JP2019100804A - Concentration measurement method, concentration management method, concentration measurement device, and concentration management device - Google Patents

Concentration measurement method, concentration management method, concentration measurement device, and concentration management device Download PDF

Info

Publication number
JP2019100804A
JP2019100804A JP2017230444A JP2017230444A JP2019100804A JP 2019100804 A JP2019100804 A JP 2019100804A JP 2017230444 A JP2017230444 A JP 2017230444A JP 2017230444 A JP2017230444 A JP 2017230444A JP 2019100804 A JP2019100804 A JP 2019100804A
Authority
JP
Japan
Prior art keywords
component
absorbance
concentration
reduction column
passing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017230444A
Other languages
Japanese (ja)
Other versions
JP6894832B2 (en
Inventor
まやか 安藤
Mayaka Ando
まやか 安藤
小田 将広
Masahiro Oda
将広 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Advantech Co Ltd
Original Assignee
JFE Advantech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Advantech Co Ltd filed Critical JFE Advantech Co Ltd
Priority to JP2017230444A priority Critical patent/JP6894832B2/en
Publication of JP2019100804A publication Critical patent/JP2019100804A/en
Application granted granted Critical
Publication of JP6894832B2 publication Critical patent/JP6894832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To improve accuracy of measurement when measuring concentration of nitrate nitrogen in specimen including nitrite nitrogen and nitrate nitrogen by use of a reduction column.SOLUTION: A concentration measurement method comprises : reacting a specimen including nitrite nitrogen and nitrate nitrogen with color reagent reacting only nitrite nitrogen thereby detecting first absorbance (step S13, S14, S17); reacting the specimen with the color reagent after passing through reduction column thereby detecting second absorbance (step S15-S17); correcting the first absorbance by use of absorbance change rate η that is a ratio of absorbance of nitrite nitrogen standard solution obtained by passing through the reduction column to absorbance obtained by not passing through the reduction column, and measuring concentration of nitrate nitrogen in the specimen before passing through the reduction column based on difference between the corrected first absorbance and the corrected second absorbance, and predetected characteristic information (step S18).SELECTED DRAWING: Figure 7

Description

本発明は、濃度測定方法、濃度管理方法、濃度測定装置、及び濃度管理装置に関する。   The present invention relates to a concentration measurement method, a concentration management method, a concentration measurement device, and a concentration management device.

環境汚染や養殖の状況を把握するための指標の一つとして、海洋河川や工場からの排水に含まれる溶存無機態窒素の濃度を測定している。溶存無機態窒素には、例えば亜硝酸態窒素及び硝酸態窒素がある。
この亜硝酸態窒素及び硝酸態窒素濃度を測定する方法として、例えば海水中の硝酸態窒素及び亜硝酸態窒素の総和濃度を、吸光光度法による紫外吸光スペクトルを計測することにより測定する方法が提案されている(例えば、特許文献1参照。)。
The concentration of dissolved inorganic nitrogen contained in wastewater from marine rivers and factories is measured as one of the indicators for grasping the status of environmental pollution and aquaculture. Dissolved inorganic nitrogen includes, for example, nitrite nitrogen and nitrate nitrogen.
As a method of measuring the concentration of nitrite nitrogen and nitrate nitrogen, for example, a method of measuring the total concentration of nitrate nitrogen and nitrite nitrogen in seawater by measuring the ultraviolet absorption spectrum by absorption spectrophotometry is proposed. (See, for example, Patent Document 1).

また、JIS K 0170−2の第2部「亜硝酸体窒素及び硝酸体窒素」の項には、流れ分析法による水質試験方法として、亜硝酸態窒素及び硝酸態窒素を吸光光度法による流れ分析法を用いて定量するための方法が規定されている(例えば、非特許文献1参照。)。この水質試験方法では、硝酸態窒素を亜硝酸態窒素に還元した後、比色法を用いて分析を行っている。   In addition, in the second part of JIS K 0170-2, “Nitrite nitrogen and nitrate nitrogen”, as a water quality test method by flow analysis, nitrite nitrogen and nitrate nitrogen are analyzed by spectrophotometric flow analysis A method for quantification using a method has been defined (see, for example, Non-Patent Document 1). In this water quality test method, after nitrate nitrogen is reduced to nitrite nitrogen, analysis is performed using a colorimetric method.

つまり、試料に含まれる硝酸態窒素や亜硝酸態窒素は、吸光光度法によって定量することができる。例えば流れ分析法を用いた分析では、後述の図2に示すように、連続的に流れるキャリヤー液に、硝酸態窒素と亜硝酸態窒素とが含まれる試料を注入し、この試料が注入されたキャリヤー液と、亜硝酸態窒素と反応して発色する発色試薬とを混合し反応させることにより、試料中の亜硝酸態窒素を発色させる。また、同一の試料を、還元カラムに通して試料に含まれる硝酸態窒素を亜硝酸態窒素に還元することで、同一の発色試薬と反応させて発色させる。そして、試料にもともと含まれる硝酸態窒素や亜硝酸態窒素それぞれの濃度によって変化する発色の程度を測定し吸光度信号として取得する。次に、前以って取得した、硝酸態窒素の濃度と吸光度との関係、また、亜硝酸態窒素の濃度と吸光度との関係を表す検量線を用いて、取得した吸光度に対応する濃度を特定する。これによって、試料に含まれる硝酸態窒素の濃度及び亜硝酸態窒素の濃度を定量することができる。なお、試料に含まれる硝酸態窒素を亜硝酸態窒素に還元するための還元カラムは、例えば、JIS K0170では、約10〜20試料ごとに還元率が0.9以上であることを確認してから使用することになっている。   That is, nitrate nitrogen and nitrite nitrogen contained in a sample can be quantified by absorption spectrophotometry. For example, in analysis using flow analysis, as shown in FIG. 2 described later, a sample containing nitrate nitrogen and nitrite nitrogen was injected into a carrier fluid flowing continuously, and this sample was injected. Nitrite nitrogen in the sample is developed by mixing and reacting the carrier liquid with a coloring reagent which reacts with nitrite nitrogen to develop color. Further, the same sample is allowed to react with the same color-developing reagent to reduce its color by reducing nitrate nitrogen contained in the sample through a reduction column to nitrite nitrogen. Then, the degree of color development that changes depending on the concentrations of nitrate nitrogen and nitrite nitrogen originally contained in the sample is measured and acquired as an absorbance signal. Next, using the calibration curve representing the relationship between the concentration of nitrate nitrogen and the absorbance, and the relationship between the concentration of nitrite nitrogen and the absorbance, obtained in advance, the concentration corresponding to the obtained absorbance is Identify. This makes it possible to quantify the concentration of nitrate nitrogen and the concentration of nitrite nitrogen contained in the sample. In addition, in the reduction column for reducing nitrate nitrogen contained in the sample to nitrite nitrogen, for example, according to JIS K 0170, it is confirmed that the reduction ratio is 0.9 or more every about 10 to 20 samples. It is supposed to be used from.

還元率の求め方は例えば次の通りである。まず、濃度が既知の亜硝酸態窒素標準液を還元カラムに通した後、吸光度を測定する。このときの亜硝酸態窒素標準液の濃度をC1、吸光度をA1とする。同様に、濃度が既知の硝酸態窒素標準液を還元カラムに通した後、吸光度を測定する。このときの硝酸態窒素標準液の濃度をC2、吸光度をA2とする。還元率は次式で表すことができる。なお、亜硝酸態窒素標準液とは、吸光度に寄与する成分が亜硝酸態窒素のみである溶液であり、硝酸態窒素標準液とは、吸光度に寄与する成分が硝酸態窒素のみである溶液のことをいう。
還元率=(A2/C2)/(A1/C1)
なお、JIS K0170では、C1とC2とは同一濃度としている。
The method of determining the reduction rate is, for example, as follows. First, after passing a nitrite nitrogen standard solution of known concentration through a reduction column, the absorbance is measured. The concentration of the nitrite nitrogen standard solution at this time is C1, and the absorbance is A1. Similarly, after passing through a reduction column a nitrate nitrogen standard solution of known concentration, the absorbance is measured. The concentration of the nitrate nitrogen standard solution at this time is C2, and the absorbance is A2. The reduction rate can be expressed by the following equation. The nitrite nitrogen standard solution is a solution in which the component contributing to absorbance is only nitrite nitrogen, and the nitrate nitrogen standard solution is a solution in which the component contributing to absorbance is only nitrate nitrogen. It means that.
Reduction rate = (A2 / C2) / (A1 / C1)
In JIS K0170, C1 and C2 have the same concentration.

特開2008−145297号公報JP 2008-145297 A

日本工業規格JIS K 0170−2:2011 流れ分析法による水質試験方法−第2部:亜硝酸体窒素及び硝酸体窒素Japan Industrial Standard JIS K 0170-2: 2011 Water quality test method by flow analysis method-Part 2: Nitrite nitrogen and nitrate nitrogen

ところで、還元カラムを通さずに発色試薬と反応させた試料の吸光度と、還元カラムを通して発色試薬と反応させた試料の吸光度から、試料に含まれる硝酸態窒素の濃度及び亜硝酸態窒素の濃度の定量を行うには、一般的な手法として、例えば、JIS K0170や、JIS K0102では、計算においては還元率を考慮せずに、還元カラムを通した試料の吸光度AT−Cdと硝酸態窒素標準液より求めた検量線とから得た濃度C′NO3を、硝酸態窒素と亜硝酸態窒素の濃度の和と見なして、別に測定して求めた亜硝酸態窒素の濃度を差し引くことで以下のように演算している。 From the absorbance of the sample reacted with the color developing reagent without passing through the reduction column and the absorbance of the sample reacted with the color developing reagent through the reduction column, the concentration of nitrate nitrogen and the concentration of nitrite nitrogen contained in the sample As a general method for performing quantification, for example, according to JIS K 0170 or JIS K 0102, the absorbance AT-Cd of the sample passed through the reduction column and the nitrate nitrogen standard are not considered in the calculation in the calculation. Considering the concentration C ' NO3 obtained from the solution and the calibration curve obtained from the solution as the sum of the concentrations of nitrate nitrogen and nitrite nitrogen, and subtracting the concentration of nitrite nitrogen determined separately It is calculated as follows.

ここで、硝酸態窒素濃度をCNO3、亜硝酸態窒素濃度をCNO2、とする。また、還元カラムを通したときの硝酸態窒素による吸光度をANO3−Cd、還元カラムを通さないときの亜硝酸態窒素による吸光度をANO2とする。
硝酸態窒素標準液を用いた場合を考えると、還元カラムを通したときの硝酸態窒素による吸光度ANO3−Cdは、次式で表すことができる。式中のαNO3−Cdは、吸光度と硝酸態窒素標準液中の硝酸態窒素の濃度との対応を表す検量線を、直線で近似した場合の傾きである。この検量線は、硝酸態窒素標準液を用いて求められ、この硝酸態窒素標準液を還元カラムに通したときの吸光度から得ることができる。
NO3−Cd=αNO3−Cd×CNO3
Here, let the nitrate nitrogen concentration be C NO3 and let the nitrite nitrogen concentration be C NO2 . Further, the absorbance by nitrate nitrogen when passing through the reduction column is ANO3-Cd , and the absorbance by nitrite nitrogen when not passing through the reduction column is ANO2 .
Considering the case of using a nitrate nitrogen standard solution, the absorbance A NO3-Cd by nitrate nitrogen when passing through a reduction column can be expressed by the following equation. [Alpha] NO3-Cd in the formula is a slope when a calibration curve showing the correspondence between the absorbance and the concentration of nitrate nitrogen in the nitrate nitrogen standard solution is approximated by a straight line. This calibration curve can be obtained using a nitrate nitrogen standard solution, and can be obtained from the absorbance when the nitrate nitrogen standard solution is passed through a reduction column.
A NO3-Cd = α NO3-Cd x C NO3

また、還元カラムを通さないときの亜硝酸態窒素による吸光度ANO2は、次式で表すことができる。なお、式中のαNO2は、亜硝酸態窒素標準液を用いて求めた、亜硝酸態窒素標準液を還元カラムに通さないときの検量線を直線で近似した場合の傾きである。
NO2=αNO2×CNO2
ここで、硝酸態窒素及び亜硝酸態窒素を含む試料を還元カラムに通したときの吸光度AT−Cdから硝酸態窒素標準液の検量線を使用して演算した濃度C′NO3(=AT−Cd/αNO3−Cd)が、試料に含まれる硝酸態窒素と亜硝酸態窒素を合計した濃度C=CNO2+CNO3であると仮定する。
Moreover, the light absorbency A NO2 by nitrite nitrogen when not passing through a reduction column can be expressed by the following formula. In addition, (alpha) NO2 in a formula is the inclination at the time of approximating the calibration curve when not passing a nitrite nitrogen standard solution through a reduction column calculated | required using the nitrite nitrogen standard solution by a straight line.
A NO2 = α NO2 × C NO2
Here, the concentration C 'NO3 computed using a calibration curve of nitrate standard solution from the absorbance A T-Cd when through a sample containing nitrate nitrogen and nitrite nitrogen in the reduction column (= A T -Cd / α NO3-Cd) is assumed to be the concentration C T = C NO2 + C NO3 which is the sum of nitrate nitrogen and nitrite nitrogen contained in the sample.

=C′NO3=AT−Cd/αNO3−Cdであるため、試料中の硝酸態窒素の濃度CNO3は、同じ試料を還元カラムに通さずに分析して得られたCNO2を用いて、次式から演算することができる。
NO3=C−CNO2=(AT−Cd/αNO3−Cd)−CNO2
しかしながら、厳密には、還元率は還元率≠1であるため、還元率を考慮すると、以下に示すようにC′NO3≠Cとなり、誤差が生じる。
Because it is C T = C 'NO3 = A T-Cd / α NO3-Cd, concentration C NO3 of nitrate in the sample, a C NO2 obtained by analyzing without passing through the same sample to a reducing column It can be used to calculate from the following equation.
C NO3 = C T -C NO2 = (A T-Cd / α NO3-Cd) -C NO2
However, strictly speaking, since the reduction rate is the reduction rate ≠ 1, taking the reduction rate into account, C ' NO3 TC T will result as described below, and an error occurs.

ここで、硝酸態窒素及び亜硝酸態窒素を含む試料を還元カラムに通したときの吸光度AT−Cdは、還元カラムを通した時の試料に元から含まれる亜硝酸態窒素による吸光度ANO2−Cdと、還元カラムを通すことにより試料に元から含まれる硝酸態窒素が還元された亜硝酸態窒素による吸光度ANO3−Cd の和となる。
また、還元カラムを通した時の試料に元から含まれる亜硝酸態窒素による吸光度ANO2−Cdと濃度CNO2との関係は次式で表すことができる。なお、式中のαNO2―Cdは、亜硝酸態窒素標準液を用いて求めた、亜硝酸態窒素標準液を還元カラムに通した場合の検量線を直線で近似した場合の傾きである。
NO2−Cd=αNO2−Cd×CNO2
Here, the absorbance AT-Cd when a sample containing nitrate nitrogen and nitrite nitrogen is passed through a reduction column is the absorbance A NO2 by nitrite nitrogen originally contained in the sample when the sample is passed through a reduction column. It becomes the sum of -Cd and the light absorbency ANO3 -Cd by the nitrite nitrogen by which nitrate nitrogen contained from the sample originally was reduce | restored by passing through a reduction column.
Further, the relationship between the absorbance A NO2 -Cd by the nitrite nitrogen originally contained in the sample when passing through the reduction column and the concentration C NO2 can be expressed by the following equation. In addition, (alpha) NO2-Cd in a formula is the inclination at the time of approximating the calibration curve at the time of passing a nitrite nitrogen standard solution to a reduction column with a straight line calculated | required using the nitrite nitrogen standard solution.
A NO2-Cd = alpha NO2-Cd x C NO2

また、還元カラムの還元率δは、前に示した定義式から、次式で表すことができる。
δ=αNO3−Cd/αNO2−Cd
これらを用いて、還元カラムを通したときの硝酸態窒素による吸光度と濃度との関係は還元率を考慮して次式で表される。
NO3−Cd=αNO3−Cd×CNO3=αNO2−Cd×δ×CNO3
Further, the reduction rate δ of the reduction column can be expressed by the following equation from the definition equation shown above.
δ = α NO3-Cd / α NO2-Cd
Using these, the relationship between the absorbance by nitrate nitrogen when passing through a reduction column and the concentration is represented by the following equation in consideration of the reduction rate.
A NO3-Cd = α NO3-Cd x C NO3 = α NO2-Cd x δ x C NO3

以上から、硝酸態窒素と亜硝酸態窒素とを含む試料を、還元カラムを通したときの実測吸光度AT−Cdと濃度と還元率との関係は、次式で表すことができる。
T−Cd=ANO2−Cd+ANO3−Cd
=αNO2−Cd×CNO2+αNO3−Cd×CNO3
=αNO2−Cd×CNO2+αNO2−Cd×δ×CNO3
=αNO2−Cd×(CNO2+δ×CNO3
From the above, the relationship between the measured absorbance AT-Cd and the concentration and the reduction rate when a sample containing nitrate nitrogen and nitrite nitrogen is passed through a reduction column can be expressed by the following equation.
A T-Cd = A NO2-Cd + A NO3-Cd
= Α NO2-Cd x C NO2 + α NO3-Cd x C NO3
= Α NO 2- C d x C NO 2 + α NO 2- C d x δ x C NO 3
= Α NO 2- C d × (C NO 2 + δ × C NO 3 )

そのため、還元カラムを通した硝酸態窒素と亜硝酸態窒素とを含む試料の吸光度AT−Cdと硝酸態窒素の検量線とから得た濃度C′NO3について、次式を得ることができる。
C′NO3=AT−Cd/αNO3−Cd
=αNO2−Cd×(CNO2+δ×CNO3)/αNO3−Cd
=αNO2−Cd×(CNO2+δ×CNO3)/(αNO2−Cd×δ)
=(CNO2/δ)+CNO3
≠CNO2+CNO3=C(δ<1のため)
つまり、一般的に還元率δはδ<1となるため、C′NO3>Cとなる。
Therefore, the following equation can be obtained for the concentration C ′ NO 3 obtained from the absorbance AT-Cd of the sample containing nitrate nitrogen and nitrite nitrogen through the reduction column and the calibration curve of nitrate nitrogen.
C ' NO3 = AT-Cd / alpha NO3-Cd
= Α NO 2- C d × (C NO 2 + δ × C NO 3 ) / α NO 3- C d
= Α NO 2-Cd x (C NO 2 + δ x C NO 3 ) / (α NO 2- C d x δ)
= (C NO2 / δ) + C NO3
≠ C NO 2 + C NO 3 = C T (for δ <1)
That is, <since the 1, C 'NO3> generally reduced rate [delta] [delta] becomes C T.

以上から、試料に亜硝酸態窒素と硝酸態窒素が含まれている場合、C′NO3=Cとみなして硝酸態窒素濃度CNO3をC′NO3 −CNO2として求めると、 C′NO3 −CNO2=(AT−Cd/αNO3−Cd)−CNO2=CNO3+(1−δ)/δ×CNO2 となり、還元率δが1ではない(δ<1)場合には、実際よりも大きな値に演算されてしまうことがわかる。 From the above, if it contains a nitrite nitrogen and nitrate nitrogen in the sample and C 'is regarded as NO3 = C T nitrate nitrogen concentration C NO3 C' obtained as NO3 -C NO2, C 'NO3 - C NO2 = (A T- C d / α NO 3- C d)-C NO 2 = C NO 3 + (1-δ) / δ x C NO 2 In practice, if the reduction ratio δ is not 1 (δ <1), It is understood that the value is calculated to be larger than that.

つまり、還元率δは還元反応の進行によってはδ=1とは限らないため、真の還元率を求めてから濃度演算を行うべきである。そのため、任意の試料中の硝酸態窒素の濃度CNO3は、本来次式から演算するべきである。
NO3=(AT−Cd/αNO3−Cd)−(CNO2/δ)
つまり、濃度C′NO3を演算してから、真の還元率δで補正したCNO2/δを減算するべきである。
That is, since the reduction rate δ is not necessarily δ = 1 depending on the progress of the reduction reaction, the concentration calculation should be performed after the true reduction rate is determined. Therefore, the concentration C NO3 of nitrate nitrogen in any sample should be calculated from the following equation.
C NO3 = (A T -C d / α NO 3 -C d)-(C NO 2 / δ)
That is, after the concentration C ' NO3 is calculated, C NO2 / δ corrected with the true reduction ratio δ should be subtracted.

ここで、JIS K0170ではその記載から10〜20試料毎に、還元率を演算することが理解できる。これは、還元率が1に十分近く、濃度測定において、還元率が1であるとみなして測定を行ったとしてもある程度の精度で濃度測定を行うことができる状態であることを確認するためであり、還元率が1を下回ってきた場合には還元カラムの活性化処理により還元率を1に十分近い状態に回復させる処理が必要となる。約20試料毎に還元率を演算するためには、通常分析には不要な、濃度が既知の亜硝酸態窒素標準液や硝酸態窒素標準液を還元カラムに通す必要があり余分な分析時間を要する。また、活性化処理を行うには長時間を要し、その間は分析を行うことができない。一方、真の還元率δを求めなければ、還元率δを使用して演算を行うことができず、δ=1と見なして濃度演算を行わざるを得ないため、誤差が大きくなってしまう。つまり、C=C′NO3=AT−Cd/αNO3−Cdは、厳密には成り立たないため、還元率δを使用しない場合、つまり還元率を1と見なす場合には誤差が含まれることになる。 Here, according to JIS K0170, it can be understood that the reduction rate is calculated for every 10 to 20 samples. This is to confirm that the concentration measurement can be performed with a certain degree of accuracy even if the reduction ratio is considered to be 1 when the reduction ratio is sufficiently close to 1 and concentration measurement is performed. If the reduction rate falls below 1, it is necessary to restore the reduction rate to a state sufficiently close to 1 by activating the reduction column. In order to calculate the reduction rate every approximately 20 samples, it is necessary to pass a nitrite nitrogen standard solution or nitrate nitrogen standard solution with a known concentration, which is usually not necessary for analysis, and extra analysis time is required. I need it. In addition, it takes a long time to perform the activation process, and analysis can not be performed during that time. On the other hand, if the true reduction ratio δ is not obtained, the calculation can not be performed using the reduction ratio δ, and the concentration calculation can not but be regarded as δ = 1, so that the error becomes large. That is, since C T = C ′ NO 3 = A T −C d / α NO 3 −C d does not strictly hold, an error is included when the reduction ratio δ is not used, that is, when the reduction ratio is regarded as 1. become.

また、任意の試料に含まれる硝酸態窒素の濃度を例えば一時間毎に測定する場合には、頻繁に還元率の評価を行う必要があり、その都度、発色試薬を必要とするため、コストがかかり、また分析時間もより長くかかることになる。
本発明は、上記未解決の問題に着目してなされたものであり、時間や手間、また試薬類のコストがかかることなく、より高精度に濃度を測定すること又は管理することの可能な濃度測定方法、濃度管理方法、濃度測定装置、及び濃度管理装置を提供することを目的としている。
In addition, when the concentration of nitrate nitrogen contained in any sample is measured, for example, every hour, it is necessary to frequently evaluate the reduction rate, and a color developing reagent is required each time, so the cost It also takes longer and analysis time.
The present invention has been made focusing on the above-mentioned unsolved problems, and it is a concentration that can measure or control the concentration with higher accuracy without time, labor, and cost of reagents. An object of the present invention is to provide a measurement method, a concentration management method, a concentration measurement device, and a concentration management device.

本発明の一態様によれば、第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて第一吸光度を検出するステップと、前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて第二吸光度を検出するステップと、前記発色試薬と反応する成分として前記第一成分のみを含む第一成分標準液を、前記還元カラムを通さずに前記発色試薬と反応させたときの吸光度と、前記第一成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの吸光度との比である吸光度変化率を演算するステップと、前記第一吸光度を、前記吸光度変化率を用いて補正し、補正後の前記第一吸光度と前記第二吸光度との差分を検出するステップと、前記還元カラムを通した後に前記発色試薬と反応する成分が、前記第二成分が還元されてなる前記第一成分のみである第二成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの吸光度と、前記還元カラムを通す前の前記第二成分標準液中の前記第二成分の濃度との対応を表す、予め取得された特性情報と、前記差分とから、前記還元カラムを通す前の前記試料中の前記第二成分の濃度を測定するステップと、を備える濃度測定方法が提供される。   According to one aspect of the present invention, a sample containing a first component and a second component to be reduced to the first component by passing through a reduction column is not passed through the reduction column but the first component and the above The step of detecting the first absorbance by reacting with a color developing reagent that reacts only with the first component of the second component, and reacting the sample with the color developing reagent after passing through the reduction column, the second absorbance A detection step, an absorbance when a first component standard solution containing only the first component as a component reacting with the color developing reagent is reacted with the color developing reagent without passing through the reduction column, the first component Calculating a rate of change in absorbance, which is the ratio of absorbance when the standard solution is allowed to react with the color reagent after passing through the reduction column, and correcting the first absorbance using the rate of change in absorbance Before, after correction Detecting a difference between the first absorbance and the second absorbance; and a component that reacts with the color forming reagent after passing through the reduction column is only the first component formed by reducing the second component. The absorbance and the concentration of the second component in the second component standard solution before passing through the reduction column correspond to the absorbance when the two-component standard solution is passed through the reduction column and then reacted with the color forming reagent. Measuring the concentration of the second component in the sample before passing through the reduction column from the characteristic information obtained in advance and the difference.

本発明の他の態様によれば、第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて、連続した一回の発色における吸光度の積算値に相当する第一積算相当値を検出するステップと、前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて連続した一回の発色における吸光度の積算値に相当する第二積算相当値を検出するステップと、前記第一積算相当値と前記第二積算相当値との差分を検出するステップと、前記還元カラムを通した後に前記発色試薬と反応する成分が、前記第二成分が還元されてなる前記第一成分のみである第二成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの、連続した一回の発色における吸光度の積算値に相当する積算相当値と、前記還元カラムを通す前の前記第二成分標準液中の前記第二成分の濃度との対応を表す、予め取得された特性情報と、前記差分とから、前記還元カラムを通す前の前記試料中の前記第二成分の濃度を測定するステップと、を備える濃度測定方法が提供される。   According to another aspect of the present invention, a sample containing a first component and a second component to be reduced to the first component by passing through a reduction column is not passed through the reduction column, and the first component and Detecting a first integrated equivalent value corresponding to an integrated value of absorbance in one continuous color development by reacting with a coloring reagent which reacts only to the first component among the second components; Detecting the second integrated equivalent value corresponding to the integrated value of absorbance in one continuous color development by reacting with the color forming reagent after passing through the reduction column, the first integrated equivalent value and the second integrated value Detecting the difference from the equivalent value, and a second component standard solution in which the component that reacts with the color forming reagent after passing through the reduction column is only the first component in which the second component is reduced. Passed through the reduction column Integrated equivalent value corresponding to the integrated value of absorbance in one continuous color development when reacted with the color developing reagent, and the second component in the second component standard solution before passing through the reduction column Measuring the concentration of the second component in the sample before passing through the reduction column from the characteristic information obtained in advance and the difference representing the correspondence with the concentration, and providing a concentration measurement method Be done.

また、本発明の他の態様によれば、第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて第一吸光度を検出するステップと、前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて第二吸光度を検出するステップと、前記発色試薬と反応する成分として前記第一成分のみを含む第一成分標準液を、前記還元カラムを通さずに前記発色試薬と反応させたときの吸光度と、前記第一成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの吸光度との比である吸光度変化率を演算するステップと、前記第一吸光度を、前記吸光度変化率を用いて補正し、補正後の前記第一吸光度と前記第二吸光度との差分を、前記還元カラムを通す前の前記試料中の前記第二成分の濃度に関する数値として取得するステップと、を備える濃度管理方法が提供される。   Further, according to another aspect of the present invention, a sample containing a first component and a second component reduced to the first component by passing through a reduction column is not passed through the reduction column. Detecting a first absorbance by reacting with a color developing reagent that reacts only with the first component among the component and the second component, and reacting the sample with the color developing reagent after passing through the reduction column; A step of detecting two absorbances, an absorbance when a first component standard solution containing only the first component as a component reacting with the color forming reagent is reacted with the color forming reagent without passing through the reduction column, Calculating a rate of change in absorbance which is a ratio of absorbance when the first component standard solution is allowed to react with the color developing reagent after passing through the reduction column, and using the first absorbance as the rate of change in absorbance And correct Obtaining a difference between the first absorbance and the second absorbance as a numerical value relating to the concentration of the second component in the sample before passing through the reduction column. .

また、本発明の他の態様によれば、第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて、連続した一回の発色における吸光度の積算値に相当する第一積算相当値を検出するステップと、前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて連続した一回の発色における吸光度の積算値に相当する第二積算相当値を検出するステップと、前記第一積算相当値と前記第二積算相当値との差分を、前記還元カラムを通す前の前記試料中の前記第二成分の濃度に関する数値として取得するステップと、を備える濃度管理方法が提供される。   Further, according to another aspect of the present invention, a sample containing a first component and a second component reduced to the first component by passing through a reduction column is not passed through the reduction column. Detecting a first integrated equivalent value corresponding to an integrated value of absorbance in one continuous color development by reacting with a color developing reagent which reacts only to the first component among the component and the second component; and the sample After passing through the reduction column, the reaction with the color forming reagent to detect a second integrated equivalent value corresponding to an integrated value of absorbance in one continuous color development; the first integrated equivalent value and the second integrated equivalent value Obtaining a difference between the second integrated equivalent value as a numerical value related to the concentration of the second component in the sample before passing through the reduction column.

また、本発明の他の態様によれば、第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて吸光度を測定するモードと、前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて吸光度を測定するモードと、を切り替えて吸光度を測定する分析装置と、前記発色試薬と反応する成分として前記第一成分のみを含む第一成分標準液を、前記還元カラムを通さずに前記発色試薬と反応させたときの吸光度と、前記第一成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの吸光度との比である吸光度変化率を記憶する記憶部と、前記二つのモードで測定された前記吸光度と、前記吸光度変化率と、前記還元カラムを通した後に前記発色試薬と反応する成分が、前記第二成分が還元されてなる前記第一成分のみである第二成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの吸光度と、前記還元カラムを通す前の前記第二成分標準液中の前記第二成分の濃度との対応を表す、予め取得された特性情報とから、前記還元カラムを通す前の前記試料中の前記第二成分の濃度を演算する濃度演算部と、を備える濃度測定装置が提供される。   Further, according to another aspect of the present invention, a sample containing a first component and a second component reduced to the first component by passing through a reduction column is not passed through the reduction column. A mode for measuring absorbance by reacting with a color developing reagent that reacts only with the first component among the component and the second component, and measuring the absorbance after reacting the sample with the color developing reagent after passing through the reduction column And an analyzer for measuring absorbance by switching between the following modes, and a first component standard solution containing only the first component as a component that reacts with the color developing reagent, and reacting with the color developing reagent without passing through the reduction column. Storage unit for storing the rate of change in absorbance which is the ratio of the absorbance when the first component standard solution is made to react with the coloring reagent after passing through the reduction column, and the two modes Measured by The second component standard solution in which the absorbance, the absorbance change rate, and the component that reacts with the color forming reagent after passing through the reduction column is only the first component in which the second component is reduced; Pre-acquired characteristics representing the correspondence between the absorbance when reacted with the color-forming reagent after passing through a reduction column and the concentration of the second component in the second component standard solution before passing through the reduction column And a concentration calculator configured to calculate the concentration of the second component in the sample before passing through the reduction column from the information.

さらに、本発明の他の態様によれば、第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて吸光度を測定するモードと、前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて吸光度を測定するモードと、を切り替えて吸光度を測定する分析装置と、前記二つのモードで測定された前記吸光度に基づき、前記還元カラムを通す前の前記試料中の前記第二成分の濃度を演算する濃度演算部と、を備え、当該濃度演算部は、前記二つのモードそれぞれで測定された連続した一回の発色における吸光度の積算値に相当する積算相当値それぞれを演算する積算相当値演算部と、前記還元カラムを通した後に前記発色試薬と反応する成分が、前記第二成分が還元されてなる前記第一成分のみである第二成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの、連続した一回の発色における吸光度の積算値に相当する積算相当値と、前記還元カラムを通す前の前記第二成分標準液中の前記第二成分の濃度との対応を表す、予め取得された特性情報と、前記積算相当値演算部で演算された二つの積算相当値どうしの差分とから、前記還元カラムを通す前の前記試料中の前記第二成分の濃度を演算する演算処理部と、を備える濃度測定装置が提供される。   Furthermore, according to another aspect of the present invention, a sample containing a first component and a second component reduced to the first component by passing through a reduction column is not passed through the reduction column. A mode for measuring absorbance by reacting with a color developing reagent that reacts only with the first component among the component and the second component, and measuring the absorbance after reacting the sample with the color developing reagent after passing through the reduction column Of the second component in the sample before passing through the reduction column, based on the analyzer measuring the absorbance by switching between the two modes and the absorbance measured in the two modes. An equivalent value computing unit for computing integrated equivalent values respectively corresponding to integrated values of absorbance in one continuous color development measured in each of the two modes; After passing through the reduction column, a second component standard solution in which the component that reacts with the color developing reagent after passing through the reduction column is only the first component formed by reducing the second component is reacted with the color developing reagent Indicates the correspondence between the integrated equivalent value corresponding to the integrated value of absorbance in one continuous color development and the concentration of the second component in the second component standard solution before passing through the reduction column. The concentration of the second component in the sample before passing through the reduction column is calculated from the characteristic information acquired in advance and the difference between the two integrated equivalent values calculated by the integrated equivalent value calculator. There is provided a concentration measuring apparatus comprising: an arithmetic processing unit.

さらにまた、本発明の他の態様によれば、第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて吸光度を測定するモードと、前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて吸光度を測定するモードと、を切り替えて吸光度を測定する分析装置と、前記発色試薬と反応する成分として前記第一成分のみを含む第一成分標準液を、前記還元カラムを通さずに前記発色試薬と反応させたときの吸光度と、前記第一成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの吸光度との比である吸光度変化率を記憶する記憶部と、前記二つのモードで測定された前記吸光度と、前記吸光度変化率と、から、前記還元カラムを通す前の前記試料中の前記第二成分の濃度に関する数値を取得する演算部と、を備える濃度管理装置が提供される。   Furthermore, according to another aspect of the present invention, a sample containing a first component and a second component reduced to the first component by passing through a reduction column is not passed through the reduction column. A mode for measuring absorbance by reacting with a color developing reagent that reacts only with the first component among the one component and the second component, and allowing the sample to react with the color developing reagent after passing through the reduction column An analyzer for measuring absorbance by switching the mode to be measured, and a first component standard solution containing only the first component as a component that reacts with the color developing reagent, without passing through the reduction column and reacting with the color developing reagent A storage unit for storing a rate of change in absorbance, which is a ratio of absorbance when the first component standard solution is made to react with the color reagent after passing through the reduction column; Measure in mode It said absorbance is from, and the absorbance change rate, and a calculation unit that acquires a numerical value relating to the concentration of the second component in the sample before passing the reduction column, the concentration management device provided is provided.

また、本発明の他の態様によれば、第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて吸光度を測定するモードと、前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて吸光度を測定するモードと、を切り替えて吸光度を測定する分析装置と、前記二つのモードで測定された前記吸光度に基づき、前記還元カラムを通す前の前記試料中の前記第二成分の濃度に関する数値を取得する演算部と、を備え、当該演算部は、前記二つのモードそれぞれで測定された連続した一回の発色における吸光度の積算値に相当する積算相当値それぞれを演算する積算相当値演算部と、前記積算相当値演算部で演算された二つの積算相当値どうしの差分を前記第二成分の濃度に関する数値として取得する演算処理部と、を備える濃度管理装置が提供される。   Further, according to another aspect of the present invention, a sample containing a first component and a second component reduced to the first component by passing through a reduction column is not passed through the reduction column. A mode for measuring absorbance by reacting with a color developing reagent that reacts only with the first component among the component and the second component, and measuring the absorbance after reacting the sample with the color developing reagent after passing through the reduction column To obtain the numerical value of the concentration of the second component in the sample before passing through the reduction column, based on the analyzer measuring the absorbance by switching between the two modes and the absorbance measured in the two modes An integral equivalent value computing unit including an arithmetic operation unit, the arithmetic operation unit computing an integration equivalent value corresponding to an integrated value of absorbance in one continuous color development measured in each of the two modes; Serial integrated value corresponding concentration control device and an arithmetic processing unit for obtaining a difference between two integrated value corresponding to each other, which is calculated as a numerical value on the concentration of the second component in the calculating portion is provided.

本発明の一態様によれば、時間や手間、また試薬類のコストを低減しつつ、より高精度に硝酸態窒素濃度の測定や管理を行うことができる。   According to one aspect of the present invention, it is possible to measure and manage the concentration of nitrate nitrogen with higher accuracy while reducing time, labor, and cost of reagents.

本発明の一実施形態に係る濃度測定装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the concentration measuring apparatus which concerns on one Embodiment of this invention. 分析装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of an analyzer. 吸光度変化率の演算方法を説明するための説明図である。It is explanatory drawing for demonstrating the calculation method of a light absorbency change rate. 吸光度変化率の演算方法を説明するための説明図である。It is explanatory drawing for demonstrating the calculation method of a light absorbency change rate. 吸光度変化率の演算方法を説明するための説明図である。It is explanatory drawing for demonstrating the calculation method of a light absorbency change rate. 吸光度変化率演算時の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence at the time of absorbance change rate calculation. 濃度測定時の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence at the time of concentration measurement. 検量線取得時の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence at the time of standard curve acquisition. 検量線の一例である。It is an example of a calibration curve. 第二実施形態における濃度測定時の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence at the time of the density | concentration measurement in 2nd embodiment. 吸光度面積の検量線取得時の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence at the time of standard curve acquisition of an absorbance area. 吸光度面積の検量線の一例である。It is an example of a calibration curve of absorbance area.

以下、図面を参照して本発明の実施形態について説明する。
なお、以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の具体的な構成について記載されている。しかしながら、このような特定の具体的な構成に限定されることなく他の実施態様が実施できることは明らかである。また、以下の実施形態は、特許請求の範囲に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the following detailed description, numerous specific details are set forth to provide a thorough understanding of the embodiments of the present invention. However, it is apparent that other embodiments can be practiced without being limited to such specific specific configurations. The following embodiments do not limit the invention according to the claims. Moreover, not all combinations of features described in the embodiments are essential to the solution of the invention.

まず、本発明の第一の実施形態を説明する。
図1は、本発明の一実施形態に係る濃度測定方法を適用した濃度測定装置1の一例を示す概略構成図である。ここでは、濃度測定装置1によって、海水中に含まれる硝酸態窒素の濃度を測定する場合について説明する。
濃度測定装置1は、例えば、図1に示すように、海水を取水する取水装置2と、注入される試料の吸光度を測定する分析装置3と、取水装置2及び分析装置3を制御すると共に、分析装置3で測定した吸光度をもとに、分析装置3に注入された試料中の硝酸態窒素の濃度を演算する制御装置4と、を備え、濃度測定装置1で測定した硝酸態窒素濃度をもとに、例えば濃度測定装置1とは離れた場所に配置された監視装置5において、硝酸態窒素濃度の監視を行うようになっている。
First, a first embodiment of the present invention will be described.
FIG. 1 is a schematic configuration view showing an example of a concentration measuring apparatus 1 to which a concentration measuring method according to an embodiment of the present invention is applied. Here, the case where the concentration measurement apparatus 1 measures the concentration of nitrate nitrogen contained in seawater will be described.
For example, as shown in FIG. 1, the concentration measuring device 1 controls a water intake device 2 for taking seawater, an analyzer 3 for measuring the absorbance of a sample to be injected, and the water intake device 2 and the analyzer 3. The control device 4 calculates the concentration of nitrate nitrogen in the sample injected into the analysis device 3 based on the absorbance measured by the analysis device 3, and the concentration of nitrate nitrogen measured by the concentration measurement device 1 On the other hand, the monitoring of the nitrate nitrogen concentration is performed by the monitoring device 5 disposed at a place apart from the concentration measuring device 1, for example.

取水装置2は、例えば、海水を汲み上げる水中ポンプ21と、水中ポンプ21で汲み上げられた海水を濾過する濾過部22と、を備える。
分析装置3は、例えば流れ分析法により試料の吸光度を測定する分析装置で構成され、図2に示すように、試料中の硝酸態窒素(第二成分)とは反応せずに亜硝酸態窒素(第一成分)のみと反応する発色試薬が注入される流路30と、連続的にキャリヤー液が流れる流路31と、流路30及び流路31に設けられた送液ポンプ32と、取水装置2で得られた海水又は標準液を流路31に注入するための注入バルブ33と、銅−カドミウムを用いた還元カラム34(銅−カドミウム還元カラム)と、流路31の注入バルブ33の下流で、キャリヤー液が流れる流路を、還元カラム34を通らない第一経路R1と、還元カラム34を通る第二経路R2とのいずれかに切り替える切替バルブ35と、流路30で供給される発色試薬と、第一経路R1又は第二経路R2を経由したキャリヤー液とが混合されて注入される反応コイル36と、反応コイル36で発色試薬と反応して発色した試料の吸光度を測定する吸光度測定機能を備えたフローセル37と、を備える。
The water intake device 2 includes, for example, a submersible pump 21 that pumps up seawater, and a filter unit 22 that filters seawater that is pumped up by the submersible pump 21.
The analyzer 3 is composed of, for example, an analyzer that measures the absorbance of the sample by flow analysis, and as shown in FIG. 2, the nitrite nitrogen is not reacted with the nitrate nitrogen (second component) in the sample. (First component) A channel 30 into which a coloring reagent that reacts with only the first component is injected, a channel 31 in which the carrier liquid flows continuously, a liquid feed pump 32 provided in the channel 30 and the channel 31, water intake The injection valve 33 for injecting the seawater or standard solution obtained by the device 2 into the flow passage 31, the reduction column 34 (copper-cadmium reduction column) using copper-cadmium, and the injection valve 33 of the flow passage 31 A switching valve 35 for switching the flow path of the carrier liquid downstream between the first path R1 not passing through the reduction column 34 and the second path R2 passing through the reduction column 34 and the flow path 30 are supplied Chromogenic reagent and first route R1 The reaction coil 36 is mixed with the carrier liquid via the second route R2 and injected, and a flow cell 37 equipped with an absorbance measurement function for measuring the absorbance of the sample that has developed color by reacting with the coloring reagent in the reaction coil 36 And.

水中ポンプ21、分析装置3の各バルブは、制御装置4によって制御される。水中ポンプ21で汲み上げられ、濾過された海水は注入バルブ33を介してキャリヤー液に注入される。なお、キャリヤー液には、硝酸態窒素の濃度の測定対象である、取水装置2で取水され,濾過された海水と、標準液とが、試料として選択的に注入される。
キャリヤー液に注入された試料は、還元カラム34を経由しない第一経路R1又は還元カラム34を経由する第二経路R2を通って、発色試薬と混合されて反応コイル36に注入される。反応コイル36に注入された試料は、図示しない加熱装置等によって反応コイル36において発色試薬との反応が促進されて発色したのち、反応コイル36外に排出される。その後、フローセル37内で、試料が発色試薬と反応することにより生じた試料の発色状況が吸光度信号として測定され、制御装置4に出力される。
The submersible pump 21 and the valves of the analyzer 3 are controlled by the controller 4. The seawater that has been pumped and filtered by the submersible pump 21 is injected into the carrier liquid via the injection valve 33. The carrier liquid is selectively injected with seawater collected and filtered by the water intake device 2, which is a measurement target of the concentration of nitrate nitrogen, and a standard liquid as a sample.
The sample injected into the carrier liquid is mixed with the coloring reagent and injected into the reaction coil 36 through the first pathway R1 not through the reduction column 34 or the second pathway R2 through the reduction column 34. The sample injected into the reaction coil 36 is discharged to the outside of the reaction coil 36 after the reaction with the coloring reagent is promoted in the reaction coil 36 by a heating device or the like (not shown) to develop color. Thereafter, in the flow cell 37, the coloring condition of the sample generated by the reaction of the sample with the coloring reagent is measured as an absorbance signal, and is output to the control device 4.

制御装置4は、水中ポンプ21、注入バルブ33、及び切替バルブ35を制御する駆動部41と、フローセル37からの吸光度信号に基づき試料中の硝酸態窒素濃度を演算する演算部(濃度演算部)42と、演算部42での濃度演算に必要な後述の吸光度変化率ηや検量線等の各種情報を格納するための記憶部43と、演算部42での濃度演算結果を無線通信により監視装置5に送信する通信部44と、制御装置4内の各部また、取水装置2及び分析装置3に、太陽光発電、或いはバッテリ等により電力供給を行う電源部45と、を備える。   The controller 4 controls the submersible pump 21, the injection valve 33, and the switching valve 35, and an operation unit (concentration operation unit) that calculates the concentration of nitrate nitrogen in the sample based on the absorbance signal from the flow cell 37. 42, a storage unit 43 for storing various information such as an absorbance change rate 後 述 described later necessary for concentration calculation in the calculation unit 42 and a calibration curve, and a monitoring device of the concentration calculation result in the calculation unit 42 by wireless communication A communication unit 44 for transmitting data to the communication unit 5 and a power supply unit 45 for supplying electric power to the water intake device 2 and the analysis device 3 by solar power generation or a battery are provided.

演算部42は、駆動部41を介して取水装置2や分析装置3の各部を駆動し、所定のタイミングで標準液を用いて検量線を取得すると共に、定期的或いは予め設定したタイミングで海水を取水してその硝酸態窒素濃度を測定する。そして、測定結果を、通信部44を介して監視装置5に送信する。
監視装置5は、制御装置4の通信部44と無線通信を行う通信部51と、監視部52と、を備え、監視部52は、通信部51を介して、制御装置4から硝酸態窒素の濃度情報を取得し、例えば予め設定した閾値と比較すること等により異常監視を行い、異常検出時には警報を発する等により、異常が生じたことを通知する。なお、監視部52では、硝酸態窒素の濃度情報だけでなく、例えば、硝酸態窒素濃度と亜硝酸態窒素濃度との和等、硝酸態窒素の濃度と他に分析している栄養塩の濃度との和をもとに、異常監視を行うようにしてもよい。また、制御装置4と監視装置5との間は無線通信に限るものではなく、有線通信により濃度情報等を伝送してもよい。
The arithmetic unit 42 drives each part of the water intake device 2 and the analyzer 3 via the drive unit 41, acquires a calibration curve using a standard solution at a predetermined timing, and periodically or previously sets seawater at a predetermined timing. Take water and measure its nitrate nitrogen concentration. Then, the measurement result is transmitted to the monitoring device 5 via the communication unit 44.
The monitoring device 5 includes a communication unit 51 that performs wireless communication with the communication unit 44 of the control device 4, and a monitoring unit 52. The monitoring unit 52 receives nitrate nitrogen from the control device 4 via the communication unit 51. The concentration information is acquired, and abnormality monitoring is performed, for example, by comparing the information with a preset threshold value, and when an abnormality is detected, an alarm is issued to notify that an abnormality has occurred. In the monitoring unit 52, not only nitrate nitrogen concentration information but also, for example, the sum of nitrate nitrogen concentration and nitrite nitrogen concentration, concentration of nitrates being analyzed with nitrate nitrogen concentration and others Abnormality monitoring may be performed based on the sum of Further, the control device 4 and the monitoring device 5 are not limited to wireless communication, and concentration information and the like may be transmitted by wired communication.

次に、演算部42での硝酸態窒素濃度の演算方法を説明する。
ここで、硝酸態窒素と亜硝酸態窒素とが含まれる試料(例えば海水)を、還元カラムに通し、発色試薬と反応させてその吸光度を測定すると、この試料から得られる吸光度は、もともと亜硝酸態窒素であった成分による吸光度と、硝酸態窒素が還元されて亜硝酸態窒素となった成分による吸光度との和になる。そのため、還元カラムを通した試料を実測することにより得られる吸光度AT−Cdは、次式で表される。次式中のANO2−Cdは、還元カラムを通過した場合の、もともと亜硝酸態窒素であった成分による吸光度を表し、ANO3−Cdは、亜硝酸態窒素に還元された硝酸態窒素の成分による吸光度を表す。
T−Cd=ANO2−Cd+ANO3−Cd
Next, the calculation method of the nitrate nitrogen concentration in the calculation unit 42 will be described.
Here, when a sample containing nitrate nitrogen and nitrite nitrogen (for example, seawater) is passed through a reduction column, reacted with a coloring reagent, and its absorbance is measured, the absorbance obtained from this sample is originally nitrite It is the sum of the absorbance due to the component that was the state nitrogen and the absorbance due to the component where the nitrate nitrogen is reduced to become nitrite nitrogen. Therefore, the absorbance AT-Cd obtained by measuring the sample passed through the reduction column is represented by the following formula. ANO2-Cd in the following formula represents the absorbance by the component that was originally nitrite nitrogen when passing through the reduction column, and ANO3-Cd is the nitrate nitrogen reduced to nitrite nitrogen It represents the absorbance by the components.
A T-Cd = A NO2-Cd + A NO3-Cd

一方、還元カラムに通した時の、硝酸態窒素標準液(第二成分標準液)による吸光度ANO3−Cdと、硝酸態窒素の濃度CNO3との関係は、ゼロを通る直線として還元率によらず次式で表すことができる。なお、ここでいう硝酸態窒素標準液とは、吸光度に寄与する成分が硝酸態窒素による成分のみであり、硝酸態窒素の濃度が既知である溶液のことをいう。
NO3−Cd=αNO3−Cd×CNO3
On the other hand, when passing through a reduction column, the relationship between the absorbance A NO3-Cd by the nitrate nitrogen standard solution (second component standard solution) and the concentration C NO3 of nitrate nitrogen is a straight line passing through zero as the reduction ratio It can be expressed by the following equation regardless of The term "nitrate nitrogen standard solution" as used herein refers to a solution in which the component contributing to the absorbance is only the component by nitrate nitrogen and the concentration of nitrate nitrogen is known.
A NO3-Cd = α NO3-Cd x C NO3

この式は、硝酸態窒素と亜硝酸態窒素とが含まれる試料における硝酸態窒素についても成立する。したがって、両式から、ANO2−Cdがわかれば、還元率を考慮せずとも、次式によって硝酸態窒素濃度を演算することができる。この場合の硝酸態窒素の吸光度ANO3−Cdにおける還元率の寄与分はαNO3−Cdに含まれている。
NO3=ANO3−Cd/αNO3−Cd
=(AT−Cd−ANO2−Cd)/αNO3−Cd
This equation also holds for nitrate nitrogen in a sample containing nitrate nitrogen and nitrite nitrogen. Therefore, if ANO2-Cd is known from both formulas, the nitrate nitrogen concentration can be calculated by the following formula without considering the reduction rate. The contribution of the reduction rate in the absorbance A NO3-Cd of nitrate nitrogen in this case is contained in α NO3-Cd .
C NO3 = A NO3 -Cd / α NO3 -Cd
= ( AT-Cd- A NO2-Cd ) / [alpha] NO3-Cd

ここで、試料を還元カラムに通すと、試料に含まれている硝酸態窒素は亜硝酸態窒素に還元されるため、還元カラムを通した試料から得られる吸光度は、もともと硝酸態窒素であったが還元カラムを通すことにより亜硝酸態窒素に還元された成分による吸光度と、もともと亜硝酸態窒素であった成分による吸光度との和となる。そのため、試料を還元カラムに通したときの、還元カラムを通す前の試料に最初から含まれていた亜硝酸態窒素による吸光度ANO2−Cdは、直接測定することはできない。 Here, when the sample is passed through a reduction column, nitrate nitrogen contained in the sample is reduced to nitrite nitrogen, so the absorbance obtained from the sample passed through the reduction column was originally nitrate nitrogen Is the sum of the absorbance of the component reduced to nitrite nitrogen by passing through the reduction column and the absorbance of the component that was originally nitrite nitrogen. Therefore, when a sample is passed through a reduction column, the absorbance A NO2-Cd by nitrite nitrogen originally contained in the sample before passing through a reduction column can not be measured directly.

一方、還元カラムに通す前の試料に最初から含まれていた亜硝酸態窒素のみによる吸光度ANO2は、還元カラムを通さずに試料の吸光度を測定することにより測定することができる。
そこで、還元カラムを通すことが吸光度に与える影響分を別途求め、求めた影響分を用いて、還元カラムを通さずに試料の吸光度を測定して得た吸光度ANO2を補正することにより、試料を還元カラムに通した場合の、この試料に最初から含まれていた亜硝酸態窒素のみによる吸光度ANO2−Cdを推定する。
On the other hand, the absorbance A NO2 of only nitrite nitrogen contained in the sample before passing through the reduction column can be measured by measuring the absorbance of the sample without passing through the reduction column.
Therefore, the influence of the reduction column on the absorbance is separately determined, and the determined influence is used to measure the absorbance of the sample without passing through the reduction column, thereby correcting the absorbance A NO2 to obtain the sample. Is passed through a reduction column, and the absorbance A NO2-Cd by nitrite nitrogen contained in the sample from the beginning is estimated.

ここで、図2に示すように、キャリヤー液に注入された亜硝酸態窒素を含み硝酸態窒素を含まない試料(例えば亜硝酸態窒素標準液)は、流路31内を移動しながら混合及び拡散し、試料中の亜硝酸態窒素は発色試薬と反応して発色する。このとき、フローセル37では、試料及び発色試薬を含むキャリヤー液の吸光度を所定のサンプリング周期で測定している。そのため、フローセル37から得られる吸光度信号の波形は、例えば、図3に示すように、フローセル37内を試料に含まれる亜硝酸態窒素が通過するに伴って、時間の経過と共に吸光度が徐々に増加し、その後減少に転じた後、試料がフローセル37外に排出されて、吸光度は零となる。なお、図3において、横軸は吸光度の測定時間、縦軸はサンプリング周期毎の吸光度の測定値である。   Here, as shown in FIG. 2, a sample containing nitrite nitrogen and not containing nitrate nitrogen (for example, a nitrite nitrogen standard solution) injected into the carrier liquid is mixed while moving in the flow path 31. Diffusion occurs, and nitrite nitrogen in the sample reacts with the coloring reagent to develop color. At this time, the flow cell 37 measures the absorbance of the carrier liquid containing the sample and the coloring reagent at a predetermined sampling cycle. Therefore, the waveform of the absorbance signal obtained from the flow cell 37 is, for example, as shown in FIG. 3, the absorbance gradually increases with the passage of time as nitrite nitrogen contained in the sample passes through the flow cell 37. After that, the sample is discharged out of the flow cell 37, and the absorbance becomes zero. In FIG. 3, the horizontal axis is the measurement time of absorbance, and the vertical axis is the measurement value of absorbance for each sampling cycle.

試料の混合及び拡散は、流路が長いほど促進され、また流路が太いほど促進される。流路31のチューブ内径に比較して還元カラム34の内径は大きいため、還元カラム34を通した方が、試料はキャリヤー液中に、より拡散する。試料が拡散しているほど、単位体積当たりに含まれる亜硝酸態窒素の数は少ない。つまり、吸光度の最大値はより小さくなる。   The mixing and diffusion of the sample is promoted as the flow path is longer and as the flow path is thicker. Since the inner diameter of the reduction column 34 is larger than the tube inner diameter of the flow path 31, the sample is more diffused into the carrier liquid when passing through the reduction column 34. The more diffuse the sample, the smaller the number of nitrite nitrogens contained per unit volume. That is, the maximum value of the absorbance is smaller.

そのため、図3に示すように、キャリヤー液に注入された亜硝酸態窒素を含み硝酸態窒素を含まない試料であれば、還元カラム34を通らずに流路31内を移動した場合(特性線L1)に比較して、還元カラムを通した方(特性線L2)が、得られる吸光度はその値がより低く、且つより長い時間に亙って吸光度が測定されることになる。そのため、この亜硝酸態窒素を含み硝酸態窒素を含まない試料を分析装置3に注入したときの、連続した一回の発色における吸光度信号の波形において、その吸光度のピーク値を、この試料の吸光度として用いる場合、同じ濃度であっても、還元カラム34を通した場合と通さない場合とでは吸光度のピーク値が異なる。   Therefore, as shown in FIG. 3, in the case of a sample containing nitrite nitrogen injected into the carrier liquid and not containing nitrate nitrogen, the sample moves in the channel 31 without passing through the reduction column 34 (characteristic line Compared to L1), when it is passed through the reduction column (characteristic line L2), the obtained absorbance has a lower value, and the absorbance is measured over a longer time. Therefore, when the sample containing nitrite nitrogen and not containing nitrate nitrogen is injected into the analyzer 3 in the waveform of the absorbance signal in one continuous color development, the peak value of the absorbance is the absorbance of the sample. The peak value of the absorbance differs depending on whether it passes through the reduction column 34 or not even though the concentration is the same.

以上から、還元カラムを通した場合と通さない場合の吸光度の変化率は、亜硝酸態窒素濃度によらず、還元カラム34の幾何学的な寸法で決まると考えられる。このため、亜硝酸態窒素と硝酸態窒素を含む試料(例えば海水)を還元カラムに通したときの、還元カラムを通す前の亜硝酸態窒素と硝酸態窒素を含む試料に最初から含まれていた亜硝酸態窒素による吸光度ANO2−Cdは、亜硝酸態窒素がある濃度であるときの、還元カラム通過の有無による吸光度の比(以後、吸光度変化率ηという。)がわかれば、どのような濃度であっても、還元カラムに通す前の試料に最初から含まれていた亜硝酸態窒素のみによる吸光度ANO2から一律に求めることができると考えられる。 From the above, it is considered that the rate of change of absorbance when passing through the reduction column and not passing through is determined by the geometrical size of the reduction column 34 regardless of the concentration of nitrite nitrogen. For this reason, when a sample containing nitrite nitrogen and nitrate nitrogen (for example, seawater) is passed through a reduction column, it is included in the sample containing nitrite nitrogen and nitrate nitrogen before passing through the reduction column. The absorbance A NO2-Cd due to nitrite nitrogen can be determined if the ratio of absorbance with and without passing through a reduction column (hereinafter referred to as absorbance change rate η) when nitrite nitrogen is at a certain concentration is known. Even at such concentrations, it is considered that it can be uniformly determined from the absorbance A NO2 due to only nitrite nitrogen which was originally contained in the sample before passing through the reduction column.

そこで、同一の濃度である亜硝酸態窒素標準液を、還元カラム34を通した場合と通さない場合とで測定した吸光度を用いて、吸光度変化率ηを次式のように決定する。なお、ここでいう亜硝酸態窒素標準液とは、吸光度に寄与する成分が亜硝酸態窒素のみであって、亜硝酸態窒素濃度が既知である溶液のことをいう。
η=ANO2−Cd/ANO2
以上から、任意の試料中の硝酸態窒素の濃度CNO3は、次式で表すことができる。
NO3=(AT−Cd−ANO2−Cd)/αNO3−Cd
=(AT−Cd−η×ANO2)/αNO3−Cd
Therefore, the rate of change in absorbance 決定 is determined as in the following equation using the absorbance measured with and without passing through the reduction column 34 and the nitrite nitrogen standard solution having the same concentration. The term "nitrite nitrogen standard solution" as used herein refers to a solution in which the component contributing to absorbance is only nitrite nitrogen and the concentration of nitrite nitrogen is known.
η = A NO2-Cd / A NO2
From the above, the concentration C NO3 of nitrate nitrogen in any sample can be expressed by the following equation.
C NO3 = (A T-Cd -A NO2-Cd) / α NO3-Cd
= (A T- C d-× x A NO2 ) / α NO 3- C d

例えば、亜硝酸態窒素標準液、10〔μmol/L〕を、還元カラム34を通らない第一経路R1を通過させて吸光度を測定すると、吸光度の測定結果は、図3中のL1に示す波形となる。L1において、吸光度のピーク値をAmax1とする。次に、同一の亜硝酸態窒素標準液、10〔μmol/L〕を、還元カラム34を通る第二経路R2を通過させて吸光度を測定すると、吸光度の測定結果は、図3中のL2に示す波形となる。L2において、吸光度のピーク値をAmax2としたとき、Amax2は、Amax2<Amax1となる。これは、還元カラム34を通過することによる流路の拡幅や伸張に起因した分散度合の変化によるものである。
これらの結果から、吸光度変化率ηは次式から演算される。
η=ANO2−Cd/ANO2=Amax2/Amax1
For example, when the nitrite nitrogen standard solution, 10 [μmol / L] is passed through the first route R1 which does not pass through the reduction column 34 to measure the absorbance, the measurement result of the absorbance is the waveform shown in L1 in FIG. It becomes. In L1, the peak value of absorbance is taken as Amax1. Next, when the same nitrite nitrogen standard solution, 10 [μmol / L], is passed through the second route R2 passing through the reduction column 34 to measure the absorbance, the absorbance measurement result is L2 in FIG. It becomes a waveform shown. In L2, assuming that the peak value of absorbance is Amax2, Amax2 becomes Amax2 <Amax1. This is due to the change in the degree of dispersion caused by the widening and stretching of the flow path by passing through the reduction column 34.
From these results, the rate of change in absorbance η is calculated from the following equation.
η = A NO2-Cd / A NO2 = Amax2 / Amax1

この吸光度変化率ηは幾何学的な寸法で決まり、分析装置3固有の値とみなすことができる。
例えば、還元カラム34を通さずに、亜硝酸態窒素標準液を用いて取得した検量線が、図4中のL11に示すように、亜硝酸態窒素濃度が10〔μmol/L〕のときの吸光度が「0.15」となるものとする。また、還元カラムを通した場合の、同じ亜硝酸態窒素標準液の吸光度が「0.10」となるものとする(L12)。また、図5に示すように、還元カラムを通して硝酸態窒素標準液を用いて作成した検量線が、L22に示すように硝酸態窒素濃度が30〔μmol/L〕のときの吸光度が「0.27」となり、還元カラムを通して亜硝酸態窒素標準液を用いて作成した検量線が、L21に示すように亜硝酸態窒素濃度が10〔μmol/L〕の時の吸光度が「0.10」となるとすると、硝酸態窒素30〔μmol/L〕と亜硝酸態窒素10〔μmol/L〕とを含む試料を還元カラム34に通し、発色試薬と反応させたときの吸光度は「0.37(=0.10+0.27)」となる。
The rate of change in absorbance η is determined by geometrical dimensions and can be regarded as a value unique to the analyzer 3.
For example, the calibration curve obtained using the nitrite nitrogen standard solution without passing through the reduction column 34 is as shown by L11 in FIG. 4 when the nitrite nitrogen concentration is 10 μmol / L. Absorbance shall be "0.15". In addition, the absorbance of the same nitrite nitrogen standard solution when passing through a reduction column is assumed to be “0.10” (L12). In addition, as shown in FIG. 5, as shown in L22, a calibration curve prepared using a nitrate nitrogen standard solution through a reduction column shows that the absorbance at a nitrate nitrogen concentration of 30 [μmol / L] is “0. 27), and the calibration curve prepared using a nitrous acid nitrogen standard solution through a reduction column showed an absorbance of “0.10” at a nitrous acid nitrogen concentration of 10 μmol / L as shown in L21. Then, a sample containing 30 [μmol / L] of nitrate nitrogen and 10 [μmol / L] of nitrite nitrogen is passed through the reduction column 34, and when it is reacted with a coloring reagent, the absorbance is “0.37 (= 0.10 + 0.27).

ここで、図4に示す、還元カラム34を通さない場合の亜硝酸態窒素標準液の検量線L11を、吸光度変化率ηを利用して、還元カラム34を通した場合の亜硝酸態窒素標準液を用いて取得した場合に得られると予測される予測検量線に変換する。亜硝酸態窒素標準液、10〔μmol/L〕を、還元カラム34を通らない第一経路R1を通過させたときの吸光度と、同一の亜硝酸態窒素標準液、10〔μmol/L〕を、還元カラム34を通る第二経路R2を通過させたときの吸光度との比である吸光度変化率ηが、例えば「0.67」であったとする。吸光度変化率ηを用いることにより、検量線L11は、予測検量線L12に示すように変換され、予測検量線L12から、還元カラム34を通さずに亜硝酸態窒素標準液を用いて測定した場合の、亜硝酸態窒素濃度が10〔μmol/L〕のときの吸光度は、「0.15×0.67≒0.10」に変換される。   Here, the nitrous acid nitrogen standard when passing through the reduction column 34 using the calibration curve L11 of the nitrite nitrogen standard solution without passing through the reduction column 34 shown in FIG. Convert to a predicted calibration curve that is expected to be obtained when obtained using a solution. Nitrite nitrogen standard solution, absorbance when 10 [μmol / L] is passed through the first route R1 not passing through the reduction column 34, same nitrite nitrogen standard solution, 10 [μmol / L] It is assumed that the rate of change in absorbance η, which is the ratio of absorbance when passing through the second path R2 passing through the reduction column 34, is, for example, "0.67." When the absorbance change rate η is used, the calibration curve L11 is converted as shown in the predicted calibration curve L12, and when measured using the nitrite nitrogen standard solution from the predicted calibration curve L12 without passing through the reduction column 34 The absorbance at a nitrite nitrogen concentration of 10 [μmol / L] is converted to “0.15 × 0.67 ≒ 0.10”.

この吸光度「0.10」を、図5に示す試料全体の吸光度「0.37」から減算すると、差分は、「0.37−0.10=0.27」となり、これは試料中の硝酸態窒素による吸光度を表す。得られた硝酸態窒素による吸光度「0.27」を、硝酸態窒素標準液の検量線L11の傾きαNO3−Cd=0.27/30を利用して、硝酸態窒素濃度に変換すると、30〔μmol/L〕となる。つまり、実際の硝酸態窒素濃度と一致することになる。 If this absorbance "0.10" is subtracted from the absorbance "0.37" of the whole sample shown in FIG. 5, the difference is "0.37-0.10 = 0.27", which is the value of nitric acid in the sample It represents the absorbance by nitrogen. The absorbance “0.27” by the nitrate nitrogen obtained is converted to a nitrate nitrogen concentration by using the slope α NO 3 −C d = 0.27 / 30 of the calibration curve L 11 of the nitrate nitrogen standard solution. It becomes [μmol / L]. That is, it corresponds to the actual nitrate nitrogen concentration.

次に、演算部42の処理手順を説明する。
図6は、吸光度変化率演算時の処理手順の一例を示すフローチャートである。演算部42では、出荷時等に、図6に示す吸光度変化率演算処理を実行し、分析装置3に固有の吸光度変化率ηを演算し、これを記憶部43に格納する。
演算部42は、まず、吸光度に寄与する成分として亜硝酸態窒素のみを含む亜硝酸態窒素標準液を用い、駆動部41を介して分析装置3を制御し、亜硝酸態窒素標準液をキャリヤー液に注入して、第一経路R1を通過させる(ステップS1)。亜硝酸態窒素標準液の濃度は既知でなくともよい。
Next, the processing procedure of the calculation unit 42 will be described.
FIG. 6 is a flowchart showing an example of the processing procedure at the time of absorbance change rate calculation. The calculation unit 42 executes the absorbance change rate calculation processing shown in FIG. 6 at the time of shipping etc., calculates the absorbance change rate 固有 unique to the analyzer 3, and stores the calculated change rate η in the storage unit 43.
First, the calculation unit 42 controls the analyzer 3 through the drive unit 41 using a nitrite nitrogen standard solution containing only nitrite nitrogen as a component contributing to the absorbance, and uses the nitrite nitrogen standard solution as a carrier. It injects into a solution and makes 1st route R1 pass (Step S1). The concentration of the nitrite nitrogen standard solution may not be known.

亜硝酸態窒素標準液は発色試薬と混合されて反応コイル36に注入され、発色試薬と反応した亜硝酸態窒素標準液の吸光度がフローセル37で測定される。
演算部42は、フローセル37からの吸光度信号を読み込み、記憶部43に順次格納する(ステップS2)。
演算部42は、次に、駆動部41を介して分析装置3を制御し、第一経路R1を通過させた亜硝酸態窒素標準液と同一の亜硝酸態窒素標準液をキャリヤー液に注入し、第二経路R2を通過させる(ステップS3)。
The nitrite nitrogen standard solution is mixed with the color developing reagent and injected into the reaction coil 36, and the absorbance of the nitrite nitrogen standard solution reacted with the color developing reagent is measured by the flow cell 37.
The arithmetic unit 42 reads the absorbance signal from the flow cell 37 and sequentially stores the absorbance signal in the storage unit 43 (step S2).
Next, the operation unit 42 controls the analyzer 3 through the drive unit 41, and injects, into the carrier solution, the same nitrite nitrogen standard solution as the nitrite nitrogen standard solution that has passed the first route R1. , And pass the second route R2 (step S3).

亜硝酸態窒素標準液は還元カラムを通過した後、発色試薬と混合されて反応コイル36に注入され、発色試薬と反応した亜硝酸態窒素標準液の吸光度がフローセル37で測定される。
演算部42は、フローセル37からの吸光度信号を読み込み、記憶部43に順次格納する(ステップS4)。
After passing through the reduction column, the nitrite nitrogen standard solution is mixed with the coloring reagent and injected into the reaction coil 36, and the absorbance of the nitrite nitrogen standard solution reacted with the coloring reagent is measured by the flow cell 37.
The calculation unit 42 reads the absorbance signal from the flow cell 37 and sequentially stores the absorbance signal in the storage unit 43 (step S4).

次に、演算部42は、第一経路R1を通過させた亜硝酸態窒素標準液から得られる、連続する一回の発色における吸光度を表す吸光度信号のピーク値と、第二経路R2を通過させた亜硝酸態窒素標準液から得られる、連続する一回の発色における吸光度を表す吸光度信号のピーク値との比を吸光度変化率ηとして演算し、演算した吸光度変化率ηを記憶部43に記憶する(ステップS5)。そして、処理を終了する。   Next, the computing unit 42 passes the peak value of the absorbance signal representing the absorbance in one continuous color development obtained from the nitrite nitrogen standard solution passed through the first route R1, and passes the second route R2 The ratio to the peak value of the absorbance signal representing the absorbance in one continuous color development obtained from the nitrite nitrogen standard solution is calculated as the absorbance change rate η, and the calculated absorbance change rate η is stored in the storage unit 43 (Step S5). Then, the process ends.

図7は、海水中に含まれる硝酸態窒素の濃度を測定する場合の処理手順の一例を示すフローチャートである。演算部42では、一時間毎等定期的に、或いは、予め設定したタイミングで濃度測定を行う。
演算部42では、濃度測定タイミングになると、まず、検量線を作成するか否かを判定する(ステップS11)。検量線は、例えば一日一回等、予め設定されたタイミングで作成する。検量線の作成タイミングである場合には、吸光度に寄与する成分として硝酸態窒素だけを含む、濃度が既知の硝酸態窒素標準液を、還元カラム34を通した場合の検量線を取得する(ステップS12)。この検量線の取得は公知の手順で作成する。
FIG. 7 is a flowchart showing an example of a processing procedure in the case of measuring the concentration of nitrate nitrogen contained in seawater. The calculation unit 42 measures the concentration periodically, such as every hour, or at a preset timing.
At the concentration measurement timing, the calculation unit 42 first determines whether to create a calibration curve (step S11). The calibration curve is created at a preset timing, for example, once a day. If it is time to create a calibration curve, obtain a calibration curve when a nitrate nitrogen standard solution with a known concentration, containing only nitrate nitrogen as a component contributing to absorbance, is passed through the reduction column 34 (step S12). Acquisition of this calibration curve is prepared by a known procedure.

具体的には、図8に示すように、演算部42は、駆動部41を介して分析装置3を制御し、例えば第一濃度である硝酸態窒素標準液をキャリヤー液に注入し、還元カラム34を通す第二経路R2を通過させて発色試薬と反応させる(ステップS21)。そして、演算部42は、フローセル37で測定された、発色試薬と反応した硝酸態窒素標準液の吸光度を表す吸光度信号を読み込み、記憶部43に順次記憶する(ステップS22)。   Specifically, as shown in FIG. 8, the operation unit 42 controls the analyzer 3 via the drive unit 41, for example, injects a nitrate nitrogen standard solution, which is the first concentration, into the carrier solution, and the reduction column The second route R2 is passed through 34 to react with the coloring reagent (step S21). Then, the calculation unit 42 reads the absorbance signal indicating the absorbance of the nitrate nitrogen standard solution that has reacted with the color developing reagent, which is measured by the flow cell 37, and sequentially stores the absorbance signal in the storage unit 43 (step S22).

そして、濃度の異なる所定数の硝酸態窒素標準液について吸光度信号を取得していなければ、ステップS23からステップS24を経てステップS21に戻り、今度は、第一濃度とは異なる例えば第二濃度の硝酸態窒素標準液をキャリヤー液に注入し、第二経路R2を通過させ、吸光度信号を取得する(ステップS22)。そして、濃度の異なる所定数の硝酸態窒素標準液、例えば、第一から第三濃度の硝酸態窒素標準液について吸光度信号を取得したならば、ステップS23からステップS25に移行し検量線を取得する。なお、ここでは、第一から第三濃度の硝酸態窒素標準液について吸光度信号を取得しているが、要は検量線を取得することができればよく、例えば、第一濃度及び第二濃度の二種類の硝酸態窒素標準液についてのみ吸光度信号を取得するようにしてもよく、濃度の異なる任意数の硝酸態窒素標準液について吸光度信号を取得し、これに基づき検量線を取得するようにしてもよい。   Then, if the absorbance signal is not obtained for a predetermined number of nitrate nitrogen standard solutions having different concentrations, the process returns from step S23 to step S24 and returns to step S21, and this time, for example, nitrate having a second concentration different The nitrogen standard solution is injected into the carrier solution, and the second route R2 is passed to acquire an absorbance signal (step S22). Then, when absorbance signals are acquired for predetermined numbers of nitrate nitrogen standard solutions having different concentrations, for example, nitrate nitrogen standard solutions of first to third concentrations, the process proceeds from step S23 to step S25 to acquire a calibration curve. . In addition, although the absorbance signal is acquired about the nitrate nitrogen standard solution of the first to the third concentration here, it is sufficient if the calibration curve can be acquired, for example, the first concentration and the second concentration The absorbance signal may be acquired only for the nitrate nitrogen standard solution of a certain type, or the absorbance signal may be acquired for any number of nitrate nitrogen standard solutions having different concentrations, and the calibration curve may be acquired based on this. Good.

つまり、演算部42は、記憶部43に記憶した第一から第三濃度である硝酸態窒素標準液の吸光度から、硝酸態窒素標準液を、第二経路R2を通過させた場合の吸光度の検量線を作成する。例えば図9に示すように、横軸を硝酸態窒素標準液の濃度〔μmol/L〕、縦軸を吸光度とし、縦軸を第一から第三濃度の硝酸態窒素標準液それぞれを、還元カラム34を通したときの吸光度信号のピーク値とし、これら3点をもとに検量線を取得する。このようにして得られた検量線を、記憶部43に記憶する。これにより検量線の取得が終了する。検量線は、3点から求まる近似式で表される線分とする。例えば、これら3点から最小二乗法により近似直線を求め、この直線を検量線としてもよく、また、これら3点から求まる近似曲線を検量線としてもよく、これらは必ずしも零点を通らなくともよい。また、例えば、必ず零点を通る直線を最小二乗法により求めこれを検量線としてもよい。また、検出した3点を通る折れ線を検量線としてもよい。さらに、3点のうち、零点とは異なる2点を通る直線又は近似直線が、零点から明らかにずれた場合、この直線と同じ傾きを有する直線を、検量線としてもよい。   That is, based on the absorbance of the nitrate nitrogen standard solution which is the first to third concentration stored in the storage unit 43, the computing unit 42 calibrates the absorbance when the nitrate nitrogen standard solution passes through the second route R2. Create a line For example, as shown in FIG. 9, the abscissa represents the concentration [μmol / L] of the nitrate nitrogen standard solution, the ordinate represents the absorbance, and the ordinate represents the nitrate nitrogen standard solutions of the first to the third concentration. The peak value of the absorbance signal when passing through 34 is obtained, and a calibration curve is obtained based on these three points. The calibration curve thus obtained is stored in the storage unit 43. This completes the acquisition of the calibration curve. The calibration curve is a line segment represented by an approximate expression obtained from three points. For example, an approximate straight line may be obtained from these three points by the least squares method, and this straight line may be used as a calibration curve, or an approximate curve obtained from these three points may be used as a calibration curve. Also, for example, a straight line that always passes through the zero point may be determined by the least squares method and this may be used as a calibration curve. Further, a broken line passing through the three detected points may be used as a calibration curve. Furthermore, if a straight line or an approximate straight line passing through two points different from the zero point out of the three points is obviously deviated from the zero point, a straight line having the same slope as this straight line may be used as a calibration curve.

図7に戻って、硝酸態窒素標準液の検量線の取得が終了したならばステップS13に移行し、次に、演算部42は、駆動部41を介して取水装置2及び分析装置3を制御して、硝酸態窒素の濃度の測定対象である海水の吸光度を測定する吸光度測定処理を行う。すなわち、まず、ステップS13で、測定対象の海水をキャリヤー液に注入して第一経路R1を通過させる。そして、フローセル37で測定された、発色試薬と反応した試料の吸光度信号を読み込み、記憶部43に記憶する(ステップS14)。   Referring back to FIG. 7, when acquisition of the calibration curve of the nitrate nitrogen standard solution is completed, the process proceeds to step S13, and next, the calculation unit 42 controls the water intake device 2 and the analyzer 3 via the drive unit 41. Then, an absorbance measurement process is performed to measure the absorbance of seawater which is the measurement object of the concentration of nitrate nitrogen. That is, first, in step S13, seawater to be measured is injected into the carrier liquid and allowed to pass through the first route R1. Then, the absorbance signal of the sample that has been measured by the flow cell 37 and reacted with the coloring reagent is read and stored in the storage unit 43 (step S14).

次に、測定対象の海水をキャリヤー液に注入して第二経路R2を通過させる(ステップS15)。そして、フローセル37で測定された、発色試薬と反応した試料の吸光度信号を読み込み、記憶部43に記憶する(ステップS16)。
次に、得られた吸光度をもとに濃度演算処理を行う。
まず、ステップS14で取得した、測定対象の海水を、第一経路R1を通過させたときの吸光度信号から、ピーク値を取得する。これを、測定対象の海水に含まれる亜硝酸態窒素のみが寄与する吸光度ANO2とする。また、ステップS16で取得した、測定対象の海水を第二経路R2を通過させたときの吸光度信号から、ピーク値を取得する。これを、測定対象の海水に含まれる亜硝酸態窒素と、還元カラム34を通すことにより還元された硝酸態窒素とによる吸光度AT−Cdとする(ステップS17)。
Next, seawater to be measured is injected into the carrier liquid and allowed to pass through the second route R2 (step S15). Then, the absorbance signal of the sample, which has been measured by the flow cell 37 and reacted with the coloring reagent, is read and stored in the storage unit 43 (step S16).
Next, concentration calculation processing is performed based on the obtained absorbance.
First, a peak value is acquired from the absorbance signal when passing the first route R <b> 1, which is the seawater to be measured acquired in step S <b> 14. Let this be an absorbance A NO2 to which only nitrite nitrogen contained in seawater to be measured contributes. Moreover, a peak value is acquired from the light absorbency signal at the time of making the seawater of the measuring object pass at 2nd path | route R2 acquired by step S16. Let this be the absorbance AT-Cd by the nitrite nitrogen contained in the seawater to be measured and the nitrate nitrogen reduced by passing through the reduction column 34 (step S17).

次に、ステップS18に移行し、ステップS17で求めた吸光度ANO2(第一吸光度)及びAT−Cd(第二吸光度)と、記憶部43に記憶している吸光度変化率η及びステップS12で取得した硝酸態窒素標準液の検量線の傾きαNO3−Cd(特性情報)と、を用いて、次式(1)から、測定対象の海水中の硝酸態窒素濃度CNO3を演算する。そして、求めた測定対象の海水中の硝酸態窒素濃度CNO3を、通信部44を介して監視装置5に送信する。
NO3=(AT−Cd−η×ANO2)/αNO3−Cd ……(1)
Next, the process proceeds to step S18, and the absorbances A NO2 (first absorbance) and A T-Cd (second absorbance) determined in step S17, and absorbance change rate η stored in the storage unit 43 and step S12 The nitrate nitrogen concentration C NO3 in the seawater to be measured is calculated from the following equation (1) using the acquired gradient α NO3-Cd (characteristic information) of the calibration curve of the nitrate nitrogen standard solution. Then, the nitrate nitrogen concentration C NO3 in the seawater to be measured which is obtained is transmitted to the monitoring device 5 through the communication unit 44.
C NO3 = (A T- C d-× x A NO 2 ) / α NO 3 -C d (1)

以上により、濃度測定時の処理が終了する。ここでは、検量線を直線と仮定して検量線の傾きを用いて吸光度から濃度に換算したが,吸光度と濃度の近似直線や近似曲線を用いて、吸光度を対応する濃度に直接換算してもよい。
この処理を、濃度測定タイミング毎に実行することにより、例えば定期的に試料としての海水中の硝酸態窒素濃度CNO3が監視装置5に送信される。監視装置5では、受信した硝酸態窒素濃度CNO3を監視し、硝酸態窒素濃度CNO3が例えば閾値を超えた場合には異常を通知する警報等を発することによって、オペレータに硝酸態窒素濃度CNO3の異常を通知することができる。
Thus, the process at the time of concentration measurement is completed. Here, assuming that the calibration curve is a straight line, the absorbance is converted from concentration to concentration using the slope of the calibration curve, but the absorbance may be directly converted to the corresponding concentration using an approximate straight line or approximate curve of absorbance and concentration Good.
By executing this process at every concentration measurement timing, for example, the nitrate nitrogen concentration C NO3 in seawater as a sample is periodically transmitted to the monitoring device 5. The monitoring device 5 monitors the received nitrate nitrogen concentration C NO3 and, when the nitrate nitrogen concentration C NO3 exceeds, for example, a threshold value, issues an alarm or the like to notify an abnormality to notify the operator of the nitrate nitrogen concentration C. An abnormality of NO3 can be notified.

このように、本発明の第一実施形態に係る濃度測定装置1によれば、測定対象の海水中の硝酸態窒素濃度CNO3を前記(1)式から求めている。そして、(1)式において、「AT−Cd」及び「ANO2」は海水の吸光度を測定することにより得られる測定値であり、「η」は予め演算されて記憶されている一定値である。また、「αNO3−Cd」は検量線を取得することにより得られる値である。海水の吸光度の測定を除けば、発色試薬等を用いた吸光度の測定は、吸光度変化率ηの演算と、検量線の取得のみとなる。吸光度変化率ηの演算は同じ還元カラムを使用している間は少なくとも一度行えばよく、また、検量線の取得は、濃度測定よりも長い周期又は長い間隔で行えばよい。したがって、濃度測定を行うに当たり、従来のように還元カラムの還元率εが0.9以上であるかを定期的に確認する場合に比較して、濃度演算のために必要なパラメータを取得する手間を大幅に削減することができると共に、濃度測定のために海水と反応させる以外に、発色試薬を必要とする回数を大幅に削減することができ、コスト削減を図ることができる。 As described above, according to the concentration measurement device 1 according to the first embodiment of the present invention, the nitrate nitrogen concentration C NO3 in the seawater to be measured is obtained from the equation (1). And in (1) Formula, " AT-Cd " and "A NO2 " are measured values obtained by measuring the light absorbency of seawater, and "eta" is a fixed value calculated beforehand and memorized. is there. Also, "α NO3 -Cd " is a value obtained by acquiring a calibration curve. Except for the measurement of the absorbance of seawater, the measurement of absorbance using a coloring reagent or the like is only the calculation of the absorbance change rate η and the acquisition of a calibration curve. The calculation of the absorbance change rate η may be performed at least once while using the same reduction column, and the calibration curve may be obtained at a longer cycle or longer interval than the concentration measurement. Therefore, when performing concentration measurement, as compared with the case where it is confirmed periodically whether the reduction ratio ε of the reduction column is 0.9 or more as in the prior art, it takes time and effort to acquire the necessary parameters for concentration calculation In addition to the reaction with seawater for concentration measurement, the number of times the color developing reagent is required can be significantly reduced, and the cost can be reduced.

また、本発明の一実施形態に係る濃度測定装置1では、還元率を用いていないが、還元率が1ではないことによる影響を、還元カラムを通した後の吸光度に含まれる亜硝酸態窒素による寄与分を、分析装置3の幾何学的な寸法で決定される吸光度変化率「η」を用いて正確に考慮すること、及び硝酸態窒素標準液による検量線を用いることによって、除去しているため、硝酸態窒素濃度の測定誤差を低減することができる。   In addition, in the concentration measuring device 1 according to one embodiment of the present invention, although the reduction rate is not used, the influence of the reduction rate not being 1 on the nitrite nitrogen contained in the absorbance after passing through the reduction column The contribution due to is accurately taken into account by using the rate of change of absorbance “η” determined by the geometrical dimensions of the analyzer 3 and by using a calibration curve with a nitrate nitrogen standard solution. As a result, the measurement error of the nitrate nitrogen concentration can be reduced.

このように、任意のタイミングで海水中の硝酸態窒素濃度を自動的に取得することができる。そのため、養殖場の水質を監視するような場合等には、濃度測定装置1を養殖場に設置し、監視装置5は、建屋内に設置することによって、オペレータは建屋内に留まったまま海水の移動等を伴うことなく任意のタイミングでその時点での水質の監視を行うことができる。   Thus, the nitrate nitrogen concentration in seawater can be automatically acquired at any timing. Therefore, when monitoring the water quality of the fish farm etc., the concentration measuring device 1 is installed in the fish farm, and the monitoring device 5 is installed in the building indoors, so that the operator remains in the building indoors. It is possible to monitor the water quality at that time at any time without moving or the like.

なお、監視部52から濃度測定指令が通知されたときに図7に示す濃度測定時の処理を実行する機能を演算部42に設け、オペレータが監視部52において濃度測定指令を送信することによって、オペレータが所望のタイミングで硝酸態窒素濃度の測定を実行させるように構成してもよい。
また、吸光度変化率ηは、出荷時に工場側で演算してもよく、濃度測定装置1を現場に設置したとき等、最初に硝酸態窒素濃度の測定を行うまでの間に、吸光度変化率ηを演算しておけばよい。また、分析装置3の構成品を交換した場合等には、分析装置3の設置場所において吸光度変化率ηの演算を行うようにしてもよい。さらに、装置の稼働中に定期的に吸光度変化率ηを演算し更新するようにしてもよい。
7 is provided in the calculation unit 42 when the concentration measurement command is notified from the monitoring unit 52, and the operator transmits the concentration measurement command in the monitoring unit 52, The operator may be configured to perform the measurement of the nitrate nitrogen concentration at a desired timing.
The rate of change in absorbance η may be calculated by the factory at the time of shipment, and when the concentration measuring device 1 is installed at the site, the rate of change in absorbance η during the first measurement of nitrate nitrogen concentration. You need to calculate Further, when the components of the analyzer 3 are replaced, etc., calculation of the absorbance change rate η may be performed at the installation place of the analyzer 3. Furthermore, the rate of change in absorbance η may be calculated and updated periodically while the device is in operation.

なお、以上説明したように、前記(1)式において、(AT−Cd−η×ANO2)は、測定対象の海水中の硝酸態窒素の吸光度を表す。また、吸光度は、硝酸態窒素の濃度に比例することから、吸光度を監視することによって、硝酸態窒素の正確な濃度の値ではなく、硝酸態窒素の濃度の程度(例えば、正常、異常等)や、濃度の変化状況(例えば、「濃度が安定している」、「濃度が上昇している」等)を推測することもでき、検量線を用いて濃度の値を演算しなくとも、濃度の傾向管理を行うことができる。 As described above, in the equation (1), (A T -C d -T x A NO2 ) represents the absorbance of nitrate nitrogen in seawater to be measured. Also, since the absorbance is proportional to the concentration of nitrate nitrogen, monitoring the absorbance does not give the value of the exact concentration of nitrate nitrogen, but the degree of concentration of nitrate nitrogen (eg, normal, abnormal, etc.) In addition, it is also possible to estimate the change in concentration (for example, “the concentration is stable”, “the concentration is rising”, etc.), and the concentration can be calculated without using the calibration curve. Can manage the trend of

次に、本発明の第二実施形態を説明する。
第二実施形態に係る濃度測定装置1は、吸光度変化率ηに代えて、吸光度面積Sを用いることで、硝酸態窒素濃度CNO3の測定精度の向上を図るようにしたものである。演算部42の処理が異なること以外は、第一実施形態における濃度測定装置1と同様であるので同一部には同一符号を付与し、その詳細な説明は省略する。
Next, a second embodiment of the present invention will be described.
The concentration measuring device 1 according to the second embodiment is intended to improve the measurement accuracy of the nitrate nitrogen concentration C NO3 by using the absorbance area S instead of the absorbance change rate η. The processing is the same as that of the concentration measuring device 1 in the first embodiment except that the processing of the calculation unit 42 is different, so the same reference numerals are given to the same parts, and the detailed description thereof is omitted.

前述のように、例えば亜硝酸態窒素標準液等の、亜硝酸態窒素を含み硝酸態窒素を含まない同一濃度且つ同一体積の試料を、第一経路R1及び第二経路R2それぞれを通した場合に、吸光度は、図3に示すように、混合及び拡散がより促進される第二経路R2を通過した方が、ピークは低く時間軸方向に広がった形状となる。しかしながら、発色した試料中の「亜硝酸態窒素と発色試薬が反応した分子の数」は、第一経路R1を通った場合と、第二経路R2を通った場合とでは同数である。   As described above, for example, when nitrite nitrogen-containing samples of the same concentration and volume without nitrate nitrogen, such as nitrite nitrogen standard solutions, are passed through the first route R1 and the second route R2, respectively In addition, as shown in FIG. 3, the absorbance has a lower peak and a broader shape in the time axis direction when passing through the second route R2 where mixing and diffusion are more promoted. However, the “number of molecules in which the nitrite nitrogen and the coloring reagent have reacted” in the colored sample is the same for the case where the first route R1 passes and the case where the second route R2 passes.

吸光度は光の吸収に寄与する分子の濃度、つまり、単位体積当たりの分子数に比例し、その分子による吸光度は全て検出される。そのため、亜硝酸態窒素を含み硝酸態窒素を含まない同一濃度且つ同一体積の試料を発色試薬と反応させ、それぞれを第一経路R1及び第二経路R2に通して吸光度を測定する場合、図3に示す横軸が測定時間、縦軸が吸光度として、連続した一回の発色における吸光度信号の波形において、吸光度の面積は流路の拡幅、伸張に関わらず同一となる。   The absorbance is proportional to the concentration of molecules contributing to the absorption of light, that is, the number of molecules per unit volume, and the absorbance by all the molecules is detected. Therefore, when making samples of the same concentration and the same volume containing nitrite nitrogen and not nitrate nitrogen react with the coloring reagent and pass each through the first route R1 and the second route R2, measure the absorbance as shown in FIG. In the waveform of the absorbance signal in one continuous color development, where the abscissa represents the measurement time and the ordinate represents the absorbance, the area of the absorbance is the same regardless of the width and extension of the flow path.

上記第一実施形態では、還元カラムを通過させることによる流路の拡幅、伸張による吸光度のピーク値の変化を吸光度変化率ηを用いて補正しているが、吸光度面積を使用すれば、同一濃度且つ同一体積であり、硝酸態窒素と亜硝酸態窒素とを含む試料を還元カラム34を通した後の吸光度面積から、試料中の亜硝酸態窒素の還元カラムを通さずに得た吸光度面積を減算することにより、還元カラム34を通す前の試料に含まれる硝酸態窒素による吸光度面積が得られる。したがって、還元カラム34を通した場合の硝酸態窒素標準液の吸光度面積と濃度との関係を表す検量線を予め取得しておけば、試料中の硝酸態窒素の吸光度面積から、硝酸態窒素の濃度を得ることができる。この場合、還元率が1でなくとも、検量線を取得した時の還元率と試料を分析したときの還元率とは同一とみなすことができるので、還元率を考慮することなく、硝酸態窒素濃度を精度よく求めることができる。   In the first embodiment, the change in the peak value of the absorbance due to the widening and stretching of the channel due to passage through the reduction column is corrected using the absorbance change rate η, but if the absorbance area is used, the same concentration And from the absorbance area after passing through a reduction column 34 a sample having the same volume and containing nitrate nitrogen and nitrite nitrogen, the absorbance area obtained without passing through the reduction column of nitrite nitrogen in the sample is By subtracting, the absorbance area by the nitrate nitrogen contained in the sample before passing through the reduction column 34 is obtained. Therefore, if a calibration curve representing the relationship between the absorbance area and concentration of the nitrate nitrogen standard solution in the case of passing through the reduction column 34 is obtained in advance, the absorbance area of nitrate nitrogen in the sample Concentration can be obtained. In this case, even if the reduction rate is not 1, since the reduction rate when acquiring the calibration curve and the reduction rate when analyzing the sample can be regarded as the same, nitrate nitrogen is not considered without considering the reduction rate. The concentration can be determined accurately.

そして、硝酸態窒素と亜硝酸態窒素とを含む試料の還元カラムを通した後の吸光度面積は、還元カラム34を通した試料の吸光度を測定することにより得ることができる。また、試料中の亜硝酸態窒素の吸光度面積は、試料を還元カラム34を通さずに吸光度を測定することにより得ることができる。
このようにして得られる硝酸態窒素の濃度は、試料中の単位体積当たりの硝酸態窒素の数に比例した値であり、試料が通る経路や、演算過程等において増減しない値である。したがって、硝酸態窒素の分子数に比例したより高精度な硝酸態窒素濃度を測定することができることになる。
The absorbance area of the sample containing nitrate nitrogen and nitrite nitrogen after passing through the reduction column can be obtained by measuring the absorbance of the sample passed through the reduction column 34. Also, the absorbance area of nitrite nitrogen in the sample can be obtained by measuring the absorbance of the sample without passing through the reduction column 34.
The concentration of nitrate nitrogen obtained in this manner is a value proportional to the number of nitrate nitrogen per unit volume in the sample, and is a value that does not increase or decrease in the path through which the sample passes, in the calculation process, or the like. Therefore, it is possible to measure more accurate nitrate nitrogen concentration proportional to the number of nitrate nitrogen molecules.

ここで、試料中の亜硝酸態窒素による吸光度面積をSNO2とする。この亜硝酸態窒素による吸光度面積SNO2は、還元カラムを通さない分析により実測される。
また、硝酸態窒素と亜硝酸態窒素とを含む試料を、還元カラムを通過させたときの吸光度面積をST−Cdと定義する。
還元カラムを通過させたときの硝酸態窒素標準液による吸光度の吸光度面積SNO3−Cdと、濃度との関係は、次式で表すことができる。次式は、硝酸態窒素標準液から求められる、濃度と吸光度面積との関係が直線で表される場合の検量線を表す。
NO3−Cd=αNO3−CdS×CNO3
Here, the absorbance area by nitrite nitrogen in the sample is SNO2 . The absorbance area S NO2 by this nitrite nitrogen is measured by analysis not passing through a reduction column.
Further, the absorbance area when a sample containing nitrate nitrogen and nitrite nitrogen is passed through a reduction column is defined as ST-Cd .
The relationship between the absorbance area S NO3-Cd of the absorbance by the nitrate nitrogen standard solution and the concentration when passing through the reduction column can be expressed by the following equation. The following equation represents a calibration curve when the relationship between the concentration and the absorbance area, which is obtained from the nitrate nitrogen standard solution, is represented by a straight line.
S NO3-Cd = α NO3-CdS x C NO3

したがって、任意の試料中の硝酸態窒素の濃度CNO3は次式で演算することができる。
NO3=(ST−Cd−SNO2)/αNO3−CdS
次に、演算部42の処理手順を説明する。
図10は、海水中に含まれる硝酸態窒素の濃度を測定する場合の処理手順の一例を示すフローチャートである。演算部42では、一定時間等定期的に、又は予め設定したタイミングで濃度測定を行う。
Therefore, the concentration C NO3 of nitrate nitrogen in any sample can be calculated by the following equation.
C NO3 = (S T- C d -S NO 2 ) / α NO 3 -C d S
Next, the processing procedure of the calculation unit 42 will be described.
FIG. 10 is a flow chart showing an example of the processing procedure in the case of measuring the concentration of nitrate nitrogen contained in seawater. The calculation unit 42 measures the concentration periodically, such as for a fixed time, or at a preset timing.

演算部42では、濃度測定タイミングになると、まず、吸光度面積の検量線を取得するか否かを判定する(ステップS31)。吸光度面積の検量線は、例えば一日一回等、予め設定されたタイミングで取得する。吸光度面積の検量線の取得タイミングである場合には、吸光度に寄与する成分として硝酸態窒素だけを含む、濃度が既知の硝酸態窒素標準液を用いて吸光度面積の検量線の取得処理を行う(ステップS32)。   At the concentration measurement timing, the calculation unit 42 first determines whether to acquire a calibration curve of the absorbance area (step S31). The calibration curve of the absorbance area is acquired at a preset timing, such as once a day, for example. When it is time to acquire the calibration curve of the absorbance area, the calibration curve of the absorbance area is acquired using a nitrate nitrogen standard solution having a known concentration and containing only nitrate nitrogen as a component contributing to the absorbance ( Step S32).

具体的には、図11に示すように、演算部42は、駆動部41を介して分析装置3を制御し、例えば第一濃度である硝酸態窒素標準液を、還元カラムを通す第二経路R2を通過させて発色試薬と反応させる(ステップS41)。そして、演算部42は、フローセル37で測定された、発色試薬と反応した硝酸態窒素の吸光度を表す吸光度信号を読み込み、測定時間の経過に伴い変化する吸光度を積算し、硝酸態窒素標準液により生じる吸光度の積算値(以後、吸光度積算値という。)を演算する。そして、得られた吸光度積算値、つまり、連続した一回の発色において得られる吸光度信号の面積を、吸光度面積として記憶部43に記憶する(ステップS42)。   Specifically, as shown in FIG. 11, the computing unit 42 controls the analyzer 3 via the driving unit 41, and for example, a second path for passing the nitrate nitrogen standard solution, which is the first concentration, through the reduction column. R2 is allowed to pass to react with the color developing reagent (step S41). Then, the calculation unit 42 reads the absorbance signal representing the absorbance of nitrate nitrogen reacted with the coloring reagent measured by the flow cell 37, integrates the absorbance changing with the lapse of the measurement time, and uses the nitrate nitrogen standard solution. The integrated value of the resulting absorbance (hereinafter referred to as absorbance integrated value) is calculated. Then, the obtained integrated value of absorbance, that is, the area of the absorbance signal obtained in one continuous color development is stored as the absorbance area in the storage unit 43 (step S42).

そして、濃度の異なる所定数の硝酸態窒素標準液について吸光度積算値を取得していなければ、ステップS43からステップS44を経てステップS41に戻り、今度は、第一濃度とは異なる例えば第二の濃度の硝酸態窒素標準液を、第二経路R2を通過させ、吸光度積算値を取得する(ステップS42)。そして、濃度の異なる所定数の硝酸態窒素標準液、例えば、第一から第三濃度の硝酸態窒素標準液について吸光度積算値を取得したならば、ステップS43からステップS45に移行し検量線を取得する。   Then, if the absorbance integrated value is not obtained for the predetermined number of nitrate nitrogen standard solutions having different concentrations, the process returns from step S43 to step S44 through step S44, and this time, for example, the second concentration different from the first concentration The nitrate nitrogen standard solution is allowed to pass through the second route R2 to acquire the absorbance integrated value (step S42). When the integrated value of absorbance is acquired for a predetermined number of nitrate nitrogen standard solutions having different concentrations, for example, nitrate nitrogen standard solutions of first to third concentrations, the process proceeds from step S43 to step S45 to acquire a calibration curve. Do.

つまり、記憶部43に記憶した第一から第三濃度である硝酸態窒素標準液を測定して得た吸光度面積から、硝酸態窒素標準液を、第二経路R2を通過させた場合の吸光度面積の検量線を取得する。すなわち、図12に示すように、横軸を硝酸態窒素標準液の濃度〔μmol/L〕、縦軸を吸光度面積とし、第一から第三濃度の硝酸態窒素標準液を、還元カラム34を通したときの、吸光度面積となる3点をもとに検量線を取得する。このようにして得られた吸光度面積の検量線を、記憶部43に記憶する。これにより吸光度面積の検量線の取得が終了する。検量線は、上記第一実施形態における、ステップS25の処理と同様の手順で取得すればよい。なお、この場合も、3種類の濃度に限らず、要は検量線を取得することができればよく、例えば、第一濃度及び第二濃度の二種類の硝酸態窒素標準液についてのみ吸光度信号を取得するようにしてもよく、濃度の異なる任意数の硝酸態窒素標準液について吸光度信号を取得し、これに基づき検量線を取得するようにしてもよい。   That is, from the absorbance area obtained by measuring the nitrate nitrogen standard solution which is the first to the third concentration stored in the storage unit 43, the absorbance area when the nitrate nitrogen standard solution passes through the second route R2 Obtain a calibration curve of That is, as shown in FIG. 12, the abscissa represents the concentration [μmol / L] of the nitrate nitrogen standard solution, the ordinate represents the absorbance area, the nitrate nitrogen standard solution of the first to third concentrations, and the reduction column 34 A calibration curve is acquired based on three points which become an absorbance area when passing through. The calibration curve of the absorbance area thus obtained is stored in the storage unit 43. This completes the acquisition of the calibration curve of the absorbance area. The calibration curve may be acquired in the same procedure as the process of step S25 in the first embodiment. Also in this case, it is sufficient that the calibration curve can be obtained without being limited to the three types of concentrations, for example, absorbance signals are obtained only for the two types of nitrate nitrogen standard solutions of the first concentration and the second concentration. Alternatively, the absorbance signal may be obtained for an arbitrary number of nitrate nitrogen standard solutions having different concentrations, and a calibration curve may be obtained based on this.

図10に戻って、吸光度面積の検量線の取得が終了したならば、ステップS33に移行し、次に、駆動部41を介して取水装置2及び分析装置3を制御して、硝酸態窒素の濃度の測定対象である海水の吸光度を測定する吸光度測定処理を行う。すなわち、まず、ステップS33で、測定対象の海水をキャリヤー液に注入して第一経路R1を通過させて発色試薬と反応させる。そして、演算部42は、フローセル37で測定された、発色試薬と反応した海水の吸光度を表す吸光度信号を読み込み、吸光度を順次積算し、吸光度面積として記憶部43に記憶する(ステップS34)。つまり、海水中の亜硝酸態窒素成分による吸光度面積SNO2を演算して記憶部43に記憶する。 Returning to FIG. 10, when the acquisition of the calibration curve of the absorbance area is completed, the process proceeds to step S33, and next, the intake device 2 and the analyzer 3 are controlled via the drive unit 41 to obtain nitrate nitrogen. Absorbance measurement processing is performed to measure the absorbance of seawater, the concentration of which is to be measured. That is, first, in step S33, seawater to be measured is injected into the carrier liquid and allowed to pass through the first route R1 to react with the coloring reagent. Then, the calculation unit 42 reads an absorbance signal representing the absorbance of the seawater that has reacted with the color reagent, which is measured by the flow cell 37, sequentially integrates the absorbances, and stores the absorbance area as the absorbance area (step S34). That is, the absorbance area S NO2 of the nitrite nitrogen component in seawater is calculated and stored in the storage unit 43.

次に、試測定対象の海水をキャリヤー液に注入して第二経路R2を通過させて発色試薬と反応させる(ステップS35)。そして、演算部42は、フローセル37で測定された、発色試薬と反応した海水の吸光度を表す吸光度信号を読み込み、吸光度を順次積算し、吸光度面積ST−Cdとして記憶部43に記憶する(ステップS36)。
そして、ステップS37に移行し、ステップS36で求めた吸光度面積ST−Cd(第二積算相当値)と、ステップS34で求めた海水中の亜硝酸態窒素成分による吸光度面積SNO2(第一積算相当値)と、ステップS32で取得した検量線の傾きαNO3−CdS(特性情報)とを用いて、次式(2)から、海水中の硝酸態窒素濃度CNO3を演算する。そして、求めた海水中の硝酸態窒素濃度CNO3を、通信部44を介して監視装置5に送信する。
NO3=(ST−Cd−SNO2)/αNO3−CdS ……(2)
Next, seawater to be measured is injected into the carrier liquid, passed through the second route R2, and reacted with the coloring reagent (step S35). Then, the calculation unit 42 reads the absorbance signal representing the absorbance of the sea water reacted with the coloring reagent measured by the flow cell 37, sequentially integrates the absorbances, and stores it as the absorbance area ST -Cd in the storage unit 43 (step S36).
Then, the process proceeds to step S37, and the absorbance area S T-Cd (second integrated equivalent value) obtained in step S36 and the absorbance area S NO2 (first integration due to the nitrite nitrogen component in seawater obtained in step S34) The nitrate nitrogen concentration C NO3 in seawater is calculated from the following equation (2) using the corresponding value) and the gradient α NO3-CdS (characteristic information) of the calibration curve acquired in step S32. Then, the nitrate nitrogen concentration C NO3 in the seawater that has been obtained is transmitted to the monitoring device 5 via the communication unit 44.
C NO3 = (S T -C d -S NO 2 ) / α NO 3 -C d S (2)

以上により、濃度測定時の処理が終了する。ここでは、検量線を直線と仮定して検量線の傾きを用いて吸光度から濃度に換算したが、吸光度と濃度の近似直線や近似曲線を用いて、吸光度を対応する濃度に直接換算してもよい。
この処理を、濃度測定タイミング毎に実行することにより、例えば定期的に測定対象の海水中の硝酸態窒素濃度が監視装置5に送信される。監視装置5では、受信した硝酸態窒素濃度を監視し、硝酸態窒素濃度が例えば閾値を超えた場合には異常を通知する警報等を発することによって、オペレータに硝酸態窒素濃度異常を通知することができる。
Thus, the process at the time of concentration measurement is completed. Here, assuming that the calibration curve is a straight line, the absorbance is converted from concentration to concentration using the slope of the calibration curve, but the absorbance may be directly converted to the corresponding concentration using an approximate straight line or approximate curve of absorbance and concentration. Good.
By performing this process at each concentration measurement timing, for example, the nitrate nitrogen concentration in seawater to be measured is periodically transmitted to the monitoring device 5. The monitoring device 5 monitors the received nitrate nitrogen concentration, and notifies the operator of the nitrate nitrogen concentration abnormality by emitting an alarm or the like notifying the abnormality when the nitrate nitrogen concentration exceeds, for example, a threshold value. Can.

ここで、ステップS34及びステップS36の処理が積算相当値演算部に対応し、ステップS37の処理が演算処理部に対応している。
このように、本発明の第二実施形態に係る濃度測定装置1によれば、試料中の硝酸態窒素濃度を前記(2)式から求めている。そして、(2)式において、「ST−Cd」及び「SNO2」は、試料の吸光度を測定することにより得られる測定値であり、「αNO3−CdS」は検量線を作成することにより得られる値である。試料の吸光度の測定を除けば、発色試薬等を用いた吸光度の測定は吸光度面積の検量線の測定のみとなり、還元カラムの還元率を評価する必要はなく、そもそも還元率を使用する必要が無い。したがって、第二実施形態における濃度測定装置1においても、濃度測定を行うに当たり、従来のように還元カラム34の還元率εが0.9以上であるかを定期的に確認する場合に比較して、濃度演算のために必要なパラメータを取得する手間を大幅に削減することができると共に、濃度測定のために試料と反応させる以外に、発色試薬を必要とする回数を大幅に削減することができ、コスト削減を図ることができる。
Here, the processing of step S34 and step S36 corresponds to the integration equivalent value calculation unit, and the processing of step S37 corresponds to the calculation processing unit.
As described above, according to the concentration measurement device 1 according to the second embodiment of the present invention, the nitrate nitrogen concentration in the sample is obtained from the above-mentioned equation (2). And in (2) Formula, " ST -Cd " and "S NO2 " are measured values obtained by measuring the light absorbency of a sample, and "(alpha) NO3-CdS " is created by preparing a calibration curve. It is a value to be obtained. Apart from the measurement of the absorbance of the sample, the measurement of the absorbance using a chromogenic reagent etc. is only the measurement of the calibration curve of the absorbance area, there is no need to evaluate the reduction ratio of the reduction column and there is no need to use the reduction ratio in the first place . Therefore, also in the concentration measurement apparatus 1 in the second embodiment, when performing concentration measurement, it is compared with the case where it is periodically confirmed whether the reduction ratio ε of the reduction column 34 is 0.9 or more as in the conventional case. As a result, it is possible to greatly reduce the time and effort required to acquire the parameters necessary for concentration calculation, and to significantly reduce the number of times the color reagent is required in addition to reacting with the sample for concentration measurement. Cost reduction can be achieved.

また、本発明の第二実施形態に係る濃度測定装置1では、還元率が1ではないことによる影響を、還元カラムを通した後の吸光度に含まれる、亜硝酸態窒素による寄与分を吸光度面積値を用いて正確に考慮すること、及び硝酸態窒素標準液による検量線を用いることにより除去しているため、硝酸態窒素濃度の測定誤差を低減することができる。
なお、上記第二実施形態においては、吸光度面積を用いて硝酸態窒素濃度を演算する場合について説明したがこれに限るものではない。図3に示すように、吸光度は、略左右対称の、上に凸となる曲線で表される。したがって、例えば、吸光度面積に相当する指標として、吸光度の半値幅とピーク値とから定まる値を用いるようにしてもよく、要は吸光度面積と相関を持つ値を、指標として用いてもよい。
Further, in the concentration measuring device 1 according to the second embodiment of the present invention, the contribution of nitrite nitrogen contained in the absorbance after passing through the reduction column is the absorbance area due to the fact that the reduction ratio is not 1 Since the value is accurately taken into consideration and eliminated by using the calibration curve of the nitrate nitrogen standard solution, the measurement error of the nitrate nitrogen concentration can be reduced.
In the second embodiment, although the case where the nitrate nitrogen concentration is calculated using the absorbance area has been described, the present invention is not limited to this. As shown in FIG. 3, the absorbance is represented by a curve that is approximately symmetrical and convex upward. Therefore, for example, a value determined from the half value width of the absorbance and the peak value may be used as an index corresponding to the absorbance area, and a value having a correlation with the absorbance area may be used as the index.

また、第二実施形態においても、制御装置4と監視装置5の間の通信は、無線通信ではなく、有線通信で濃度情報等を伝送してもよい。
また、第二実施形態においても、前記(2)式において、(ST−Cd−SNO2)は、測定対象の海水中の硝酸態窒素の吸光度を表し、吸光度は硝酸態窒素の濃度に比例することから、吸光度を監視することによって、硝酸態窒素の正確な濃度の値ではなく、硝酸態窒素の濃度の程度(例えば、正常、異常等)や、濃度の変化状況(例えば、「濃度が安定している」、「濃度が上昇している」等)を推測することもでき、検量線を用いて濃度の値を演算しなくとも、濃度の傾向管理を行うことができる。
Further, also in the second embodiment, the communication between the control device 4 and the monitoring device 5 may transmit concentration information or the like by wired communication instead of wireless communication.
Also in the second embodiment, (S T -C d -S NO 2) in the above-mentioned equation (2) represents the absorbance of nitrate nitrogen in seawater to be measured, and the absorbance is proportional to the concentration of nitrate nitrogen Therefore, by monitoring the absorbance, the level of nitrate nitrogen concentration (eg, normal, abnormal, etc.) and the change in concentration (eg, “concentration It is possible to infer “stable”, “the concentration is rising”, and the like, and concentration trend management can be performed without calculating the value of the concentration using a calibration curve.

また、上記各実施形態においては、硝酸態窒素と亜硝酸態窒素とを含む海水を測定対象物とし、この測定対象物である海水を還元カラムに通すことにより、海水中に含まれる硝酸態窒素の濃度を測定する場合について説明したが、これに限るものではない。吸光度に寄与する成分として第一成分と、還元することにより第一成分となる第二成分とのみを含む試料において、試料中の第二成分濃度を測定する場合であっても適用することができる。   In each of the above embodiments, seawater containing nitrate nitrogen and nitrite nitrogen is the object to be measured, and the seawater as the object to be measured is passed through a reduction column to obtain nitrate nitrogen contained in the seawater. Although the case of measuring the concentration of is described, it is not limited thereto. The present invention can be applied to the case where the concentration of the second component in the sample is measured in a sample containing only the first component as a component contributing to the absorbance and the second component that becomes the first component by reduction. .

また、上記各実施形態においては、濃度測定装置1で測定した硝酸態窒素濃度を、無線通信により監視装置5に送信し、硝酸態窒素濃度を濃度測定装置1とは離れた場所に配置された監視装置5で監視する場合について説明したがこれに限るものではない。監視装置5の監視部52の機能を濃度測定装置1側に持たせ、濃度測定装置1側において硝酸態窒素濃度を監視するようにしてもよい。   Further, in each of the above embodiments, the nitrate nitrogen concentration measured by the concentration measuring device 1 is transmitted to the monitoring device 5 by wireless communication, and the nitrate nitrogen concentration is disposed at a location distant from the concentration measuring device 1 Although the case of monitoring by the monitoring device 5 has been described, the present invention is not limited to this. The function of the monitoring unit 52 of the monitoring device 5 may be provided on the concentration measuring device 1 side, and the nitrate nitrogen concentration may be monitored on the concentration measuring device 1 side.

また、分析装置3に、フローセル37の吸光度信号を、無線通信により送信する通信部を設け、フローセル37の吸光度信号を制御装置4によって受信し、分析装置3とは離れた場所に配置された制御装置4において硝酸態窒素濃度を測定し、その監視を行うようにしてもよい。要は、取水装置2、分析装置3及び制御装置4を備えていれば、これらを同一場所に配置してもよく、それぞれを異なる場所に配置してもよく、各部をどのように配置してもよい。   Further, the analysis device 3 is provided with a communication unit for transmitting the absorbance signal of the flow cell 37 by wireless communication, and the absorbance signal of the flow cell 37 is received by the control device 4. Control placed at a location distant from the analysis device 3 The nitrate nitrogen concentration may be measured in the device 4 and monitored. The point is that as long as the water intake device 2, the analyzer 3 and the controller 4 are provided, they may be arranged at the same place, or they may be arranged at different places, and how each part is arranged It is also good.

本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本発明の範囲は、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画され得る。   The scope of the present invention is not limited to the illustrated and described exemplary embodiments, but also includes all the embodiments that bring about the same effects as the object of the present invention. Further, the scope of the present invention can be defined by any desired combination of particular features of all the disclosed respective features.

1 濃度測定装置
2 取水装置
3 分析装置
4 制御装置
5 監視装置
30 流路
31 流路
34 還元カラム
36 反応コイル
37 フローセル
42 演算部
43 記憶部
DESCRIPTION OF SYMBOLS 1 concentration measurement apparatus 2 water intake apparatus 3 analyzer 4 control apparatus 5 monitoring apparatus 30 flow path 31 flow path 34 reduction column 36 reaction coil 37 flow cell 42 calculation part 43 storage part

Claims (11)

第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて第一吸光度を検出するステップと、
前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて第二吸光度を検出するステップと、
前記発色試薬と反応する成分として前記第一成分のみを含む第一成分標準液を、前記還元カラムを通さずに前記発色試薬と反応させたときの吸光度と、前記第一成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの吸光度との比である吸光度変化率を演算するステップと、
前記第一吸光度を、前記吸光度変化率を用いて補正し、補正後の前記第一吸光度と前記第二吸光度との差分を検出するステップと、
前記還元カラムを通した後に前記発色試薬と反応する成分が、前記第二成分が還元されてなる前記第一成分のみである第二成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの吸光度と、前記還元カラムを通す前の前記第二成分標準液中の前記第二成分の濃度との対応を表す、予め取得された特性情報と、前記差分とから、前記還元カラムを通す前の前記試料中の前記第二成分の濃度を測定するステップと、
を備えることを特徴とする濃度測定方法。
A sample containing a first component and a second component reduced to the first component by passing through a reduction column is not passed through the reduction column but the first component among the first component and the second component. Detecting a first absorbance by reacting with a coloring reagent that reacts only with
Reacting the sample with the chromogenic reagent after passing through the reduction column to detect a second absorbance;
An absorbance when the first component standard solution containing only the first component as a component to be reacted with the color developing reagent is reacted with the color developing reagent without passing through the reduction column; Calculating a rate of change in absorbance, which is a ratio of absorbance when the reaction with the coloring reagent is performed after passing through a reduction column;
Correcting the first absorbance using the absorbance change rate, and detecting a difference between the corrected first absorbance and the second absorbance;
After passing through the reduction column, a second component standard solution in which the component that reacts with the color development reagent after passing through the reduction column is only the first component formed by reduction of the second component is The reduction based on previously obtained characteristic information indicating the correspondence between the absorbance when reacted and the concentration of the second component in the second component standard solution before passing through the reduction column, and the difference Measuring the concentration of the second component in the sample before passing through a column;
A method of measuring a concentration comprising:
第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて、連続した一回の発色における吸光度の積算値に相当する第一積算相当値を検出するステップと、
前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて連続した一回の発色における吸光度の積算値に相当する第二積算相当値を検出するステップと、
前記第一積算相当値と前記第二積算相当値との差分を検出するステップと、
前記還元カラムを通した後に前記発色試薬と反応する成分が、前記第二成分が還元されてなる前記第一成分のみである第二成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの、連続した一回の発色における吸光度の積算値に相当する積算相当値と、前記還元カラムを通す前の前記第二成分標準液中の前記第二成分の濃度との対応を表す、予め取得された特性情報と、前記差分とから、前記還元カラムを通す前の前記試料中の前記第二成分の濃度を測定するステップと、
を備えることを特徴とする濃度測定方法。
A sample containing a first component and a second component reduced to the first component by passing through a reduction column is not passed through the reduction column but the first component among the first component and the second component. Detecting a first integrated equivalent value corresponding to an integrated value of absorbance in one continuous color development by reacting with a coloring reagent that reacts only with
Allowing the sample to pass through the reduction column and then reacting with the color-forming reagent to detect a second integrated equivalent value corresponding to an integrated value of absorbance in one continuous color development;
Detecting a difference between the first integrated equivalent value and the second integrated equivalent value;
After passing through the reduction column, a second component standard solution in which the component that reacts with the color development reagent after passing through the reduction column is only the first component formed by reduction of the second component passes through the color development reagent and The correspondence between the integrated equivalent value corresponding to the integrated value of absorbance in one continuous color development when reacted and the concentration of the second component in the second component standard solution before passing through the reduction column Measuring the concentration of the second component in the sample before passing through the reduction column from the characteristic information obtained in advance and the difference.
A method of measuring a concentration comprising:
前記第一成分は亜硝酸態窒素であり、前記第二成分は硝酸態窒素であることを特徴とする請求項1又は請求項2に記載の濃度測定方法。   The method according to claim 1 or 2, wherein the first component is nitrite nitrogen and the second component is nitrate nitrogen. 前記還元カラムは、銅−カドミウム還元カラムであることを特徴とする請求項3に記載の濃度測定方法。   The method according to claim 3, wherein the reduction column is a copper-cadmium reduction column. 第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて第一吸光度を検出するステップと、
前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて第二吸光度を検出するステップと、
前記発色試薬と反応する成分として前記第一成分のみを含む第一成分標準液を、前記還元カラムを通さずに前記発色試薬と反応させたときの吸光度と、前記第一成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの吸光度との比である吸光度変化率を演算するステップと、
前記第一吸光度を、前記吸光度変化率を用いて補正し、補正後の前記第一吸光度と前記第二吸光度との差分を、前記還元カラムを通す前の前記試料中の前記第二成分の濃度に関する数値として取得するステップと、
を備えることを特徴とする濃度管理方法。
A sample containing a first component and a second component reduced to the first component by passing through a reduction column is not passed through the reduction column but the first component among the first component and the second component. Detecting a first absorbance by reacting with a coloring reagent that reacts only with
Reacting the sample with the chromogenic reagent after passing through the reduction column to detect a second absorbance;
An absorbance when the first component standard solution containing only the first component as a component to be reacted with the color developing reagent is reacted with the color developing reagent without passing through the reduction column; Calculating a rate of change in absorbance, which is a ratio of absorbance when the reaction with the coloring reagent is performed after passing through a reduction column;
The first absorbance is corrected using the rate of change in absorbance, and the difference between the first absorbance and the second absorbance after correction is taken as the concentration of the second component in the sample before passing through the reduction column. Obtaining as a numerical value for
A concentration management method comprising:
第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて、連続した一回の発色における吸光度の積算値に相当する第一積算相当値を検出するステップと、
前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて連続した一回の発色における吸光度の積算値に相当する第二積算相当値を検出するステップと、
前記第一積算相当値と前記第二積算相当値との差分を、前記還元カラムを通す前の前記試料中の前記第二成分の濃度に関する数値として取得するステップと
を備えることを特徴とする濃度管理方法。
A sample containing a first component and a second component reduced to the first component by passing through a reduction column is not passed through the reduction column but the first component among the first component and the second component. Detecting a first integrated equivalent value corresponding to an integrated value of absorbance in one continuous color development by reacting with a coloring reagent that reacts only with
Allowing the sample to pass through the reduction column and then reacting with the color-forming reagent to detect a second integrated equivalent value corresponding to an integrated value of absorbance in one continuous color development;
Acquiring a difference between the first integrated equivalent value and the second integrated equivalent value as a numerical value related to the concentration of the second component in the sample before passing through the reduction column Management method.
第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて吸光度を測定するモードと、前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて吸光度を測定するモードと、を切り替えて吸光度を測定する分析装置と、
前記発色試薬と反応する成分として前記第一成分のみを含む第一成分標準液を、前記還元カラムを通さずに前記発色試薬と反応させたときの吸光度と、前記第一成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの吸光度との比である吸光度変化率を記憶する記憶部と、
前記二つのモードで測定された前記吸光度と、前記吸光度変化率と、前記還元カラムを通した後に前記発色試薬と反応する成分が、前記第二成分が還元されてなる前記第一成分のみである第二成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの吸光度と、前記還元カラムを通す前の前記第二成分標準液中の前記第二成分の濃度との対応を表す、予め取得された特性情報とから、前記還元カラムを通す前の前記試料中の前記第二成分の濃度を演算する濃度演算部と、
を備えることを特徴とする濃度測定装置。
A sample containing a first component and a second component reduced to the first component by passing through a reduction column is not passed through the reduction column but the first component among the first component and the second component. Analysis by measuring the absorbance by switching between the mode of measuring absorbance by reacting with a color developing reagent that reacts only with the sample, and the mode of reacting the sample with the color forming reagent after passing through the reduction column A device,
An absorbance when the first component standard solution containing only the first component as a component to be reacted with the color developing reagent is reacted with the color developing reagent without passing through the reduction column; A storage unit for storing a rate of change in absorbance, which is a ratio of absorbance when reacted with the color-forming reagent after passing through a reduction column;
The absorbance measured in the two modes, the rate of change in absorbance, and the component that reacts with the coloring reagent after passing through the reduction column are only the first component formed by reducing the second component. Correspondence between the absorbance when the second component standard solution passes through the reduction column and the reaction with the color reagent and the concentration of the second component in the second component standard solution before passing through the reduction column A concentration calculation unit that calculates the concentration of the second component in the sample before passing through the reduction column from the characteristic information obtained in advance, which represents
A concentration measuring device comprising:
第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて吸光度を測定するモードと、前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて吸光度を測定するモードと、を切り替えて吸光度を測定する分析装置と、
前記二つのモードで測定された前記吸光度に基づき、前記還元カラムを通す前の前記試料中の前記第二成分の濃度を演算する濃度演算部と、を備え、
当該濃度演算部は、前記二つのモードそれぞれで測定された連続した一回の発色における吸光度の積算値に相当する積算相当値それぞれを演算する積算相当値演算部と、
前記還元カラムを通した後に前記発色試薬と反応する成分が、前記第二成分が還元されてなる前記第一成分のみである第二成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの、連続した一回の発色における吸光度の積算値に相当する積算相当値と、前記還元カラムを通す前の前記第二成分標準液中の前記第二成分の濃度との対応を表す、予め取得された特性情報と、前記積算相当値演算部で演算された二つの積算相当値どうしの差分とから、前記還元カラムを通す前の前記試料中の前記第二成分の濃度を演算する演算処理部と、
を備えることを特徴とする濃度測定装置。
A sample containing a first component and a second component reduced to the first component by passing through a reduction column is not passed through the reduction column but the first component among the first component and the second component. Analysis by measuring the absorbance by switching between the mode of measuring absorbance by reacting with a color developing reagent that reacts only with the sample, and the mode of reacting the sample with the color forming reagent after passing through the reduction column A device,
And a concentration calculator configured to calculate the concentration of the second component in the sample before passing through the reduction column based on the absorbance measured in the two modes.
The concentration calculation unit is an integration equivalent value calculation unit that calculates integration equivalent values corresponding to integration values of absorbance in one continuous color development measured in each of the two modes;
After passing through the reduction column, a second component standard solution in which the component that reacts with the color development reagent after passing through the reduction column is only the first component formed by reduction of the second component passes through the color development reagent and The correspondence between the integrated equivalent value corresponding to the integrated value of absorbance in one continuous color development when reacted and the concentration of the second component in the second component standard solution before passing through the reduction column Calculate the concentration of the second component in the sample before passing through the reduction column from the characteristic information obtained in advance and the difference between the two integrated equivalent values calculated by the integrated equivalent value calculating unit Operation processing unit,
A concentration measuring device comprising:
前記濃度演算部で演算した前記第二成分の濃度を、無線通信により送信する無線通信部を備えることを特徴とする請求項7又は請求項8に記載の濃度測定装置。   9. The concentration measuring device according to claim 7, further comprising a wireless communication unit that transmits the concentration of the second component calculated by the concentration calculating unit by wireless communication. 第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて吸光度を測定するモードと、前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて吸光度を測定するモードと、を切り替えて吸光度を測定する分析装置と、
前記発色試薬と反応する成分として前記第一成分のみを含む第一成分標準液を、前記還元カラムを通さずに前記発色試薬と反応させたときの吸光度と、前記第一成分標準液を、前記還元カラムを通した後に前記発色試薬と反応させたときの吸光度との比である吸光度変化率を記憶する記憶部と、
前記二つのモードで測定された前記吸光度と、前記吸光度変化率と、から、前記還元カラムを通す前の前記試料中の前記第二成分の濃度に関する数値を取得する演算部と、
を備えることを特徴とする濃度管理装置。
A sample containing a first component and a second component reduced to the first component by passing through a reduction column is not passed through the reduction column but the first component among the first component and the second component. Analysis by measuring the absorbance by switching between the mode of measuring absorbance by reacting with a color developing reagent that reacts only with the sample, and the mode of reacting the sample with the color forming reagent after passing through the reduction column A device,
An absorbance when the first component standard solution containing only the first component as a component to be reacted with the color developing reagent is reacted with the color developing reagent without passing through the reduction column; A storage unit for storing a rate of change in absorbance, which is a ratio of absorbance when reacted with the color-forming reagent after passing through a reduction column;
An arithmetic unit for acquiring a numerical value related to the concentration of the second component in the sample before passing through the reduction column from the absorbance measured in the two modes and the absorbance change rate;
A concentration management device comprising:
第一成分と、還元カラムを通すことにより前記第一成分に還元される第二成分とを含む試料を、前記還元カラムを通さずに前記第一成分及び前記第二成分のうち前記第一成分のみに反応する発色試薬と反応させて吸光度を測定するモードと、前記試料を、前記還元カラムを通した後に前記発色試薬と反応させて吸光度を測定するモードと、を切り替えて吸光度を測定する分析装置と、
前記二つのモードで測定された前記吸光度に基づき、前記還元カラムを通す前の前記試料中の前記第二成分の濃度に関する数値を取得する演算部と、を備え、
当該演算部は、前記二つのモードそれぞれで測定された連続した一回の発色における吸光度の積算値に相当する積算相当値それぞれを演算する積算相当値演算部と、
前記積算相当値演算部で演算された二つの積算相当値どうしの差分を前記第二成分の濃度に関する数値として取得する演算処理部と、
を備えることを特徴とする濃度管理装置。
A sample containing a first component and a second component reduced to the first component by passing through a reduction column is not passed through the reduction column but the first component among the first component and the second component. Analysis by measuring the absorbance by switching between the mode of measuring absorbance by reacting with a color developing reagent that reacts only with the sample, and the mode of reacting the sample with the color forming reagent after passing through the reduction column A device,
An arithmetic unit for acquiring a numerical value related to the concentration of the second component in the sample before passing through the reduction column, based on the absorbance measured in the two modes;
The calculation unit is an integration equivalent value calculation unit that calculates integration equivalent values corresponding to integration values of absorbance in one continuous color development measured in each of the two modes;
An arithmetic processing unit that acquires a difference between two integrated equivalent values calculated by the integrated equivalent value calculation unit as a numerical value related to the concentration of the second component;
A concentration management device comprising:
JP2017230444A 2017-11-30 2017-11-30 Concentration measurement method, concentration control method, concentration measurement device, and concentration control device Active JP6894832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017230444A JP6894832B2 (en) 2017-11-30 2017-11-30 Concentration measurement method, concentration control method, concentration measurement device, and concentration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017230444A JP6894832B2 (en) 2017-11-30 2017-11-30 Concentration measurement method, concentration control method, concentration measurement device, and concentration control device

Publications (2)

Publication Number Publication Date
JP2019100804A true JP2019100804A (en) 2019-06-24
JP6894832B2 JP6894832B2 (en) 2021-06-30

Family

ID=66973344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017230444A Active JP6894832B2 (en) 2017-11-30 2017-11-30 Concentration measurement method, concentration control method, concentration measurement device, and concentration control device

Country Status (1)

Country Link
JP (1) JP6894832B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289504A (en) * 2020-03-13 2020-06-16 国家深海基地管理中心 Deep sea in-situ detection instrument and method for dissolved iron and ferrous iron
CN111948309A (en) * 2020-08-07 2020-11-17 同济大学 Pretreatment method for detecting nitrate concentration in seawater by optical method
CN112225304A (en) * 2020-07-31 2021-01-15 中国人民解放军63605部队 Method for verifying adding amount of hydrogen peroxide for treating nitro-oxidant wastewater
CN113033877A (en) * 2021-03-03 2021-06-25 华南农业大学 Prediction and early warning method for nitrite nitrogen content in prawn culture water body
WO2023188091A1 (en) * 2022-03-30 2023-10-05 ビーエルテック株式会社 Reducing member, analysis device, and analysis method
WO2024046369A1 (en) * 2022-08-31 2024-03-07 上海博取仪器有限公司 Anti-interference water quality analysis instrument test method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128457A (en) * 1980-03-12 1981-10-07 Agency Of Ind Science & Technol Measuring method for nitrate ion and nitrite ion
JPS60241898A (en) * 1984-05-15 1985-11-30 Sekisui Chem Co Ltd Determination of biological components with immobilized enzymes
JP2001305144A (en) * 2000-04-27 2001-10-31 Shimadzu Corp Flow-injection analytical method
JP2005164289A (en) * 2003-11-28 2005-06-23 National Institute Of Advanced Industrial & Technology Method of measuring nitrite ion and nitrate ion, and its instrument
CN102226770A (en) * 2011-03-30 2011-10-26 江苏德林环保技术有限公司 Flow injection analysis device for nitrite or nitrate in water
CN102590195A (en) * 2012-01-18 2012-07-18 云南出入境检验检疫局检验检疫技术中心 Method for testing nitrite and nitrate in pickled vegetables
US20150260701A1 (en) * 2014-03-17 2015-09-17 Sichuan University Method and apparatus for simultaneous online assay of nitrites and nitrates in water samples

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128457A (en) * 1980-03-12 1981-10-07 Agency Of Ind Science & Technol Measuring method for nitrate ion and nitrite ion
JPS60241898A (en) * 1984-05-15 1985-11-30 Sekisui Chem Co Ltd Determination of biological components with immobilized enzymes
JP2001305144A (en) * 2000-04-27 2001-10-31 Shimadzu Corp Flow-injection analytical method
JP2005164289A (en) * 2003-11-28 2005-06-23 National Institute Of Advanced Industrial & Technology Method of measuring nitrite ion and nitrate ion, and its instrument
CN102226770A (en) * 2011-03-30 2011-10-26 江苏德林环保技术有限公司 Flow injection analysis device for nitrite or nitrate in water
CN102590195A (en) * 2012-01-18 2012-07-18 云南出入境检验检疫局检验检疫技术中心 Method for testing nitrite and nitrate in pickled vegetables
US20150260701A1 (en) * 2014-03-17 2015-09-17 Sichuan University Method and apparatus for simultaneous online assay of nitrites and nitrates in water samples

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289504A (en) * 2020-03-13 2020-06-16 国家深海基地管理中心 Deep sea in-situ detection instrument and method for dissolved iron and ferrous iron
CN111289504B (en) * 2020-03-13 2022-12-09 国家深海基地管理中心 Deep sea in-situ detection instrument and detection method for dissolved iron and ferrous iron
CN112225304A (en) * 2020-07-31 2021-01-15 中国人民解放军63605部队 Method for verifying adding amount of hydrogen peroxide for treating nitro-oxidant wastewater
CN111948309A (en) * 2020-08-07 2020-11-17 同济大学 Pretreatment method for detecting nitrate concentration in seawater by optical method
CN111948309B (en) * 2020-08-07 2022-10-18 同济大学 Pretreatment method for detecting nitrate concentration in seawater by optical method
CN113033877A (en) * 2021-03-03 2021-06-25 华南农业大学 Prediction and early warning method for nitrite nitrogen content in prawn culture water body
WO2023188091A1 (en) * 2022-03-30 2023-10-05 ビーエルテック株式会社 Reducing member, analysis device, and analysis method
WO2024046369A1 (en) * 2022-08-31 2024-03-07 上海博取仪器有限公司 Anti-interference water quality analysis instrument test method

Also Published As

Publication number Publication date
JP6894832B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
JP6894832B2 (en) Concentration measurement method, concentration control method, concentration measurement device, and concentration control device
Aßmann et al. Spectrophotometric high-precision seawater pH determination for use in underway measuring systems
US11454619B2 (en) Methods for colorimetric endpoint detection and multiple analyte titration systems
CN107941796B (en) Automatic detecting analyzer for environmental water quality
CN1312343C (en) Dyeing machine with automatic in-line dip depletion control
CN110057761A (en) A kind of full spectrum combines the monitoring water quality on line System and method for of quickly easy survey index
CN112960867A (en) Integrated sewage treatment dynamic regulation and control system
US20070231910A1 (en) Titration method using a tracer to quantify the titrant
Martz et al. Tracer monitored titrations: Measurement of total alkalinity
JP2011169859A (en) Method and device for automatically managing chlorine concentration
Seelmann et al. Characterization of a novel autonomous analyzer for seawater total alkalinity: Results from laboratory and field tests
Gao et al. Determination of 1-naphthylamine by using oscillating chemical reaction
EP3317644B1 (en) Calibration method for water hardness measurement
CN205484020U (en) Measured flow leads to pond
US10060891B1 (en) Continuous acid-free measurements of total alkalinity
JP4075664B2 (en) Arsenic concentration measurement method and apparatus
US20210033555A1 (en) Method for calibrating an analytical measuring device and measuring point for analyzing a process medium and for calibrating an analytical measuring device
CN107703321B (en) Automatic detecting analyzer for water quality of multiple pollutant components
US20210033590A1 (en) Method for determining a chemical intake capacity of a process medium in a measuring point and measuring point for determining a chemical intake capacity of a process medium
US9958373B2 (en) Protocol adaptive computer controlled target-analyte permeation testing instrument
JP2005291994A (en) System for monitoring water quality
CN101782523B (en) Method for online detecting arsenic content in water by using dithioantipyrine methane as color developing agent
CN110426355A (en) A kind of water quality monitoring sampling and quality control system
US20170234826A1 (en) Concentration measurement method, concentration measurement program, concentration measurement system, and concentration measurement device
JP2001124757A (en) Self diagnosis method of system in trimorphic nitrogen- analyzing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200716

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210604

R150 Certificate of patent or registration of utility model

Ref document number: 6894832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150