikuni KK
Priority to JP2010036227A priority Critical patent/JP2011169859A/en
Publication of JP2011169859A publication Critical patent/JP2011169859A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic management device of chlorine concentration for continuously managing chlorine concentration accurately even without any calibration mechanisms of an electrode for detecting chlorine concentration. <P>SOLUTION: The automatic management device M includes: a chlorine concentration meter A for measuring the concentration of free residual chlorine, or the like of a sampling liquid collected from a treatment liquid circulation system L by an automated absorptiometry by spacing some time; an oxidation-reduction potentiometer B for measuring an oxidation/reduction potential of the sampling liquid; a control part C for correlating a concentration change in the concentration of free residual chlorine, or the like measured by the chlorine concentration meter A with a change in oxidation/reduction potential, or the like measured by the oxidation-reduction potentiometer B for calculating a prediction control coefficient of the concentration of free residual chlorine, or the like for calculating concentration of chlorine for control predicted by the prediction control coefficient and the most recent oxidation-reduction potential, and calculating a control signal based on the concentration of chlorine for control for output; and a chlorine concentration adjustment part D for adjusting the concentration of free residual chlorine, or the like of the treatment liquid circulation system by the control signal from the control part C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動化された吸光光度法による塩素濃度計と酸化還元電位計とを用いて処理液循環系の塩素濃度を連続的に自動管理する塩素濃度の自動管理方法および自動管理装置に関する。   The present invention relates to an automatic chlorine concentration management method and an automatic management apparatus for continuously and automatically managing a chlorine concentration in a treatment liquid circulation system using an automated spectrophotometric chlorine concentration meter and an oxidation-reduction potentiometer.

公衆浴場の浴槽やプール等の水槽の水は、その水質を維持管理するために、固形の塩素剤(サラシ粉)や次亜塩素酸ソーダ(NaClO)を人手により投入して、遊離塩素濃度を人手により計測し、規定された値に維持管理している。しかし、人手計測、人手投入では、常に一定濃度に管理することは難しく、投入不足や過剰投入になりやすい。   In order to maintain the water quality of the water in the baths and pools of public baths, solid chlorine agent (salach powder) and sodium hypochlorite (NaClO) are manually added to reduce the free chlorine concentration. It is manually measured and maintained at the specified value. However, in manual measurement and manual input, it is difficult to always manage at a constant concentration, which tends to result in insufficient input or excessive input.

最近では、ポーラログラフ法の残留塩素センサを用いた連続フィードバック制御による自動管理方法が行なわれる例があるが、定期的に電極の校正を人手で行なう必要があり、大変手間がかかる。   Recently, there is an example in which an automatic management method by continuous feedback control using a polarographic residual chlorine sensor is performed, but it is necessary to manually calibrate the electrode periodically, which is very laborious.

また、水を電解処理して滅菌作用を付与するための電解槽を有し、プール等の水槽に、電解槽で電解処理した水を供給して滅菌するための水処理装置であって、水槽の水の残留塩素濃度を求めるための、第1および第2の2台の残留塩素濃度検出手段と、第1の残留塩素濃度検出手段を用いて継続的に水槽の水の残留塩素濃度を求めるとともに、電解槽で水を電解処理して生成させる、塩素を含む滅菌作用を有する成分の、水槽への供給レートを、上記で求めた水の残留塩素濃度の結果に基づいて調整するための残留塩素濃度制御手段と、第2の残留塩素濃度検出手段を用いて定期的または不定期に水槽の水の残留塩素濃度を求め、その結果を、第1の残留塩素濃度検出手段によって求めた残留塩素濃度と比較して、両者にずれが生じた場合には第1の残留塩素濃度検出手段を校正するための校正制御手段とを備える水処理装置が知られている(例えば、特許文献1参照)。   Moreover, the water treatment apparatus has an electrolysis tank for electrolytically treating water and imparting a sterilizing action, and supplies water sterilized by supplying water electrolyzed in the electrolysis tank to a water tank such as a pool. The residual chlorine concentration in the water tank is continuously obtained using the first and second two residual chlorine concentration detecting means and the first residual chlorine concentration detecting means for obtaining the residual chlorine concentration of the water in the tank. In addition, a residue for adjusting the supply rate to the water tank of the sterilizing component containing chlorine, which is generated by electrolytic treatment of water in the electrolytic tank, based on the result of the residual chlorine concentration of water obtained above. Using the chlorine concentration control means and the second residual chlorine concentration detection means, the residual chlorine concentration of the water in the tank is obtained regularly or irregularly, and the result is obtained as the residual chlorine obtained by the first residual chlorine concentration detection means. When there is a deviation between the two compared to the concentration Water treatment apparatus is known and a calibration control means for calibrating the first residual chlorine concentration detection means (for example, see Patent Document 1).

第1の残留塩素濃度検出手段は、水の残留塩素濃度の変化を、電極間を流れる電流値の変化として出力するとともに、この出力を、電極間のスパン調整によって校正する機能を有する残留塩素センサであり、校正制御手段は、この残留塩素センサの出力電流値から求めた残留塩素濃度が、第2の残留塩素濃度検出手段によって求めた残留塩素濃度と一致するように、電極間のスパン調整を行うようにしている。また、第2の残留塩素濃度検出手段は、水の残留塩素濃度の変化を、DPD試薬の変色に伴う吸光光度の変化として出力するものである。   The first residual chlorine concentration detecting means outputs a change in the residual chlorine concentration of water as a change in the value of the current flowing between the electrodes, and has a function of calibrating this output by adjusting the span between the electrodes. The calibration control means adjusts the span between the electrodes so that the residual chlorine concentration obtained from the output current value of the residual chlorine sensor matches the residual chlorine concentration obtained by the second residual chlorine concentration detecting means. Like to do. The second residual chlorine concentration detecting means outputs the change in the residual chlorine concentration of water as the change in the absorbance with the discoloration of the DPD reagent.

特許第3999967号公報(第11−12頁、図6−9)Japanese Patent No. 39999967 (pages 11-12, FIGS. 6-9)

上記第1の残留塩素濃度検出手段は、水の残留塩素濃度の変化を、電極間を流れる電流値の変化として出力するとともに、この出力を、電極間のスパン調整によって校正する機能を有する残留塩素センサであり、この残留塩素センサにより、残留塩素濃度を常時測定する必要がある。   The first residual chlorine concentration detecting means outputs a change in the residual chlorine concentration of water as a change in the current value flowing between the electrodes, and has a function of calibrating this output by adjusting the span between the electrodes. It is a sensor, and it is necessary to constantly measure the residual chlorine concentration with this residual chlorine sensor.

さらに、上記校正制御手段は、上記残留塩素センサの出力電流値から求めた残留塩素濃度が、第2の残留塩素濃度検出手段によって求めた残留塩素濃度と一致するように、電極間のスパン調整を行うので、面倒な塩素濃度検出用電極の校正機構が必要となる。   Further, the calibration control means adjusts the span between the electrodes so that the residual chlorine concentration obtained from the output current value of the residual chlorine sensor coincides with the residual chlorine concentration obtained by the second residual chlorine concentration detecting means. Therefore, a troublesome mechanism for calibrating the electrode for detecting the chlorine concentration is required.

本発明は、このような点に鑑みなされたもので、塩素濃度検出用電極の校正機構がなくても正確な塩素濃度の継続的管理を行なうことができる塩素濃度の自動管理方法および自動管理装置を提供することを目的とする。   The present invention has been made in view of the above points, and an automatic chlorine concentration management method and an automatic management device capable of performing accurate continuous chlorine concentration management without a chlorine concentration detection electrode calibration mechanism. The purpose is to provide.

請求項1に記載された発明は、自動化された吸光光度法により処理液循環系から採取したサンプリング液の塩素濃度を時間を置いて測定するとともに、サンプリング液の酸化還元電位を連続的に測定し、上記吸光光度法による測定間は、上記吸光光度法による測定で得られた塩素濃度の濃度変化に対応する上記酸化還元電位の変化を利用して最適に制御するために予測される制御用塩素濃度を算出し、この制御用塩素濃度に基づき処理液循環系の塩素濃度を連続制御する塩素濃度の自動管理方法である。   The invention described in claim 1 measures the chlorine concentration of the sampling solution collected from the processing solution circulation system over time by an automated spectrophotometric method, and continuously measures the oxidation-reduction potential of the sampling solution. During the measurement by the absorptiometry, the control chlorine is predicted to be optimally controlled by using the change in the redox potential corresponding to the change in the chlorine concentration obtained by the absorptiometry. This is an automatic chlorine concentration management method in which the concentration is calculated and the chlorine concentration in the treatment liquid circulation system is continuously controlled based on this control chlorine concentration.

請求項2に記載された発明は、自動化されたジエチル−p−フェニレンジアミン試薬による吸光光度法により処理液循環系から採取したサンプリング液の遊離残留塩素濃度または残留塩素濃度を時間を空けて測定する塩素濃度計と、上記サンプリング液の酸化還元電位を測定する酸化還元電位計と、上記吸光光度法による塩素濃度計で測定したサンプリング液の遊離残留塩素濃度または残留塩素濃度の濃度変化と上記酸化還元電位計で測定したサンプリング液の酸化還元電位をこのサンプリング液の液温度等により補正した補正酸化還元電位値の変化とを対応させて遊離残留塩素濃度または残留塩素濃度の予測制御係数を算出し、この予測制御係数と最新の酸化還元電位とにより最適に制御するために予測される制御用塩素濃度を算出し、この制御用塩素濃度に基づき、処理液循環系の遊離残留塩素濃度または残留塩素濃度を予め設定された設定値にフィードバック制御する制御信号を算出して出力する制御部と、この制御部から出力された制御信号により処理液循環系の遊離残留塩素濃度または残留塩素濃度を調整する塩素濃度調整部とを具備した塩素濃度の自動管理装置である。   In the invention described in claim 2, the free residual chlorine concentration or the residual chlorine concentration of the sampling liquid collected from the processing liquid circulation system is measured with a time interval by an absorptiometric method using an automated diethyl-p-phenylenediamine reagent. Chlorine concentration meter, oxidation-reduction potentiometer that measures the oxidation-reduction potential of the sampling solution, concentration change of free residual chlorine concentration or residual chlorine concentration of the sampling solution measured with the chlorine concentration meter by the absorptiometry, and the oxidation-reduction The prediction control coefficient of the free residual chlorine concentration or the residual chlorine concentration is calculated by associating the oxidation-reduction potential of the sampling solution measured by the electrometer with the change of the corrected oxidation-reduction potential value corrected by the liquid temperature of this sampling solution, Based on this predictive control coefficient and the latest oxidation-reduction potential, the predicted control chlorine concentration for optimal control is calculated. A control unit that calculates and outputs a control signal for feedback control of the free residual chlorine concentration or the residual chlorine concentration in the treatment liquid circulation system to a preset set value based on the control chlorine concentration, and the control unit that outputs the control signal It is an automatic chlorine concentration management device comprising a free residual chlorine concentration or a chlorine concentration adjusting unit for adjusting a residual chlorine concentration in a processing liquid circulation system according to a control signal.

請求項3に記載された発明は、請求項2記載の塩素濃度の自動管理装置において、自動化されたジエチル−p−フェニレンジアミン試薬による吸光光度法の塩素濃度計が、複数の処理液循環系に対して1つが設けられ、この塩素濃度計に複数の処理液循環系から順次切換えて供給された複数のサンプリング液の遊離残留塩素濃度または残留塩素濃度を順次測定し、酸化還元電位計は、複数の処理液循環系に対してそれぞれ設けられ、複数のサンプリング液の酸化還元電位をそれぞれ測定するものである。   According to a third aspect of the present invention, there is provided the chlorine concentration automatic management apparatus according to the second aspect, wherein an automated spectrophotometric chlorine concentration meter using a diethyl-p-phenylenediamine reagent is provided in a plurality of treatment liquid circulation systems. One is provided, and the chlorine concentration meter sequentially measures the free residual chlorine concentration or the residual chlorine concentration of a plurality of sampling solutions supplied by switching from a plurality of processing liquid circulation systems. Are provided for each of the treatment liquid circulation systems, and each measure the oxidation-reduction potential of a plurality of sampling liquids.

請求項1記載の発明によれば、自動化された吸光光度法により正確な塩素濃度を測定できるとともに、吸光光度法による測定間は、吸光光度法による測定で得られた塩素濃度の濃度変化に対応する酸化還元電位の変化を利用して最適に制御するために予測される制御用塩素濃度を算出し、この制御用塩素濃度に基づき処理液循環系の塩素濃度を連続制御するので、塩素濃度検出用電極の校正機構がなくても、吸光光度法により正確な塩素濃度を継続的に管理できる。   According to the first aspect of the present invention, an accurate chlorine concentration can be measured by an automated spectrophotometric method, and a change in the concentration of the chlorine concentration obtained by the spectrophotometric measurement can be accommodated during the measurement by the spectrophotometric method. The chlorine concentration for control that is predicted to be optimally controlled using the change in the oxidation-reduction potential is calculated, and the chlorine concentration in the processing liquid circulation system is continuously controlled based on this control chlorine concentration, so the chlorine concentration detection Even without an electrode calibration mechanism, accurate chlorine concentration can be continuously managed by absorptiometry.

請求項2記載の発明によれば、自動化された吸光光度法による塩素濃度計により時間を空けて正確な遊離残留塩素濃度または残留塩素濃度を測定できるとともに、この塩素濃度計による測定間は、制御部が、上記正確な遊離残留塩素濃度または残留塩素濃度の濃度変化と、酸化還元電位計で測定した酸化還元電位を液温度等により補正した補正酸化還元電位値の変化とを対応させて遊離残留塩素濃度または残留塩素濃度の予測制御係数を算出し、この予測制御係数と最新の酸化還元電位とにより最適に制御するために予測される制御用塩素濃度を算出し、この制御用塩素濃度に基づき、処理液循環系の遊離残留塩素濃度または残留塩素濃度を予め設定された設定値にフィードバック制御する制御信号を算出して出力するので、塩素濃度検出用電極の校正機構がなくても吸光光度法により正確な遊離残留塩素濃度または残留塩素濃度の継続的管理を行なうことができる。   According to the invention described in claim 2, it is possible to measure an accurate free residual chlorine concentration or a residual chlorine concentration with a time by a chlorine concentration meter by an automated spectrophotometric method, and during the measurement by the chlorine concentration meter, The free residual chlorine concentration corresponding to the exact free residual chlorine concentration or the change in residual chlorine concentration and the change in the corrected redox potential value obtained by correcting the redox potential measured by the redox potential meter with the liquid temperature, etc. Calculate the predictive control coefficient of chlorine concentration or residual chlorine concentration, calculate the control chlorine concentration predicted for optimal control by this predictive control coefficient and the latest oxidation-reduction potential, and based on this control chlorine concentration Because it calculates and outputs a control signal that feedback-controls the free residual chlorine concentration or residual chlorine concentration in the treatment liquid circulation system to a preset value, it can be used for chlorine concentration detection. It is possible to perform continuous control of the exact free residual chlorine concentration or residual chlorine concentration by also absorption photometry without pole calibration mechanism.

請求項3記載の発明によれば、高価な自動化された吸光光度法による塩素濃度計の1つを、複数の処理液循環系に対して有効に利用できる。   According to the invention described in claim 3, one of the expensive and automated spectrophotometric chlorine concentration meters can be effectively used for a plurality of processing liquid circulation systems.

本発明に係る塩素濃度の自動管理方法および自動管理装置の一実施の形態を示す回路図である。It is a circuit diagram showing one embodiment of an automatic management method and automatic management device of chlorine concentration concerning the present invention. 同上自動管理装置が適用されるシステム全体の回路図である。It is a circuit diagram of the whole system to which the same automatic management apparatus is applied. 同上自動管理装置の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of an automatic management apparatus same as the above. 同上自動管理装置の他の実施の形態を示す回路図である。It is a circuit diagram which shows other embodiment of an automatic management apparatus same as the above.

以下、本発明を、図1乃至図3に示された一実施の形態、図4に示された他の実施の形態を参照しながら詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to one embodiment shown in FIGS. 1 to 3 and another embodiment shown in FIG.

図2に示されるように、浴槽、プールなどの処理液槽Tから引き出された配管は、循環ポンプPおよび濾過器Fを経て、処理液槽Tに戻されて、処理液循環系Lを構成している。処理液循環系Lからサンプリング液を採取するための検水管Liが引き出され、塩素濃度としての遊離残留塩素濃度または残留塩素濃度(遊離残留塩素と結合残留塩素とを合わせた全残留塩素の濃度を単に「残留塩素濃度」という)を自動管理する自動管理装置Mに引き込まれている。この自動管理装置Mからは次亜塩素酸ソーダを処理液循環系に供給するための次亜塩注入管Loが引き出され、処理液循環系Lに引き込まれている。   As shown in FIG. 2, the piping drawn out from the processing liquid tank T such as a bathtub or a pool is returned to the processing liquid tank T through the circulation pump P and the filter F, thereby forming the processing liquid circulation system L. is doing. The sample pipe Li for extracting the sampling liquid from the processing liquid circulation system L is drawn, and the free residual chlorine concentration or residual chlorine concentration as the chlorine concentration (the concentration of the total residual chlorine combined with the free residual chlorine and the combined residual chlorine) It is drawn into an automatic management device M that automatically manages “residual chlorine concentration”. A hypochlorite injection pipe Lo for supplying sodium hypochlorite to the treatment liquid circulation system is drawn out from the automatic management apparatus M and drawn into the treatment liquid circulation system L.

図1に示されるように、遊離残留塩素濃度または残留塩素濃度の自動管理装置Mは、自動化されたジエチル−p−フェニレンジアミン試薬による吸光光度法により処理液循環系から採取したサンプリング液の遊離残留塩素濃度または残留塩素濃度を時間を空けて測定する塩素濃度計Aと、上記サンプリング液の酸化還元電位を測定する酸化還元電位計Bと、上記吸光光度法による測定間は、上記吸光光度法による測定で得られた遊離残留塩素濃度または残留塩素濃度の濃度変化に対応する上記酸化還元電位の変化を利用して最適に制御するために予測される制御用塩素濃度を算出し、この制御用塩素濃度に基づき処理液循環系Lの遊離残留塩素濃度または残留塩素濃度を連続制御する制御信号を算出し出力する制御部Cと、この制御部Cから出力された制御信号により処理液循環系の遊離残留塩素濃度または残留塩素濃度を調整する塩素濃度調整部Dとを具備している。   As shown in FIG. 1, the free residual chlorine concentration or the automatic management device M for residual chlorine concentration is a free residual of sampling solution collected from a processing solution circulation system by an absorptiometric method using an automated diethyl-p-phenylenediamine reagent. Between the chlorine concentration meter A that measures the chlorine concentration or the residual chlorine concentration with time, the oxidation-reduction potentiometer B that measures the oxidation-reduction potential of the sampling solution, and the measurement by the absorptiometry, the absorptiometry is used. Calculate the control chlorine concentration predicted for optimal control using the above-mentioned change in redox potential corresponding to the change in free residual chlorine concentration or residual chlorine concentration obtained by measurement. A control unit C that calculates and outputs a control signal for continuously controlling the free residual chlorine concentration or the residual chlorine concentration of the processing liquid circulation system L based on the concentration; It has and a chlorine concentration adjusting unit D for adjusting the free residual chlorine concentration or residual chlorine concentration of the treatment liquid circulation system by the force control signal.

すなわち、上記制御部Cは、上記吸光光度法による塩素濃度計Aで時間を空けて測定したサンプリング液の遊離残留塩素濃度または残留塩素濃度の濃度変化と、上記酸化還元電位計Bで測定したサンプリング液の酸化還元電位を予測用測定値としてこの予測用酸化還元電位を上記サンプリング液の液温度等により補正した補正酸化還元電位値の変化とを対応させて、遊離残留塩素濃度または残留塩素濃度の予測制御係数を算出し、上記吸光光度法による塩素濃度計Aで遊離残留塩素濃度または残留塩素濃度を測定する時以外は、この予測制御係数と上記酸化還元電位計Bで測定した最新の予測用酸化還元電位とによって最適に制御するために予測される制御用塩素濃度を算出し、この制御用塩素濃度に基づき、処理液循環系の遊離残留塩素濃度または残留塩素濃度を予め設定された設定値となるようにフィードバック制御する制御信号を算出し出力するものである。   That is, the control unit C is configured to measure the free residual chlorine concentration or the change in the residual chlorine concentration of the sampling solution measured with the spectrophotometric chlorine concentration meter A and the sampling measured by the redox electrometer B. Using the oxidation-reduction potential of the liquid as a predicted measurement value, the predicted redox potential is correlated with the change in the corrected oxidation-reduction potential value corrected by the liquid temperature of the sampling liquid, etc. A predictive control coefficient is calculated, and this is the latest predictive coefficient measured with the predictive control coefficient and the oxidation-reduction potentiometer B except when the free residual chlorine concentration or residual chlorine concentration is measured with the chlorine concentration meter A by the spectrophotometry. The control chlorine concentration that is predicted to be optimally controlled by the oxidation-reduction potential is calculated. Based on this control chlorine concentration, the concentration of free residual chlorine in the treatment liquid circulation system is calculated. Or the residual chlorine concentration is calculated a control signal for feedback control so that the predetermined set value and outputs.

吸光光度法による塩素濃度計Aは、ジエチル−p−フェニレンジアミン法(いわゆるDPD法)を自動化した遊離残留塩素濃度または残留塩素濃度の測定器であり、このDPD法は、厚労省が定める遊離残留塩素の濃度、または遊離残留塩素と結合残留塩素とを合わせた全残留塩素の濃度の測定法で、公衆浴場の浴槽水、プールや水道水などの遊離残留塩素または全残留塩素の濃度を測定する公定法であり、ジエチル−p−フェニレンジアミン試薬(いわゆるDPD試薬)をサンプリング液に混ぜて発色させた上で、そのサンプリング液の吸光光度を測定して遊離残留塩素濃度または残留塩素濃度を自動測定する。   The spectrophotometric chlorine concentration meter A is a measuring device for free residual chlorine concentration or residual chlorine concentration obtained by automating the diethyl-p-phenylenediamine method (so-called DPD method). Measures the concentration of free residual chlorine or total residual chlorine in public bath tub water, pools, tap water, etc., by measuring the concentration of residual chlorine, or the total residual chlorine concentration of free residual chlorine and combined residual chlorine This is an official method, in which diethyl-p-phenylenediamine reagent (so-called DPD reagent) is mixed with the sampling solution to develop color, and then the absorbance of the sampling solution is measured to automatically determine the free residual chlorine concentration or residual chlorine concentration. taking measurement.

すなわち、上記自動管理装置Mは、遊離残留塩素のみの濃度を自動管理することができるとともに、DPD試薬を変えることにより、またはDPD試薬を追加することにより、残留塩素および結合残留塩素の濃度を自動管理することもできる。   That is, the automatic management device M can automatically manage the concentration of only free residual chlorine, and automatically change the concentration of residual chlorine and bound residual chlorine by changing the DPD reagent or adding the DPD reagent. It can also be managed.

塩素濃度計Aの吸光光度測定部A1は、吸光度セル1の下部内に撹拌機2が設けられ、前記検水管Liがサンプル水電磁弁3を経て吸光度セル1の下部に接続され、吸光度セル1の左右に発光器4と受光器5とが相対して配置され、さらに、吸光度セル1に対してDPD試薬用定量ポンプ6によりDPD試薬7を供給する管路が接続され、また、吸光度セル1に対してリン酸緩衝液用定量ポンプ8によりpHの変動を抑制するリン酸緩衝液9を供給する管路が接続されている。   The absorptiometry part A1 of the chlorine concentration meter A is provided with a stirrer 2 in the lower part of the absorbance cell 1, the sample tube Li is connected to the lower part of the absorbance cell 1 through the sample water electromagnetic valve 3, and the absorbance cell 1 The light-emitting device 4 and the light-receiving device 5 are arranged opposite to each other on the left and right sides, and a pipe for supplying the DPD reagent 7 by the DPD reagent metering pump 6 is connected to the absorbance cell 1. On the other hand, a pipe for supplying a phosphate buffer solution 9 that suppresses fluctuations in pH by a phosphate buffer solution pump 8 is connected.

そして、この自動化された吸光光度法による塩素濃度計Aは、吸光度セル1内にDPD試薬用定量ポンプ6によりDPD試薬7を供給して発色させるとともにリン酸緩衝液用定量ポンプ8によりリン酸緩衝液9を供給し、撹拌機2によりDPD試薬7およびリン酸緩衝液9をサンプリング液と攪拌して発色状態を安定させ、発光器4から、DPD試薬で遊離残留塩素濃度または残留塩素濃度に応じて発色されたサンプリング液を透過して受光器5に到達した光の強度からサンプリング液の吸光光度を測定して、遊離残留塩素濃度または残留塩素濃度を自動測定するので、高精度の遊離残留塩素濃度または残留塩素濃度に関する測定値が得られるものの、一定量のサンプリング液をいったん貯留して撹拌機2によりDPD試薬を均一に攪拌するバッチ式のため、連続測定には適さず、遊離残留塩素濃度または残留塩素濃度が急速に変化する場合に対応できない。   This automated spectrophotometer chlorine concentration meter A supplies the DPD reagent 7 into the absorbance cell 1 by the DPD reagent metering pump 6 to cause color development and at the same time, phosphate buffer by the phosphate buffer metering pump 8. The liquid 9 is supplied, and the DPD reagent 7 and the phosphate buffer 9 are stirred with the sampling liquid by the stirrer 2 to stabilize the color development state. From the light emitter 4, depending on the free residual chlorine concentration or the residual chlorine concentration with the DPD reagent The absorbance of the sampling solution is measured from the intensity of the light that has passed through the colored sampling solution and reaches the light receiver 5, and the free residual chlorine concentration or residual chlorine concentration is automatically measured. Although a measurement value relating to the concentration or residual chlorine concentration can be obtained, a certain amount of sampling solution is once stored and the DPD reagent is uniformly stirred by the stirrer 2 For pitch type, not suitable for continuous measurement can not cope when free residual chlorine concentration or residual chlorine concentration is rapidly changing.

一方、酸化還元電位計Bの測定部B1は、酸化還元電位を測定するための2つの電極(以下、ORP電極という)10がORP電極用ホルダ11の内部に設けられ、前記検水管Liがサンプル水調整弁12を経てORP電極用ホルダ11の下部に接続されている。   On the other hand, the measuring part B1 of the oxidation-reduction potentiometer B has two electrodes (hereinafter referred to as ORP electrodes) 10 for measuring the oxidation-reduction potential provided inside the ORP electrode holder 11, and the water sample tube Li is a sample. It is connected to the lower part of the ORP electrode holder 11 through the water regulating valve 12.

そして、ORP電極10は、比較極および測定極の2つの電極間の電位差により酸化還元電位、すなわち物質の酸化力または還元力を測定可能な電位差(電圧)を測定する電極である。+は酸化力を表わす。一定電圧をかけた電極間に流れる電流値により塩素濃度を測定するポーラログラフ法の電極と比べてシンプルであり安価であるが、酸化還元力を測定するための電極であり、塩素濃度を正確に測定するには、他の影響を受けやすく、単体での塩素濃度計としては難がある。一方、このORP電極10で得られる酸化還元電位は、塩素濃度により変化することから、塩素濃度の変化の度合により塩素濃度値を推定でき、液温度やpH等を考慮することにより、より正確な濃度変化を予測することは、十分可能である。pHや電極の経時変化などの急激な変化をしない要因は、酸化還元電位測定値に含めて取り扱って影響はない。   The ORP electrode 10 is an electrode that measures an oxidation-reduction potential, that is, a potential difference (voltage) capable of measuring the oxidizing power or reducing power of a substance by the potential difference between the two electrodes of the comparison electrode and the measurement electrode. + Represents oxidizing power. Compared to polarographic electrodes that measure the chlorine concentration based on the value of the current that flows between electrodes at a constant voltage, this electrode is simple and inexpensive, but it is an electrode for measuring the redox power, and it accurately measures the chlorine concentration. Therefore, it is easily affected by other effects and is difficult as a single chlorine concentration meter. On the other hand, since the oxidation-reduction potential obtained by the ORP electrode 10 changes depending on the chlorine concentration, the chlorine concentration value can be estimated by the degree of change in the chlorine concentration, and more accurate by considering the liquid temperature, pH, etc. It is well possible to predict the concentration change. Factors that do not undergo rapid changes such as pH and electrode aging are included in the redox potential measurement and are not affected.

塩素濃度調整部Dは、次亜塩素酸ソーダ13を次亜塩注入用定量ポンプ14により注入用逆止弁15を介して処理液循環系Lに注入するものであり、制御部Cから出力された制御信号により次亜塩注入用定量ポンプ14のポンプ吐出量が制御され、このポンプ吐出量に応じて処理液循環系Lへの次亜塩注入量が決定される。   The chlorine concentration adjusting unit D is for injecting sodium hypochlorite 13 into the treatment liquid circulation system L via the injection check valve 15 by the hypochlorite injection metering pump 14 and is output from the control unit C. The pump discharge amount of the hypochlorite injection metering pump 14 is controlled by the control signal, and the hypochlorite injection amount to the processing liquid circulation system L is determined according to the pump discharge amount.

制御部Cでは、塩素濃度計Aの吸光光度測定部A1で得られた吸光光度データから遊離残留塩素濃度または残留塩素濃度を算出する塩素濃度演算部17と、酸化還元電位計BのORP電極変換器18とが、コントローラ19に接続され、塩素濃度演算部17で算出された遊離残留塩素濃度または残留塩素濃度(DPD塩素濃度という)と、酸化還元電位計BのORP電極変換器18で変換された酸化還元電位(ORP値という)とが、コントローラ19に入力される。塩素濃度演算部17で得られたDPD塩素濃度は、塩素濃度演算部17に接続された記録計20で記録される。   In the control unit C, a chlorine concentration calculation unit 17 that calculates free residual chlorine concentration or residual chlorine concentration from the absorbance data obtained by the absorbance measurement unit A1 of the chlorine concentration meter A, and ORP electrode conversion of the oxidation-reduction potentiometer B Is connected to the controller 19 and is converted by the free residual chlorine concentration or residual chlorine concentration (referred to as DPD chlorine concentration) calculated by the chlorine concentration calculation unit 17 and the ORP electrode converter 18 of the oxidation-reduction potentiometer B. The redox potential (referred to as ORP value) is input to the controller 19. The DPD chlorine concentration obtained by the chlorine concentration calculation unit 17 is recorded by a recorder 20 connected to the chlorine concentration calculation unit 17.

検水管Liには、サンプリング液の液温度を検出する温度センサ21が接続され、この温度センサ21で得られたデータ取得ラインは、制御部Cのコントローラ19に接続されている。なお、処理液循環系の液温度が一定に制御される場合は、その液温度を制御部Cのコントローラ19に入力しておけば良く、塩素濃度管理のための温度センサは不要となる。   A temperature sensor 21 for detecting the liquid temperature of the sampling liquid is connected to the test pipe Li, and a data acquisition line obtained by the temperature sensor 21 is connected to the controller 19 of the control unit C. When the liquid temperature of the processing liquid circulation system is controlled to be constant, the liquid temperature may be input to the controller 19 of the control unit C, and a temperature sensor for managing the chlorine concentration is not necessary.

制御部Cのコントローラ19は、上記吸光光度法による塩素濃度計Aで測定したサンプリング液の遊離残留塩素濃度または残留塩素濃度(DPD塩素濃度)の濃度変化と、上記酸化還元電位計Bで測定したサンプリング液の酸化還元電位(ORP値)をこのサンプリング液の液温度等により補正した補正酸化還元電位値(補正ORP値という)の変化とを対応させて、遊離残留塩素濃度または残留塩素濃度の予測制御係数(予測制御係数という)を算出し、この予測制御係数と最新のORP値とにより最適に制御するために予測される制御用塩素濃度(制御用塩素濃度という)を算出し、この制御用塩素濃度に基づき、処理液循環系の遊離残留塩素濃度または残留塩素濃度を予め設定された設定値にフィードバック制御する制御信号を算出し出力する機能を備えている。   The controller 19 of the controller C measures the change in free residual chlorine concentration or residual chlorine concentration (DPD chlorine concentration) of the sampling solution measured by the chlorine concentration meter A by the above-mentioned spectrophotometry and the above redox electrometer B. Prediction of free residual chlorine concentration or residual chlorine concentration by correlating with a change in a corrected oxidation-reduction potential value (referred to as a corrected ORP value) obtained by correcting the oxidation-reduction potential (ORP value) of the sampling solution according to the liquid temperature of the sampling solution. A control coefficient (referred to as a predicted control coefficient) is calculated, and a control chlorine concentration (referred to as a control chlorine concentration) that is predicted to be optimally controlled by the predicted control coefficient and the latest ORP value is calculated. Based on the chlorine concentration, a control signal for feedback control of the free residual chlorine concentration or residual chlorine concentration in the treatment liquid circulation system to a preset set value is calculated. It has a function to be.

すなわち、制御部Cのコントローラ19は、算出された制御用塩素濃度と、予め設定入力されたDPD塩素濃度の設定値とを比較して、その差がなくなるように次亜塩注入用定量ポンプ14のポンプ吐出量(処理液循環系Lへの次亜塩注入量)をフィードバック制御する制御信号を算出して出力する算出・制御機能を備えている。   That is, the controller 19 of the control unit C compares the calculated control chlorine concentration with the preset value of the DPD chlorine concentration set in advance, so that the difference is eliminated, and the hypochlorite injection metering pump 14 Is provided with a calculation / control function for calculating and outputting a control signal for feedback control of the pump discharge amount (the hypochlorite injection amount into the processing liquid circulation system L).

このように、本自動管理装置Mを用いた自動管理方法は、測定精度を確保できるDPD塩素濃度をベースにして、ポンプ制御などの連続制御に適するORP値を補助的に用い、このORP値に液温度等の補正をしてDPD塩素濃度予測用の補正ORP値を算出し、この補正ORP値の変化とDPD塩素濃度の濃度変化とを対応させて補正ORP値のDPD塩素濃度への予測修正係数である予測制御係数を算出し、この予測制御係数を最新のORP値に適用することで制御用塩素濃度を算出し、バッチ式測定法によるため連続測定ができないDPD法の非測定時のデータをこの制御用塩素濃度により補い、ポンプ吐出量などを連続制御する。   As described above, the automatic management method using the automatic management apparatus M uses the ORP value suitable for continuous control such as pump control based on the DPD chlorine concentration that can ensure the measurement accuracy. The correction ORP value for predicting the DPD chlorine concentration is calculated by correcting the liquid temperature, etc., and the correction of the correction ORP value to the DPD chlorine concentration is corrected by associating the change of the correction ORP value with the concentration change of the DPD chlorine concentration. Calculates the predictive control coefficient, which is a coefficient, calculates the chlorine concentration for control by applying this predictive control coefficient to the latest ORP value, and does not allow continuous measurement because of the batch measurement method. Is compensated by this control chlorine concentration, and the pump discharge amount and the like are continuously controlled.

次に、図3は、補完用塩素濃度を算出する算出フローを示す。この図3中の丸数字は、制御手順を示すステップ番号である。   Next, FIG. 3 shows a calculation flow for calculating the supplemental chlorine concentration. The circled numbers in FIG. 3 are step numbers indicating control procedures.

(ステップ1)
自動化された吸光光度法による塩素濃度計Aにより、正確なDPD塩素濃度a1(mg/L)を測定する。このDPD塩素濃度a1(mg/L)は、記録計20によって記録する。
(Step 1)
Accurate DPD chlorine concentration a1 (mg / L) is measured by a chlorine concentration meter A by an automated spectrophotometric method. The DPD chlorine concentration a1 (mg / L) is recorded by the recorder 20.

(ステップ2)
上記吸光光度法による塩素濃度計Aにより測定したDPD塩素濃度a1(mg/L)と、DPD塩素濃度設定値との差から、次亜塩注入用定量ポンプ14の吐出量を制御する制御信号をコントローラ19により算出して出力する。例えば、DPD塩素濃度a1(mg/L)が、DPD塩素濃度設定値を下回る場合は、その程度に応じて次亜塩注入用定量ポンプ14の吐出量を増加させ、次亜塩注入用定量ポンプ14から注入用逆止弁15を経て処理液循環系Lに注入される次亜塩素酸ソーダ13の注入量を増加させ、逆に、DPD塩素濃度a1(mg/L)が、その設定値を上回る場合は、その程度に応じて次亜塩注入用定量ポンプ14の吐出量を低下させ、場合によっては停止させる。
(Step 2)
Based on the difference between the DPD chlorine concentration a1 (mg / L) measured with the chlorine concentration meter A by the absorptiometry and the DPD chlorine concentration set value, a control signal for controlling the discharge amount of the hypochlorite injection metering pump 14 is provided. Calculated by the controller 19 and output. For example, when the DPD chlorine concentration a1 (mg / L) is lower than the DPD chlorine concentration set value, the discharge amount of the hypochlorite injection metering pump 14 is increased according to the degree, and the hypochlorite injection metering pump Increase the injection amount of sodium hypochlorite 13 injected into the processing liquid circulation system L from 14 through the check valve 15 for injection, and conversely, the DPD chlorine concentration a1 (mg / L) When it exceeds, the discharge amount of the hypochlorite injection metering pump 14 is reduced according to the degree, and in some cases it is stopped.

(ステップ3)
前回の吸光光度法による塩素濃度計Aの測定が行なわれてから、一定時間経過したか否かを常に判断し、一定時間ごと例えば1時間ごとに吸光光度法による塩素濃度計Aの測定を実行する。吸光光度法による塩素濃度計Aの測定を行なう間は、ステップ4以下の制御手順に入る。
(Step 3)
Always determine whether a certain amount of time has passed since the previous measurement of the chlorine concentration meter A by the spectrophotometric method, and execute the measurement of the chlorine concentration meter A by the spectrophotometric method every certain time, for example every hour To do. During the measurement of the chlorine concentration meter A by the absorptiometry, the control procedure after step 4 is entered.

(ステップ4)
吸光光度法による塩素濃度計Aの測定を行なわないときは、酸化還元電位計BによりDPD塩素濃度予測用のORP値b(mV)を測定する。
(Step 4)
When the measurement of the chlorine concentration meter A by the absorptiometry is not performed, the ORP value b (mV) for predicting the DPD chlorine concentration is measured by the oxidation-reduction potentiometer B.

(ステップ5)
温度センサ21により検出されたDPD塩素濃度予測用の液温度t(K)を測定する。
(Step 5)
The liquid temperature t (K) for predicting the DPD chlorine concentration detected by the temperature sensor 21 is measured.

(ステップ6)
ステップ1〜3の吸光光度法による塩素濃度計Aの測定により、DPD塩素濃度a1(mg/L)を新しく測定したか否かを判断する。
(Step 6)
It is determined whether or not the DPD chlorine concentration a1 (mg / L) has been newly measured by the measurement of the chlorine concentration meter A by the absorptiometry in steps 1 to 3.

(ステップ7)
ステップ6の吸光光度法による測定でDPD塩素濃度a1(mg/L)を新しく測定した場合は、得られた最新のDPD塩素濃度a1(mg/L)の濃度変化に対応して、DPD塩素濃度予測用のORP値b(mV)および液温度t(K)等によって補正された予測用補正ORP値がどの程度変化したかを算出し、このDPD塩素濃度a1(mg/L)の濃度変化と補正ORP値の変化との対応関係から、予測制御係数Xを算出する。
(Step 7)
When DPD chlorine concentration a1 (mg / L) is newly measured by the spectrophotometric measurement in step 6, the DPD chlorine concentration corresponding to the latest change in DPD chlorine concentration a1 (mg / L) obtained. Calculate how much the predicted correction ORP value corrected by the ORP value b (mV) for prediction and the liquid temperature t (K) has changed, and the concentration change of this DPD chlorine concentration a1 (mg / L) A predictive control coefficient X is calculated from the correspondence with the change in the corrected ORP value.

例えば、最新のDPD塩素濃度a1(mg/L) の濃度変化と、そのときのDPD塩素濃度予測用のORP値b(mV)を液温度t(K)等で補正した補正ORP値の変化とを対応させて、補正ORP値の変化値に予測制御係数Xを掛けることでDPD塩素濃度a1(mg/L)の濃度変化を予測できるような予測制御係数Xを算出する。   For example, the latest change in the DPD chlorine concentration a1 (mg / L) and the change in the corrected ORP value obtained by correcting the ORP value b (mV) for predicting the DPD chlorine concentration at that time by the liquid temperature t (K), etc. And a predicted control coefficient X that can predict a change in the DPD chlorine concentration a1 (mg / L) is calculated by multiplying the change value of the corrected ORP value by the predicted control coefficient X.

この予測制御係数Xは、複数回のデータの平均により決定することが望ましい。   The predictive control coefficient X is preferably determined by averaging a plurality of data.

(ステップ8)
最新のDPD塩素濃度予測用のORP値b(mV)に、上記予測制御係数Xを適用して、予測される制御用塩素濃度a2(mg/L)を算出する。例えば、最新のORP値b(mV)に予測制御係数Xを掛けることで予測される制御用塩素濃度a2(mg/L)を算出する。液温度t(K)等が変化している場合は、ORP値b(mV)を液温度等で補正した値に、上記予測制御係数Xを適用する。
(Step 8)
The predicted control chlorine concentration a2 (mg / L) is calculated by applying the predicted control coefficient X to the latest DPD chlorine concentration prediction ORP value b (mV). For example, the control chlorine concentration a2 (mg / L) predicted by multiplying the latest ORP value b (mV) by the predicted control coefficient X is calculated. When the liquid temperature t (K) or the like changes, the predicted control coefficient X is applied to a value obtained by correcting the ORP value b (mV) with the liquid temperature or the like.

(ステップ9)
ステップ8で得られた制御用塩素濃度a2(mg/L)と、DPD塩素濃度設定値との差から、次亜塩注入用定量ポンプ14の吐出量を制御する制御信号をコントローラ19により算出して出力する。例えば、制御用塩素濃度a2(mg/L)が、DPD塩素濃度設定値を下回る場合は、その程度に応じて次亜塩注入用定量ポンプ14の吐出量を増加させ、次亜塩注入用定量ポンプ14から注入用逆止弁15を経て処理液循環系Lに注入される次亜塩素酸ソーダ13の注入量を増加させる。
(Step 9)
From the difference between the control chlorine concentration a2 (mg / L) obtained in step 8 and the DPD chlorine concentration set value, the controller 19 calculates a control signal for controlling the discharge amount of the hypochlorite injection metering pump 14. Output. For example, when the control chlorine concentration a2 (mg / L) is lower than the DPD chlorine concentration set value, the discharge amount of the hypochlorite injection metering pump 14 is increased according to the degree, and the hypochlorite injection fixed amount The injection amount of sodium hypochlorite 13 injected from the pump 14 through the check valve 15 for injection into the processing liquid circulation system L is increased.

上記予測制御係数Xは、実際に測定されたDPD塩素濃度a1(mg/L)と制御用塩素濃度a2(mg/L)との差が小さくなるように、オートチューニング機能を持たせることにより、最適の制御が可能となる。   The predictive control coefficient X has an auto-tuning function so that the difference between the actually measured DPD chlorine concentration a1 (mg / L) and the control chlorine concentration a2 (mg / L) is reduced. Optimal control is possible.

このように、図1乃至図3に示された実施の形態によれば、吸光光度法により正確なDPD塩素濃度a1を測定できるとともに、吸光光度法による測定間は、吸光光度法による測定で得られたDPD塩素濃度a1の濃度変化に対応するORP値bの変化を利用して制御用塩素濃度a2を算出し、この制御用塩素濃度a2に基づき処理液循環系Lの遊離残留塩素濃度または残留塩素濃度を連続制御するので、従来のような塩素濃度検出用電極の校正機構がなくても、吸光光度法により正確な遊離残留塩素濃度または残留塩素濃度を継続的に管理できる。   As described above, according to the embodiment shown in FIG. 1 to FIG. 3, the accurate DPD chlorine concentration a1 can be measured by the absorptiometry, and the interval between the absorptiometry can be obtained by the absorptiometry. The control chlorine concentration a2 is calculated using the change in the ORP value b corresponding to the change in the DPD chlorine concentration a1, and the free residual chlorine concentration or residual in the processing liquid circulation system L is calculated based on the control chlorine concentration a2. Since the chlorine concentration is continuously controlled, the accurate free residual chlorine concentration or residual chlorine concentration can be continuously managed by the absorptiometry without the conventional calibration mechanism of the chlorine concentration detection electrode.

すなわち、吸光光度法による塩素濃度計Aにより時間を空けて正確なDPD塩素濃度a1を測定できるとともに、この塩素濃度計Aによる測定を行えない間は、制御部Cのコントローラ19は、上記正確なDPD塩素濃度a1の濃度変化と、酸化還元電位計Bで測定したサンプリング液のORP値bを液温度tにより補正したDPD塩素濃度予測用補正ORP値の変化とを対応させて、予測制御係数Xを算出し、この予測制御係数Xと最新のORP値bとにより予測される制御用塩素濃度a2を算出し、この制御用塩素濃度a2に基づき、制御部Cのコントローラ19は、処理液循環系の遊離残留塩素濃度または残留塩素濃度を予め設定された設定値にフィードバック制御する制御信号を算出して出力するので、塩素濃度検出用電極の校正機構がなくても吸光光度法により正確な遊離残留塩素濃度または残留塩素濃度の継続的管理を行なうことができる。要するに、人手で電極間のスパン調整をしなければならない手間のかかるポーラログラフ電極と異なり、シンプルで安価なORP電極10による連続測定で、信頼性の高いDPD塩素濃度を高精度に自動的に補完できる。   That is, while it is possible to measure the accurate DPD chlorine concentration a1 with time by the chlorine concentration meter A by the absorptiometry, and while the measurement by the chlorine concentration meter A cannot be performed, the controller 19 of the control unit C performs the above accurate measurement. A prediction control coefficient X is obtained by associating the change in the DPD chlorine concentration a1 with the change in the correction ORP value for predicting the DPD chlorine concentration obtained by correcting the ORP value b of the sampling solution measured by the oxidation-reduction potentiometer B with the solution temperature t. And the control chlorine concentration a2 predicted by the predicted control coefficient X and the latest ORP value b is calculated. Based on this control chlorine concentration a2, the controller 19 of the control unit C determines the treatment liquid circulation system. The control signal for feedback control of the free residual chlorine concentration or residual chlorine concentration to a preset set value is calculated and output, so even without the chlorine concentration detection electrode calibration mechanism It is possible to perform continuous control of the exact free residual chlorine concentration or residual chlorine concentration by degrees method. In short, unlike the polarographic electrode, which requires manual adjustment of the span between the electrodes, continuous measurement with the simple and inexpensive ORP electrode 10 can automatically compensate for highly reliable DPD chlorine concentration with high accuracy. .

次に、図4は、他の実施の形態を示す。   Next, FIG. 4 shows another embodiment.

図4に示されるように、浴槽、プールなどの複数の処理液槽T1,T2,T3から引き出されたそれぞれの配管は、それぞれの循環ポンプP1,P2,P3およびそれぞれの濾過器F1,F2,F3を経て、それぞれの処理液槽T1,T2,T3に戻されて、それぞれの処理液循環系L1,L2,L3を構成している。それぞれの処理液循環系L1,L2,L3からそれぞれのサンプリング液を採取するための検水管Liが引き出され、それぞれの遊離残留塩素濃度または残留塩素濃度を自動管理する自動管理装置M1,M2,M3に引き込まれている。それぞれの自動管理装置M1,M2,M3からは次亜塩素酸ソーダをそれぞれの処理液循環系L1,L2,L3に供給するための次亜塩注入管Loが引き出され、それぞれの処理液循環系L1,L2,L3に引き込まれている。   As shown in FIG. 4, the pipes drawn from a plurality of treatment liquid tanks T1, T2, T3 such as a bathtub and a pool are connected to respective circulation pumps P1, P2, P3 and respective filters F1, F2, After passing through F3, they are returned to the respective treatment liquid tanks T1, T2, and T3 to constitute respective treatment liquid circulation systems L1, L2, and L3. An automatic management device M1, M2, M3 for automatically managing each free residual chlorine concentration or residual chlorine concentration is drawn out from each processing liquid circulation system L1, L2, L3, and a sampling pipe Li for extracting each sampling liquid is drawn out. Has been drawn into. From each of the automatic management devices M1, M2, M3, hypochlorite injection pipes Lo for supplying sodium hypochlorite to the respective treatment liquid circulation systems L1, L2, L3 are drawn out, and the respective treatment liquid circulation systems. It is drawn into L1, L2, and L3.

吸光光度法による塩素濃度計Aの吸光光度測定部A1および塩素濃度演算部17(図1参照)は、複数の処理液循環系L1,L2,L3に対して1つの自動管理装置M1のみに設けられている。   The spectrophotometric measurement unit A1 and the chlorine concentration calculation unit 17 (see FIG. 1) of the chlorine concentration meter A by the spectrophotometry method are provided in only one automatic management device M1 for the plurality of processing liquid circulation systems L1, L2, and L3. It has been.

処理液循環系L2,L3のサンプリング液採取用の検水管Liからそれぞれの検水管Li2,Li3が引き出され、これらの検水管Li2,Li3が、それぞれのサンプル水電磁弁23,24を経て自動管理装置M1の吸光光度測定部A1とサンプル水電磁弁3との間の管路に接続されている。   The test pipes Li2 and Li3 are drawn from the test pipe Li for sampling liquid sampling of the processing liquid circulation systems L2 and L3, and these test pipes Li2 and Li3 are automatically managed via the sample water solenoid valves 23 and 24, respectively. It is connected to a pipe line between the absorbance measuring unit A1 of the apparatus M1 and the sample water electromagnetic valve 3.

そして、サンプル水電磁弁3を開き、サンプル水電磁弁23,24を閉じることで、処理液循環系L1のサンプル水を吸光光度測定部A1に供給し、また、サンプル水電磁弁23を開き、サンプル水電磁弁3,24を閉じることで、処理液循環系L2のサンプル水を吸光光度測定部A1に供給し、また、サンプル水電磁弁24を開き、サンプル水電磁弁3,23を閉じることで、処理液循環系L3のサンプル水を吸光光度測定部A1に供給する。このようにして、複数の処理液循環系L1,L2,L3の処理液を共通の吸光光度測定部A1に順次切換えて供給し、この吸光光度測定部A1と塩素濃度演算部17(図1参照)とにより、複数の処理液循環系L1,L2,L3の遊離残留塩素濃度または残留塩素濃度(DPD塩素濃度という)を順次測定する。   Then, by opening the sample water solenoid valve 3 and closing the sample water solenoid valves 23, 24, the sample water of the treatment liquid circulation system L1 is supplied to the absorptiometry unit A1, and the sample water solenoid valve 23 is opened, By closing the sample water solenoid valve 3, 24, the sample water of the processing liquid circulation system L2 is supplied to the absorptiometry unit A1, and the sample water solenoid valve 24 is opened and the sample water solenoid valve 3, 23 is closed. Then, the sample water of the treatment liquid circulation system L3 is supplied to the absorptiometry unit A1. In this way, the processing solutions of the plurality of processing solution circulation systems L1, L2, and L3 are sequentially switched and supplied to the common absorptiometry unit A1, and the absorptiometry unit A1 and the chlorine concentration calculator 17 (see FIG. 1). ), The residual chlorine concentration or residual chlorine concentration (referred to as DPD chlorine concentration) of the plurality of treatment liquid circulation systems L1, L2, and L3 is sequentially measured.

一方、酸化還元電位計Bの測定部B1,B2,B3およびこれらに対応するORP電極変換器18(図1参照)は、複数の処理液循環系L1,L2,L3に対するそれぞれの自動管理装置M1,M2,M3に設けられ、それぞれの処理液循環系L1,L2,L3の酸化還元電位(ORP値という)をそれぞれ測定する。   On the other hand, the measuring units B1, B2, B3 of the oxidation-reduction potentiometer B and the ORP electrode converter 18 (see FIG. 1) corresponding thereto are respectively provided with respective automatic management devices M1 for the plurality of processing liquid circulation systems L1, L2, L3. , M2 and M3, and the oxidation-reduction potentials (referred to as ORP values) of the respective treatment liquid circulation systems L1, L2 and L3 are measured.

この図4に示されるように、測定対象の処理液槽T1,T2,T3が複数の場合は、吸光光度測定部A1への検水ラインをサンプル水電磁弁3,23,24を介して接続し、1台の塩素濃度計Aで濃度を測定する。この塩素濃度計Aは、バッチ式測定のため複数の処理液循環系L1,L2,L3の遊離残留塩素濃度または残留塩素濃度を順次測定することに適している。一方、酸化還元電位計Bの測定部B1,B2,B3は各槽T1,T2,T3の処理液循環系L1,L2,L3にそれぞれ設置してリアルタイムの制御を行なうことに適している。   As shown in FIG. 4, when there are a plurality of treatment liquid tanks T1, T2, and T3 to be measured, a sample water line to the absorptiometry unit A1 is connected via sample water solenoid valves 3, 23, and 24. Then, the concentration is measured with one chlorine concentration meter A. This chlorine concentration meter A is suitable for sequentially measuring the free residual chlorine concentration or residual chlorine concentration of a plurality of processing liquid circulation systems L1, L2, and L3 for batch type measurement. On the other hand, the measuring parts B1, B2, B3 of the oxidation-reduction potentiometer B are suitable for real-time control by being installed in the treatment liquid circulation systems L1, L2, L3 of the tanks T1, T2, T3, respectively.

この図4に示された実施の形態によれば、高価な自動化された吸光光度法による塩素濃度計Aの1つを、複数の処理液循環系L1,L2,L3に対して有効に利用でき、コストが安く済むとともに、安価な酸化還元電位計Bにより、複数の処理液循環系L1,L2,L3のORP値bの変化を常時監視して、吸光光度法による測定で得られたDPD塩素濃度a1の濃度変化に対応するORP値bの変化を利用して制御用塩素濃度a2を算出し、この制御用塩素濃度a2に基づき処理液循環系L1,L2,L3の遊離残留塩素濃度または残留塩素濃度を連続制御するので、従来のような塩素濃度検出用電極の校正機構がなくても、吸光光度法により正確な遊離残留塩素濃度または残留塩素濃度を継続的に管理できる。   According to the embodiment shown in FIG. 4, one of the expensive automated spectrophotometric chlorine concentration meters A can be effectively used for a plurality of processing liquid circulation systems L1, L2, and L3. DPD chlorine obtained by absorptiometric measurement by constantly monitoring changes in the ORP values b of a plurality of processing liquid circulation systems L1, L2, and L3 with an inexpensive redox electrometer B The control chlorine concentration a2 is calculated using the change in the ORP value b corresponding to the concentration change of the concentration a1, and the free residual chlorine concentration or residual in the treatment liquid circulation systems L1, L2, L3 is calculated based on the control chlorine concentration a2. Since the chlorine concentration is continuously controlled, the accurate free residual chlorine concentration or residual chlorine concentration can be continuously managed by the absorptiometry without the conventional calibration mechanism of the chlorine concentration detection electrode.

本発明は、処理液循環系の遊離残留塩素濃度または残留塩素濃度の自動管理装置Mの製造および販売などに関する産業において利用できる。   The present invention can be used in industries related to the manufacture and sale of a free residual chlorine concentration or a residual chlorine concentration automatic management device M in a processing liquid circulation system.

A 自動化された吸光光度法による塩素濃度計
B 酸化還元電位計
C 制御部
D 塩素濃度調整部
L,L1,L2,L3 処理液循環系
A Chlorine concentration meter by automated spectrophotometry B Redox potentiometer C Control unit D Chlorine concentration adjustment unit L, L1, L2, L3 Treatment liquid circulation system

Claims (3)

自動化された吸光光度法により処理液循環系から採取したサンプリング液の塩素濃度を時間を置いて測定するとともに、サンプリング液の酸化還元電位を連続的に測定し、
上記吸光光度法による測定間は、上記吸光光度法による測定で得られた塩素濃度の濃度変化に対応する上記酸化還元電位の変化を利用して最適に制御するために予測される制御用塩素濃度を算出し、
この制御用塩素濃度に基づき処理液循環系の塩素濃度を連続制御する
ことを特徴とする塩素濃度の自動管理方法。
While measuring the chlorine concentration of the sampling liquid collected from the processing liquid circulation system by automated spectrophotometry over time, the redox potential of the sampling liquid is continuously measured,
During the measurement by the absorptiometry, the chlorine concentration for control that is predicted for optimal control using the change in the redox potential corresponding to the change in the concentration of chlorine obtained by the absorptiometry To calculate
An automatic chlorine concentration management method characterized by continuously controlling the chlorine concentration of the treatment liquid circulation system based on the chlorine concentration for control.
自動化されたジエチル−p−フェニレンジアミン試薬による吸光光度法により処理液循環系から採取したサンプリング液の遊離残留塩素濃度または残留塩素濃度を時間を空けて測定する塩素濃度計と、
上記サンプリング液の酸化還元電位を測定する酸化還元電位計と、
上記吸光光度法による塩素濃度計で測定したサンプリング液の遊離残留塩素濃度または残留塩素濃度の濃度変化と上記酸化還元電位計で測定したサンプリング液の酸化還元電位をこのサンプリング液の液温度により補正した補正酸化還元電位値の変化とを対応させて遊離残留塩素濃度または残留塩素濃度の予測制御係数を算出し、この予測制御係数と最新の酸化還元電位とにより最適に制御するために予測される制御用塩素濃度を算出し、この制御用塩素濃度に基づき、処理液循環系の遊離残留塩素濃度または残留塩素濃度を予め設定された設定値にフィードバック制御する制御信号を算出して出力する制御部と、
この制御部から出力された制御信号により処理液循環系の遊離残留塩素濃度または残留塩素濃度を調整する塩素濃度調整部と
を具備したことを特徴とする塩素濃度の自動管理装置。
A chlorine concentration meter that measures the free residual chlorine concentration or residual chlorine concentration of a sampling solution collected from a processing solution circulation system by an absorptiometric method using an automated diethyl-p-phenylenediamine reagent with a time interval;
An oxidation-reduction potentiometer for measuring the oxidation-reduction potential of the sampling solution;
The free residual chlorine concentration of the sampling solution measured with the chlorine concentration meter by the absorptiometry or the change in residual chlorine concentration and the oxidation-reduction potential of the sampling solution measured with the oxidation-reduction potentiometer were corrected by the temperature of the sampling solution. Predictive control coefficient of free residual chlorine concentration or residual chlorine concentration is calculated in correspondence with the change of corrected redox potential value, and control is predicted to optimally control by this predictive control coefficient and the latest redox potential A control unit that calculates a chlorine concentration for use and calculates and outputs a control signal that feedback-controls the free residual chlorine concentration or the residual chlorine concentration in the processing liquid circulation system to a preset value based on the control chlorine concentration; ,
An automatic chlorine concentration management device comprising: a free residual chlorine concentration or a chlorine concentration adjusting unit for adjusting a free residual chlorine concentration or a residual chlorine concentration in a processing liquid circulation system according to a control signal output from the control unit.
自動化されたジエチル−p−フェニレンジアミン試薬による吸光光度法の塩素濃度計は、複数の処理液循環系に対して1つが設けられ、この塩素濃度計に複数の処理液循環系から順次切換えて供給された複数のサンプリング液の遊離残留塩素濃度または残留塩素濃度を順次測定し、
酸化還元電位計は、複数の処理液循環系に対してそれぞれ設けられ、複数のサンプリング液の酸化還元電位をそれぞれ測定する
ことを特徴とする請求項2記載の塩素濃度の自動管理装置。
One automated chlorine-concentration meter using diethyl-p-phenylenediamine reagent is provided for a plurality of treatment liquid circulation systems, and this chlorine concentration meter is sequentially switched from a plurality of treatment liquid circulation systems and supplied. Measure the free residual chlorine concentration or residual chlorine concentration of multiple sampled solutions sequentially,
The chlorine concentration automatic management device according to claim 2, wherein the oxidation-reduction potentiometer is provided for each of the plurality of processing liquid circulation systems, and measures the oxidation-reduction potential of each of the plurality of sampling liquids.
JP2010036227A 2010-02-22 2010-02-22 Method and device for automatically managing chlorine concentration Pending JP2011169859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036227A JP2011169859A (en) 2010-02-22 2010-02-22 Method and device for automatically managing chlorine concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036227A JP2011169859A (en) 2010-02-22 2010-02-22 Method and device for automatically managing chlorine concentration

Publications (1)

Publication Number Publication Date
JP2011169859A true JP2011169859A (en) 2011-09-01

Family

ID=44684121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036227A Pending JP2011169859A (en) 2010-02-22 2010-02-22 Method and device for automatically managing chlorine concentration

Country Status (1)

Country Link
JP (1) JP2011169859A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302034B1 (en) 2011-11-15 2013-09-02 삼성중공업 주식회사 Apparatus for treating water and a ship having the same
CN106865912A (en) * 2017-04-11 2017-06-20 盐城工学院 Sewage treatment control method and system
CN107290256A (en) * 2017-06-15 2017-10-24 国网福建省电力有限公司 A kind of concentration of saline fog method for automatic measurement and device
JP2020091118A (en) * 2018-12-03 2020-06-11 栗田工業株式会社 Method or measuring concentration of residual chlorine concentration
CN111488002A (en) * 2019-01-25 2020-08-04 恩德莱斯和豪瑟尔分析仪表两合公司 Regulating unit and regulating system for regulating measured value of measuring medium and regulating method
EP3832299A1 (en) * 2019-12-02 2021-06-09 Carela GmbH Method and device for calibrating an amperometric measuring electrode
CN113126682A (en) * 2021-06-16 2021-07-16 武汉科迪智能环境股份有限公司 Operation control method and device of equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230599A (en) * 1985-07-31 1987-02-09 Mitsubishi Heavy Ind Ltd Pretreatment in pure water making apparatus
JPH11114580A (en) * 1997-10-09 1999-04-27 Ishikawa Kinzoku Kogyo Kk Sterilizing and purifying device
JP2000221165A (en) * 1999-01-29 2000-08-11 Toto Ltd Apparatus for measuring concentration of residual chlorine
JP2000298114A (en) * 1999-04-13 2000-10-24 Merusu Giken:Kk Residual chlorine measuring device
JP2004077169A (en) * 2002-08-12 2004-03-11 Ebara Corp Method for calculating residual substance in liquid, treatment method using the same, and medicine injection control apparatus
JP2006289352A (en) * 2005-03-18 2006-10-26 Hitachi Ltd Chemical solution injecting device, sterilizing device, and deferrizing and sterilizing system
JP2009006316A (en) * 2007-05-30 2009-01-15 Jfe Steel Kk Apparatus and method for continuously treating waste water containing cod component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230599A (en) * 1985-07-31 1987-02-09 Mitsubishi Heavy Ind Ltd Pretreatment in pure water making apparatus
JPH11114580A (en) * 1997-10-09 1999-04-27 Ishikawa Kinzoku Kogyo Kk Sterilizing and purifying device
JP2000221165A (en) * 1999-01-29 2000-08-11 Toto Ltd Apparatus for measuring concentration of residual chlorine
JP2000298114A (en) * 1999-04-13 2000-10-24 Merusu Giken:Kk Residual chlorine measuring device
JP2004077169A (en) * 2002-08-12 2004-03-11 Ebara Corp Method for calculating residual substance in liquid, treatment method using the same, and medicine injection control apparatus
JP2006289352A (en) * 2005-03-18 2006-10-26 Hitachi Ltd Chemical solution injecting device, sterilizing device, and deferrizing and sterilizing system
JP2009006316A (en) * 2007-05-30 2009-01-15 Jfe Steel Kk Apparatus and method for continuously treating waste water containing cod component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302034B1 (en) 2011-11-15 2013-09-02 삼성중공업 주식회사 Apparatus for treating water and a ship having the same
CN106865912A (en) * 2017-04-11 2017-06-20 盐城工学院 Sewage treatment control method and system
CN107290256A (en) * 2017-06-15 2017-10-24 国网福建省电力有限公司 A kind of concentration of saline fog method for automatic measurement and device
CN107290256B (en) * 2017-06-15 2023-07-28 国网福建省电力有限公司 Automatic salt fog concentration measuring method and device
JP2020091118A (en) * 2018-12-03 2020-06-11 栗田工業株式会社 Method or measuring concentration of residual chlorine concentration
JP7172524B2 (en) 2018-12-03 2022-11-16 栗田工業株式会社 Residual chlorine concentration measurement method
CN111488002A (en) * 2019-01-25 2020-08-04 恩德莱斯和豪瑟尔分析仪表两合公司 Regulating unit and regulating system for regulating measured value of measuring medium and regulating method
CN111488002B (en) * 2019-01-25 2024-02-02 恩德莱斯和豪瑟尔分析仪表两合公司 Adjusting unit, adjusting system and adjusting method for adjusting measured value of measuring medium
EP3832299A1 (en) * 2019-12-02 2021-06-09 Carela GmbH Method and device for calibrating an amperometric measuring electrode
CN113126682A (en) * 2021-06-16 2021-07-16 武汉科迪智能环境股份有限公司 Operation control method and device of equipment

Similar Documents

Publication Publication Date Title
JP2011169859A (en) Method and device for automatically managing chlorine concentration
FI126240B (en) Method and device for monitoring and controlling the state of a process
US20210331953A1 (en) Monochloramine water disinfection system and method
JP4775937B2 (en) Real-time control system for composition for lithography process using near-infrared spectrometer and control method therefor
CN105738287B (en) Water Test Kits
CN112960867A (en) Integrated sewage treatment dynamic regulation and control system
JP2019100804A (en) Concentration measurement method, concentration management method, concentration measurement device, and concentration management device
KR20100138555A (en) Apparatus for water treatment and ship having the same
KR101334693B1 (en) Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same
JP4378204B2 (en) Water quality monitoring system
WO2018232505A1 (en) Dark water disinfection and quality control system
JP4840229B2 (en) Method and apparatus for maintaining appropriate concentration of reducing agent in waste water after reduction treatment of waste water containing hexavalent chromium
JP7284634B2 (en) Cooling tower water quality control device and its water quality control method
JP2001318057A (en) Residual chlorine measuring method and its device
JP5077065B2 (en) Continuous treatment apparatus and continuous treatment method for waste water containing COD component
AU2012211358A1 (en) Method for detecting a concentration of chlorate-ions in an aqueous solution, apparatus for detecting a concentration of chlorate-ions and control unit
WO2021247975A1 (en) Real time monitoring of drinking water chlorination
KR20170047470A (en) The method for analysis of Chemical Oxygen Demand
JP2004333280A (en) Concentration-measuring device
KR101494083B1 (en) Method for determining residual ozone decay kinetic constant in ozone water treatment system
KR20070098134A (en) Automatic supplying device for plating solution
US20230166991A1 (en) Methods and systems for streaming current analyzer calibration and reporting
JP2006023148A (en) Chlorine demand amount measuring instrument, water quality control system, chlorine demand amount measuring method and water quality control method
KR101330417B1 (en) Assistant apparatus for measuring concentration
NilSSoN et al. Quicker response to Quality changes in incoming water with decision support for coagulant dosage at görväln drinking water plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130703