JP2005164289A - Method of measuring nitrite ion and nitrate ion, and its instrument - Google Patents

Method of measuring nitrite ion and nitrate ion, and its instrument Download PDF

Info

Publication number
JP2005164289A
JP2005164289A JP2003400369A JP2003400369A JP2005164289A JP 2005164289 A JP2005164289 A JP 2005164289A JP 2003400369 A JP2003400369 A JP 2003400369A JP 2003400369 A JP2003400369 A JP 2003400369A JP 2005164289 A JP2005164289 A JP 2005164289A
Authority
JP
Japan
Prior art keywords
measuring
nitrite
nitrate
sample water
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003400369A
Other languages
Japanese (ja)
Inventor
Shizuko Hirata
静子 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003400369A priority Critical patent/JP2005164289A/en
Publication of JP2005164289A publication Critical patent/JP2005164289A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of measuring a nitrite ion and an nitrate ion capable of shortening a measuring time and capable of simplifying constitution, because the nitrite ion and the nitrate ion are measured concurrently by the same measuring instrument, and provide its instrument. <P>SOLUTION: Sample water is measured automatically by simple constitution via two six-way valves 2, 3. When measuring nitrate ion concentration, the sample water is passed through a cadmium-copper column 4, and the nitrate ion is reduced to the nitrite ion to be measured. When measuring only the nitrite, the measurement therefor is carried out by the same instrument without passing the cadmium-copper column 4, and a nitrate ion concentration is found on the basis of a difference between the both. A mixture solution 9 mixed with a coloring reaction solution in the sample water is measured by a detector of a light emitting diode 10a and a photodiode 10b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、試料水中に含まれる亜硝酸イオン及び硝酸イオンの濃度を測定するための測定方法とその装置に関するものである。更に詳しくは、バルブの切り換えで試料水を供給し、吸光度を自動的に測定して定量化する亜硝酸イオン及び硝酸イオンの濃度の測定方法とその装置に関するものである。   The present invention relates to a measurement method and apparatus for measuring concentrations of nitrite ions and nitrate ions contained in sample water. More specifically, the present invention relates to a method and an apparatus for measuring the concentration of nitrite ions and nitrate ions, in which sample water is supplied by switching valves and the absorbance is automatically measured and quantified.

工業用水、生活排水、環境水、海水中等には、亜硝酸や硝酸が含まれており、様々な環境汚染をもたらしている。水中の硝酸は、動物性有機物が細菌による分解によってアンモニア、亜硝酸を経て生成する最終の分解物と称されている。この硝酸の量は有機物質による過去の汚染を示すバロメーターとなっていて、生活排水等の残さ物に起因し水への汚染源となっている。又、亜硝酸は、アンモニアが酸化してできる有害物質である。   Industrial water, domestic wastewater, environmental water, seawater, and the like contain nitrous acid and nitric acid, causing various environmental pollution. Nitric acid in water is called the final decomposition product of animal organic matter produced by decomposition by bacteria through ammonia and nitrous acid. The amount of nitric acid is a barometer indicating past contamination with organic substances, and is a source of water contamination due to residues such as domestic wastewater. Nitrous acid is a harmful substance formed by oxidation of ammonia.

このように水が汚れるのを防止するため環境基準等が定められ、又、排水規制等が行われている。この基準、即ちJISに水中の亜硝酸及び硝酸の濃度を測定する方法が規定され、一般的にはこの基準に基づき水質の可否の判定を行っている。このJISの規定は、測定物質と発色試薬の発色反応を利用するもので、種々の吸光光度法が知られている。例えば、水中の硝酸及び亜硝酸イオンの測定は、次のように規定されている。   In order to prevent the water from becoming dirty in this way, environmental standards and the like are established, and drainage regulations and the like are performed. A method for measuring the concentration of nitrous acid and nitric acid in water is defined in this standard, that is, JIS, and generally, the quality of water is determined based on this standard. This JIS standard uses a color reaction between a measurement substance and a color reagent, and various absorptiometric methods are known. For example, the measurement of nitric acid and nitrite ions in water is defined as follows.

亜硝酸イオンについては、ナフチルエチレンジアミン吸光光度法により、試料にスルファニルアミド(4−アミノベンゼンスルホンアミド)を加え、これを亜硝酸イオンによってジアゾ化し、N-1-ナフチルエチレンアミン(二塩化N-1-ナフチルエチレンジアンモニウム)を加えて生じる赤い色のアゾ化合物の吸光度を測定して亜硝酸イオンを定量する。   For nitrite ions, sulfanilamide (4-aminobenzenesulfonamide) was added to the sample by naphthylethylenediamine absorption photometry, and this was diazotized with nitrite ions to give N-1-naphthylethyleneamine (N-1 dichloride). -Measure the absorbance of the red colored azo compound produced by adding (naphthylethylenediammonium) to quantify nitrite ions.

又、硝酸イオンについては、還元蒸留―インドフェノール青吸光光度法、還元蒸留―中和滴定法、銅・カドミウムカラム還元―ナフチルエチレンジアミン吸光光度法、イオンクロマトグラフ法等がある。このうちの銅・カドミウムカラム還元―ナフチルエチレンジアミン吸光光度法は、試料中の硝酸イオンを表面に銅を析出させたカドミウム粒を詰めた銅・カドミウムカラムによって還元して亜硝酸イオンとし、ナフチルエチレンジアミン吸光光度法によって試料中に存在した亜硝酸イオンとの合量を定量し、別に求めた同じ試料中の亜硝酸イオンの量との差で硝酸イオンの濃度を求めるものである。   As for nitrate ions, there are reductive distillation-indophenol blue absorptiometry, reductive distillation-neutralization titration, copper / cadmium column reduction-naphthylethylenediamine absorptiometry, ion chromatography and the like. Of these, the copper-cadmium column reduction-naphthylethylenediamine absorption photometric method is used to reduce nitrate ions in a sample to nitrite ions by reducing them with a copper-cadmium column packed with cadmium particles with copper deposited on the surface. The total amount of nitrite ions present in the sample is quantified by the photometric method, and the concentration of nitrate ions is determined by the difference from the amount of nitrite ions in the same sample obtained separately.

このJISによる規定は、メスシリンダー等を使用して手作業で行うものである。これを自動化して測定する方法も開示されており(特許文献2ないし4参照)、例えば、任意の位置に移動が可能な試料吸排用可動ノズルと硝酸イオン還元触媒を充填した還元カラムを設け、一定量の試料溶液、又は反応溶液を吸引吐出可能なポンプを設け、ニードル等の操作体をコントロールし反応生成物の吸光度を測定する方法が知られている(特許文献1参照)。
特開平8−122258号公報 特開2002−228629号公報 特開2003−207447号公報 特開2001−194357号公報
This JIS regulation is performed manually using a graduated cylinder or the like. A method of automating and measuring this is also disclosed (see Patent Documents 2 to 4). For example, a movable column for sample suction and discharge that can be moved to an arbitrary position and a reduction column filled with a nitrate ion reduction catalyst are provided, A method is known in which a pump capable of sucking and discharging a certain amount of sample solution or reaction solution is provided, and the absorbance of the reaction product is measured by controlling an operating body such as a needle (see Patent Document 1).
JP-A-8-122258 JP 2002-228629 A JP 2003-207447 A JP 2001-194357 A

水中の亜硝酸及び硝酸イオンを測定する上において、従来のJISを中心とする手作業の測定技術では、測定時間を要し、測定誤差を招くおそれがあり、能率的とはいえない。又前述の自動化された開示技術は、工程が複雑で持ち運びのできるものではなく、測定は必ずしも能率的とはいえない。   In measuring nitrous acid and nitrate ions in water, the conventional manual measurement technique centered on JIS requires measurement time and may cause measurement errors, which is not efficient. In addition, the above-described automated disclosed technique is complicated and not portable, and measurement is not always efficient.

このような環境保全に関わる測定は、現場で即座に行われ結果を表示することが理想である。本発明は、このような従来の技術背景に基づき鋭意研究を重ねた結果従来の問題点を解決したものである。本発明の目的は、試料水の亜硝酸イオンと硝酸イオンの両方の濃度をバルブによる簡素な構成で、持ち運びができ現場で自動的に測定のできる亜硝酸及び硝酸の測定技術とその装置の提供にある。   Ideally, such environmental conservation measurements should be performed immediately on site and the results displayed. The present invention solves the conventional problems as a result of intensive studies based on the background of such conventional technology. An object of the present invention is to provide a measurement technology and apparatus for nitrous acid and nitric acid that can be carried and automatically measured in the field with a simple configuration using a valve for the concentration of both nitrite ions and nitrate ions in a sample water. It is in.

本発明は、上記目的を達成するために、次の手段で達成される。即ち、
本発明1の亜硝酸イオンと硝酸イオンの測定方法は、所定量の試料水を所定容器に注入する注入工程と、前記試料水を発色反応させるために反応溶液を加えて混合し混合溶液とする混合工程と、前記混合溶液を発色反応させる発色反応工程、及び前記混合溶液の光透過率を測定する測定工程からなる亜硝酸イオン濃度の第1の測定工程と、前記注入工程で注入された前記試料水をキャリアーによりカドミウム−銅還元カラムに通過させ前記試料水中の硝酸イオンを亜硝酸イオンに還元する還元工程と、この還元された試料水に反応溶液を加えて混合し混合溶液とする混合工程と、前記混合溶液を発色反応させる発色反応工程、前記混合溶液の光透過率を測定する測定工程からなる亜硝酸イオン濃度の第2の測定工程と、前記第1の測定工程と前記第2の測定工程の測定結果を比較演算処理し硝酸イオン濃度を算出する比較処理工程とからなる。
In order to achieve the above object, the present invention is achieved by the following means. That is,
The method for measuring nitrite ions and nitrate ions according to the first aspect of the present invention includes an injection step of injecting a predetermined amount of sample water into a predetermined container, and adding and mixing a reaction solution for color reaction of the sample water to obtain a mixed solution. A first step of measuring the concentration of nitrite ions, a step of developing a color reaction of the mixed solution, a step of developing a color reaction of the mixed solution, and a step of measuring a light transmittance of the mixed solution; A reduction process in which sample water is passed through a cadmium-copper reduction column by a carrier to reduce nitrate ions in the sample water to nitrite ions, and a mixing process in which a reaction solution is added to the reduced sample water and mixed to form a mixed solution A color development reaction step of causing the mixed solution to develop a color reaction, a second measurement step of nitrite ion concentration comprising a measurement step of measuring the light transmittance of the mixed solution, and the first measurement step. Comparing processing the measurement results of the serial second measuring step comprising a comparison processing step of calculating a nitrate ion concentration.

本発明2の亜硝酸イオンと硝酸イオンの測定方法は、本発明1において、
前記混合工程の反応溶液は、スルファニルアミドとN-1-ナフチルエチレンジアミンを溶解した酸溶液であることを特徴としている。前記酸溶液は、スルファニルアミドと、N-1-ナフチルエチレンジアミン二塩酸塩とを濃塩酸等の酸で溶解し、蒸留水で希釈した試薬溶液である。
The method for measuring nitrite ions and nitrate ions according to the second aspect of the present invention is as follows.
The reaction solution in the mixing step is an acid solution in which sulfanilamide and N-1-naphthylethylenediamine are dissolved. The acid solution is a reagent solution obtained by dissolving sulfanilamide and N-1-naphthylethylenediamine dihydrochloride with an acid such as concentrated hydrochloric acid and diluting with distilled water.

本発明3の亜硝酸イオンと硝酸イオンの測定方法は、発明1において、
前記還元工程のキャリアーは、エチレンジアミンテトラ酢酸塩を含む塩化アンモニウム溶液であることを特徴としている。前記エチレンジアミンテトラ酢酸塩は、エチレンジアミン四酢酸二ナトリウム、又はエチレンジアミン四酢酸四ナトリウムが好ましい。
The method for measuring nitrite ions and nitrate ions according to the third aspect of the present invention is as follows.
The carrier in the reduction step is an ammonium chloride solution containing ethylenediaminetetraacetate. The ethylenediaminetetraacetate is preferably disodium ethylenediaminetetraacetate or tetrasodium ethylenediaminetetraacetate.

本発明4の亜硝酸イオンと硝酸イオンの測定方法は、本発明1において、
前記測定工程は、光源が発光ダイオードであり、受光器をフォトダイオードとする測定装置による測定であることを特徴としている。
The method for measuring nitrite ions and nitrate ions according to the present invention 4 is as follows.
The measuring step is characterized in that the measurement is performed by a measuring device in which the light source is a light emitting diode and the light receiver is a photodiode.

本発明5の亜硝酸イオンと硝酸イオンの測定方法は、本発明1において、
前記比較処理工程は、測定結果をコンピュータにより2つの亜硝酸測定結果を差し引き演算処理して硝酸イオン濃度を定量化する工程であることを特徴としている。
The method for measuring nitrite ions and nitrate ions according to the fifth aspect of the present invention is as follows.
The comparison processing step is characterized in that the nitrate ion concentration is quantified by subtracting and processing two nitrous acid measurement results from the measurement result by a computer.

本発明6の亜硝酸イオンと硝酸イオンの測定方法は、本発明4において、
前記測定工程の前記発光ダイオードのピーク波長は、500nmから600nmであることを特徴としている。
The method for measuring nitrite ions and nitrate ions according to the sixth aspect of the present invention is as follows.
The peak wavelength of the light emitting diode in the measuring step is 500 nm to 600 nm.

本発明7の亜硝酸イオンと硝酸イオンの測定装置は、
亜硝酸イオンと硝酸イオンを含む試料水と、前記試料水を取り込み所定量に検量され保持し段階供給するバルブと、前記試料水中の硝酸イオンを亜硝酸イオンに還元するカドミウム−銅還元カラムと、前記試料水を押し流すキャリアーとして加えられるエチレンジアミンテトラ酢酸塩を含む塩化アンモニウム溶液と、前記試料水に発色反応溶液として加えられるスルファニルアミドとN-1-ナフチルエチレンジアミン溶液と、前記試料水に前記N-1-ナフチルエチレンジアミン溶液を混合した混合溶液を保持して発色反応させるフッ素系チューブと、前記混合溶液の透過率を測定して亜硝酸イオン濃度を定量化する測定装置と、前記カドミウム−銅還元カラムを通過させた試料水の測定結果と、前記カドミウム−銅還元カラムを通過させない試料水の測定結果を比較演算して硝酸イオン濃度を定量化する比較処理装置とからなっている。
The measuring device for nitrite ions and nitrate ions of the present invention 7
Sample water containing nitrite ions and nitrate ions, a valve that takes in the sample water, weighs the sample water, holds and feeds it in stages, a cadmium-copper reduction column that reduces nitrate ions in the sample water to nitrite ions, Ammonium chloride solution containing ethylenediaminetetraacetate added as a carrier to wash away the sample water, sulfanilamide and N-1-naphthylethylenediamine solution added as a coloring reaction solution to the sample water, and the N-1 in the sample water A fluorine-based tube for holding a mixed solution mixed with a naphthylethylenediamine solution to cause a color reaction, a measuring device for measuring the transmittance of the mixed solution to quantify the nitrite ion concentration, and the cadmium-copper reducing column The measurement result of the sample water passed through and the test not to pass through the cadmium-copper reduction column. It consists of a comparison processing device that quantifies the nitrate ion concentration by comparing the measurement results of the feed water.

本発明8の亜硝酸イオンと硝酸イオンの測定装置は、本発明7において、
前記バルブは、6ポート切り換えバルブであり、注入された試料水を一定量の試料水として段階的に分配供給する構成になっていることを特徴としている。
The measurement apparatus for nitrite ions and nitrate ions of the present invention 8 is the present invention 7,
The valve is a 6-port switching valve, and is characterized in that the injected sample water is distributed in stages as a constant amount of sample water.

本発明9の亜硝酸イオンと硝酸イオンの測定装置は、発明7において、
前記比較処理装置は、コンピュータであることを特徴としている。
The nitrite ion and nitrate ion measuring apparatus according to the ninth aspect of the present invention is the invention 7,
The comparison processing device is a computer.

本発明10の亜硝酸イオンと硝酸イオンの測定装置は、本発明7において、
前記測定装置は、光源が発光ダイオードであり、受光部をフォトダイオードとする測定装置であることを特徴としている。
The measurement apparatus for nitrite ions and nitrate ions of the present invention 10 in the present invention 7,
The measuring apparatus is characterized in that the light source is a light emitting diode and the light receiving portion is a photodiode.

本発明は、試料水をバルブを介して供給し測定する持ち運びのできる簡素な構成にし、反応溶液を酸溶液に溶解した溶液で行い、短時間に測定結果を得ることができるようになった。又、亜硝酸イオンと硝酸イオンを同じ試料水を同じ装置で自動的に交互に測定し定量化できるので構成が簡素化された。この結果、高感度、高精度で短時間に測定することができ、測定結果に個人差がなく、安定した測定結果を得ることとなった。   The present invention has a simple configuration in which sample water can be supplied and measured through a valve, and the reaction solution is a solution dissolved in an acid solution, and the measurement result can be obtained in a short time. In addition, the nitrite ion and nitrate ion can be automatically measured alternately with the same sample water and quantified, thereby simplifying the configuration. As a result, it was possible to measure with high sensitivity and high accuracy in a short time, and there was no individual difference in the measurement result, and a stable measurement result was obtained.

以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、亜硝酸イオン及び硝酸イオンの濃度を測定するための測定システム1を模式的に示したものである。この測定システム1は6方バルブを適用した場合を示している。本発明の基本的な測定構成は図1に示すとおり、2つの6方バルブにより構成されている。第1の6方バルブ2には6つのポートa,b,c,d,e,f,が設けられ、回転によりインデックスさせ位置を変えられる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a measurement system 1 for measuring the concentrations of nitrite ions and nitrate ions. This measurement system 1 shows a case where a 6-way valve is applied. The basic measurement configuration of the present invention is constituted by two 6-way valves as shown in FIG. The first six-way valve 2 is provided with six ports a, b, c, d, e, and f, and can be indexed and changed in position by rotation.

この回転は、簡素な構成であれば手動でよいが、連続的に測定を繰り返すときは自動であることが好ましい。同様に第2の6方バルブ3にも6つのポートg,h,i,j,k,l,が設けられ、回転によりインデックスして位置を変えられるようになっている。2つの6方バルブ間は、試料水がカドミウム−銅カラム4を通過する回路5と、試料水をそのまま直接通過させる回路6が接続している。   This rotation may be manual if it has a simple structure, but it is preferable that the rotation is automatic when the measurement is continuously repeated. Similarly, the second six-way valve 3 is also provided with six ports g, h, i, j, k, l, and can be indexed and changed in position by rotation. Between the two six-way valves, a circuit 5 through which the sample water passes the cadmium-copper column 4 and a circuit 6 through which the sample water passes directly are connected.

第1の6方バルブ2において、試料水は、ポートaに供給されポートbに流れ、ポートe,fを介して第2の6方バルブ3に供給される。次に第1の6方バルブ2が切り換えられると、ポートa,b間の試料水は、ポートc、d間に位置換えされる。cポートはキャリアー容器7と接続していて、ポートc,d間の試料水はキャリアー容器7から供給されるキャリアー7aによりカドミウムカラム−銅4側に押し流される。このキャリアー7aは、エチレンジアミンテトラ酢酸塩を含む塩化アンモニウム溶液である。   In the first six-way valve 2, the sample water is supplied to the port a, flows to the port b, and is supplied to the second six-way valve 3 through the ports e and f. Next, when the first six-way valve 2 is switched, the sample water between the ports a and b is repositioned between the ports c and d. The c port is connected to the carrier container 7, and the sample water between the ports c and d is pushed to the cadmium column-copper 4 side by the carrier 7 a supplied from the carrier container 7. The carrier 7a is an ammonium chloride solution containing ethylenediaminetetraacetate.

次に第1の6方バルブ2が切り換えられると、ポートc,d間はポートe,f間に位置が変わる。このときポートc、d間にはキャリアーが残存していて試料水はない。ポートがe,fに切り換えられたことにより、試料水供給口であるポートaに新しい試料水が供給されるように回路接続される。これによりポートe,f間のキャリアーは試料水と共に第2の6方バルブ3に押し流され、この回路は試料水で満たされることになる。   Next, when the first six-way valve 2 is switched, the position between the ports c and d changes between the ports e and f. At this time, the carrier remains between the ports c and d, and there is no sample water. By switching the ports to e and f, the circuit connection is made so that new sample water is supplied to the port a which is the sample water supply port. As a result, the carrier between the ports e and f is pushed into the second 6-way valve 3 together with the sample water, and this circuit is filled with the sample water.

第1の6方バルブ2はこのような構成になっていて、硝酸を測定する場合は、試料水をポートc,dに位置させ、キャリアー7aによりカドミウム−銅カラム4側に押し流し、硝酸を亜硝酸化させて第2の6方バルブ3に送り込む。硝酸はカドミウム−銅カラム4を通すと、定量的に亜硝酸に還元される。このカドミウム−銅カラム4を通過する試料水は、硝酸から還元された亜硝酸と、もとから含まれている亜硝酸のトータルされたものとなる。   The first 6-way valve 2 has such a configuration, and when measuring nitric acid, the sample water is positioned at the ports c and d and is pushed to the cadmium-copper column 4 side by the carrier 7a, and the nitric acid is sublimated. It is nitrated and fed to the second 6-way valve 3. Nitric acid is quantitatively reduced to nitrous acid as it passes through the cadmium-copper column 4. The sample water passing through the cadmium-copper column 4 is a total of nitrous acid reduced from nitric acid and nitrous acid originally contained.

次に第2の6方バルブ3について説明する、この第2の6方バルブ3も第1の6方バルブ2同様に6つのポートg,h,i,j,k,lを有していて、第1の6方バルブ2のポートfを介して試料水がポートgに供給される。供給された試料水は、測定しない場合はポートg、h、k、lを介して排出される。   Next, the second six-way valve 3 will be described. The second six-way valve 3 also has six ports g, h, i, j, k, and l like the first six-way valve 2. The sample water is supplied to the port g through the port f of the first six-way valve 2. The supplied sample water is discharged through the ports g, h, k, and l when not measured.

一方カドミウム−銅カラム4からの試料水は亜硝酸のイオン水として、ポート間i,jを通過しT位置にもたらされる。試料水が通過した後カドミウム−銅カラム4にはキャリアー7aのみが留まっている。このT位置には、発色反応溶液容器8から発色反応溶液8aであるスルファニルアミドとN-1-ナフチルエチレンジアミン溶液が供給され試料水と混合される。この混合過程で、キャリアー7aは試料水を押し流すだけで測定結果には影響を及ぼさない。   On the other hand, the sample water from the cadmium-copper column 4 passes through the ports i and j as ion water of nitrous acid and is brought to the T position. After the sample water passes, only the carrier 7a remains in the cadmium-copper column 4. At this T position, sulfanilamide and N-1-naphthylethylenediamine solution, which are color reaction solutions 8a, are supplied from the color reaction solution container 8 and mixed with sample water. In this mixing process, the carrier 7a only pushes the sample water and does not affect the measurement result.

他方、亜硝酸イオンのみを測定する場合は、硝酸イオンを測定後、第2の6方バルブ3を切り換え、ポートg、h間の試料水をポートi,jに位置させる。ポートi,j間の試料水は、硝酸イオン測定時と同質のものであり、カドミウム−銅カラム4を通過して供給されるキャリアー7aによりT位置にもたらされる。この亜硝酸イオンのみの測定が終了した後は、再び硝酸イオンの測定を行う。このように測定時の硝酸イオン及び亜硝酸イオンの測定用試料水は、連続した流れの中で常に第1の6方バルブ2及び第2の6方バルブ3に留まっているものであり、同質のものである。   On the other hand, when measuring only nitrite ions, after measuring the nitrate ions, the second six-way valve 3 is switched, and the sample water between the ports g and h is positioned at the ports i and j. The sample water between the ports i and j is the same as that at the time of nitrate ion measurement, and is brought to the T position by the carrier 7 a supplied through the cadmium-copper column 4. After the measurement of only the nitrite ion is completed, the nitrate ion is measured again. Thus, the sample water for measuring nitrate ions and nitrite ions at the time of measurement always remains in the first 6-way valve 2 and the second 6-way valve 3 in a continuous flow, and is homogeneous. belongs to.

このようにして、同じ装置で同質の試料水の硝酸イオンと亜硝酸イオンの測定とを交互に繰り返し行うことができる。試料水は連続して流すことが出来るので、バルブポートの切り換えで前の試料水を流すことになるので、この回路に前の試料水が残るようなことはなく常に新鮮な試料水の測定ができる。T位置で試料水は発色反応溶液8aと混ぜられ混合溶液9となる。試料水はジアゾ化し、アゾ色素の赤紫色になる。   In this way, measurement of nitrate ions and nitrite ions of homogeneous sample water can be alternately and repeatedly performed using the same apparatus. Since the sample water can be flown continuously, the previous sample water is flowed by switching the valve port, so the previous sample water does not remain in this circuit, and fresh sample water is always measured. it can. At the position T, the sample water is mixed with the coloring reaction solution 8a to become a mixed solution 9. The sample water is diazotized and becomes the reddish purple of the azo dye.

この混合溶液9は反応コイルRCを通過し、室温状態で検出装置10にもたらされる。この検出装置10で混合溶液9を発色反応させ測定する。この測定は、混合溶液9の透過率を測定し、亜硝酸イオンの含有の度合いを求めるものである。詳細は図示していないが、試料水、キャリアー7a、発色反応溶液8aの供給は、ポンプ又はシリンダー等のアクチュエーター12によって行われる。   This mixed solution 9 passes through the reaction coil RC and is brought to the detection device 10 at room temperature. The mixed solution 9 is subjected to a color reaction with the detection device 10 and measured. In this measurement, the transmittance of the mixed solution 9 is measured to determine the degree of nitrite ion content. Although details are not shown, the sample water, the carrier 7a, and the coloring reaction solution 8a are supplied by an actuator 12 such as a pump or a cylinder.

検出装置10は、図2に示すように、発光部を発光ダイオード10aとし、受光部をフォトダイオード10bとしたものである。発光ダイオード10aは、500〜600nmの波長のものであり、光路長さは10〜50mmの範囲である。混合溶液9は、図に示すように発光ダイオード10a側からフォトダイオード10b側に流される。この途中の光路Cで亜硝酸イオンの濃度を測定する。この流れる過程で光を入射させる。   As shown in FIG. 2, the detection device 10 has a light emitting part as a light emitting diode 10a and a light receiving part as a photodiode 10b. The light emitting diode 10a has a wavelength of 500 to 600 nm, and the optical path length is in the range of 10 to 50 mm. As shown in the figure, the mixed solution 9 flows from the light emitting diode 10a side to the photodiode 10b side. The concentration of nitrite ions is measured in the optical path C along the way. Light enters during this flow process.

この濃度測定は、前述のように混合溶液9の透過率を測定するものである。この測定装置10を通過した混合溶液9は、検出装置10外に排水される。混合溶液9は、排水されるが、測定結果はデータとして信号増幅器を経てコンピュータ11に送られ比較演算処理される。既知の亜硝酸イオン、硝酸イオン濃度のデータの出力例を図3に示す。この比較演算は、一定の試料水をカドミウム−銅カラムを通して段階的に多く測定し作成された吸光度との検量線より硝酸イオン濃度と亜硝酸イオン濃度の合計量を求め、同様に、カドミウム−銅カラムを通さないで測定した亜硝酸イオンの濃度を差し引くことで、硝酸イオン濃度を求めることを基本として処理される。   This concentration measurement is to measure the transmittance of the mixed solution 9 as described above. The mixed solution 9 that has passed through the measurement device 10 is drained outside the detection device 10. Although the mixed solution 9 is drained, the measurement result is sent as data to the computer 11 via a signal amplifier and subjected to a comparison calculation process. FIG. 3 shows an output example of known nitrite ion and nitrate ion concentration data. In this comparison calculation, a total amount of nitrate ion concentration and nitrite ion concentration is obtained from a calibration curve of absorbance obtained by measuring a large amount of sample water stepwise through a cadmium-copper column, and similarly, cadmium-copper Processing is based on determining the concentration of nitrate ions by subtracting the concentration of nitrite ions measured without passing through the column.

カドミウム−銅カラム4を経て測定される亜硝酸イオンの定量値は、もとから存在している亜硝酸イオンの濃度と硝酸イオンから還元された亜硝酸イオンの濃度を合わせたトータルの量である。この比較演算処理過程で、カドミウム−銅カラム4を経ないで測定された亜硝酸イオン濃度の測定値を差し引くと硝酸イオンの量が算定され定量化できる。即ち、次のような関係式となります。最初の測定値=亜硝酸イオン濃度、後の測定値=亜硝酸イオン濃度+硝酸イオン濃度、硝酸イオン濃度=後の測定値−最初の測定値、となります。   The quantitative value of nitrite ions measured through the cadmium-copper column 4 is the total amount of the concentration of nitrite ions originally present and the concentration of nitrite ions reduced from nitrate ions. . By subtracting the measured value of the nitrite ion concentration measured without passing through the cadmium-copper column 4 in this comparative calculation process, the amount of nitrate ion can be calculated and quantified. That is, the following relational expression is obtained. First measured value = nitrite ion concentration, later measured value = nitrite ion concentration + nitrate ion concentration, nitrate ion concentration = later measured value-first measured value.

このように、本測定システム1は硝酸イオン濃度も亜硝酸イオンと区分して定量化できる機能を有している。コンピュータ11は比較的小型に構成できるので、前述で説明した装置に付随させ戸外の現場へ持ち出して使用可能なコンパクトなシステム装置とすることができる。以上本発明の実施の形態について説明してきたが、本発明の具体的構成はこの実施例に限定されないことはいうまでもない。例えば、バルブを6方バルブとして説明したが、他のバルブであってもよい。   As described above, the measurement system 1 has a function capable of separately quantifying the nitrate ion concentration separately from the nitrite ion. Since the computer 11 can be configured to be relatively small, it can be a compact system device that can be used by being attached to the above-described device and being taken to an outdoor site. Although the embodiment of the present invention has been described above, it goes without saying that the specific configuration of the present invention is not limited to this embodiment. For example, although the valve has been described as a six-way valve, other valves may be used.

本発明の実施例を以下に示す。
分析用ボックス:W400mm×D300mm×H370mm
分析用ボックスの重さ:約10kg
キャリアー:エチレンジアミン四酢酸二ナトリウム、又はエチレンジアミン四酢酸四ナトリウムを含む塩化アンモニウム溶液
発色反応溶液:スルファニルアミドを1.0gと、N-1-ナフチルエチレンジアミン二塩酸塩を0.06gとを濃塩酸2mLに溶解し、蒸留水で200mLに希釈した試薬溶液
カドミウムー銅カラム:25×2mml.d
流速:0.3ml/min
サンプルループ:250μl
反応コイル長:60cm
光路の長さ:1〜5cm
検出装置の波長:540nm
検出装置:発光ダイオード(LED)、フォトダイオード(PD)
Examples of the present invention are shown below.
Analysis box: W400mm × D300mm × H370mm
Analysis box weight: approx. 10kg
Carrier: Ammonium chloride solution containing ethylenediaminetetraacetic acid disodium or ethylenediaminetetraacetic acid tetrasodium Coloring reaction solution: 1.0 g of sulfanilamide and 0.06 g of N-1-naphthylethylenediamine dihydrochloride in 2 mL of concentrated hydrochloric acid Reagent solution cadmium-copper column dissolved and diluted to 200 mL with distilled water: 25 × 2 ml. d
Flow rate: 0.3 ml / min
Sample loop: 250 μl
Reaction coil length: 60cm
Optical path length: 1-5cm
Wavelength of detection device: 540 nm
Detector: Light-emitting diode (LED), photodiode (PD)

図1は、本発明の硝酸及び亜硝酸の測定装置の測定システム構成図である。FIG. 1 is a configuration diagram of a measurement system of a measurement apparatus for nitric acid and nitrous acid according to the present invention. 図2は、検出装置の構成図である。FIG. 2 is a configuration diagram of the detection apparatus. 図3は、既知の硝酸、亜硝酸を測定したときのデータの出力例である。FIG. 3 is an example of data output when measuring known nitric acid and nitrous acid.

符号の説明Explanation of symbols

1…測定システム
2…第1の6方バルブ
3…第2の6方バルブ
4…カドミウムー銅カラム
5、6…回路
7a…キャリアー
8a…発色反応溶液
9…混合溶液
10…検出装置
11…コンピュータ
12…アクチュエーター
DESCRIPTION OF SYMBOLS 1 ... Measuring system 2 ... 1st 6 way valve 3 ... 2nd 6 way valve 4 ... Cadmium-copper column 5, 6 ... Circuit 7a ... Carrier 8a ... Coloring reaction solution 9 ... Mixed solution 10 ... Detection apparatus 11 ... Computer 12 ... Actuator

Claims (10)

所定量の試料水を所定容器に注入する注入工程と、
前記試料水を発色反応させるために反応溶液を加えて混合し混合溶液とする混合工程と、
前記混合溶液を発色反応させる発色反応工程、及び前記混合溶液の光透過率を測定する測定工程からなる亜硝酸イオン濃度の第1の測定工程と、
前記注入工程で注入された前記試料水をキャリアーによりカドミウム−銅還元カラムに通過させ前記試料水中の硝酸イオンを亜硝酸イオンに還元する還元工程と、
この還元された試料水に反応溶液を加えて混合し混合溶液とする混合工程と、
前記混合溶液を発色反応させる発色反応工程、前記混合溶液の光透過率を測定する測定工程からなる亜硝酸イオン濃度の第2の測定工程と、
前記第1の測定工程と前記第2の測定工程の測定結果を比較演算処理し硝酸イオン濃度を算出する比較処理工程と
からなる亜硝酸イオン濃度と硝酸イオン濃度の測定方法。
An injection step of injecting a predetermined amount of sample water into a predetermined container;
A mixing step in which a reaction solution is added and mixed to cause a color reaction of the sample water;
A first measuring step of nitrite ion concentration comprising a coloring reaction step of causing the mixed solution to develop a coloring reaction, and a measuring step of measuring the light transmittance of the mixed solution;
A reduction step in which the sample water injected in the injection step is passed through a cadmium-copper reduction column by a carrier and nitrate ions in the sample water are reduced to nitrite ions;
A mixing step of adding a reaction solution to the reduced sample water and mixing to obtain a mixed solution;
A color development reaction step for causing a color reaction of the mixed solution, a second measurement step of nitrite ion concentration comprising a measurement step for measuring the light transmittance of the mixed solution,
A method for measuring a nitrite ion concentration and a nitrate ion concentration, comprising: a comparison processing step of calculating a nitrate ion concentration by performing a comparative calculation process on the measurement results of the first measurement step and the second measurement step.
請求項1に記載の亜硝酸イオンと硝酸イオンの測定方法において、
前記混合工程の反応溶液は、スルファニルアミドとN-1-ナフチルエチレンジアミンを溶解した酸溶液であることを特徴とする亜硝酸イオンと硝酸イオンの測定方法。
In the measuring method of nitrite ion and nitrate ion according to claim 1,
The method for measuring nitrite ions and nitrate ions, wherein the reaction solution in the mixing step is an acid solution in which sulfanilamide and N-1-naphthylethylenediamine are dissolved.
請求項1に記載の亜硝酸イオンと硝酸イオンの測定方法において、
前記還元工程のキャリアーは、エチレンジアミンテトラ酢酸塩を含む塩化アンモニウム溶液であることを特徴とする亜硝酸イオンと硝酸イオンの測定方法。
In the measuring method of nitrite ion and nitrate ion according to claim 1,
The method for measuring nitrite ions and nitrate ions, wherein the carrier in the reduction step is an ammonium chloride solution containing ethylenediaminetetraacetate.
請求項1に記載の亜硝酸イオンと硝酸イオンの測定方法において、
前記測定工程は、光源が発光ダイオードであり、受光器をフォトダイオードとする測定装置による測定であることを特徴とする亜硝酸イオンと硝酸イオンの測定方法。
In the measuring method of nitrite ion and nitrate ion according to claim 1,
The method for measuring nitrite ions and nitrate ions is characterized in that the measurement step is measurement by a measurement device in which the light source is a light emitting diode and the light receiver is a photodiode.
請求項1に記載の亜硝酸イオンと硝酸イオンの測定方法において、
前記比較処理工程は、測定結果をコンピュータにより2つの亜硝酸測定結果を差し引き演算処理して硝酸イオン濃度を定量化する工程であることを特徴とする亜硝酸イオンと硝酸イオンの測定方法。
In the measuring method of nitrite ion and nitrate ion according to claim 1,
The method for measuring nitrite ions and nitrate ions is characterized in that the comparison processing step is a step of subtracting two nitrite measurement results from a measurement result by a computer and quantifying the nitrate ion concentration.
請求項4に記載の亜硝酸イオンと硝酸イオンの測定測定方法において、
前記測定工程の前記発光ダイオードのピーク波長は、500nmから600nmであることを特徴とする亜硝酸イオンと硝酸イオンの測定方法。
The method for measuring and measuring nitrite ions and nitrate ions according to claim 4,
The method for measuring nitrite ions and nitrate ions, wherein the peak wavelength of the light emitting diode in the measuring step is 500 nm to 600 nm.
亜硝酸イオンと硝酸イオンを含む試料水と、
前記試料水を取り込み所定量に検量され保持し段階供給するバルブと、
前記試料水中の硝酸イオンを亜硝酸イオンに還元するカドミウム−銅還元カラムと、
前記試料水を押し流すキャリアーとして加えられるエチレンジアミンテトラ酢酸塩を含む塩化アンモニウム溶液と、
前記試料水に発色反応溶液として加えられるスルファニルアミドとN-1-ナフチルエチレンジアミン溶液と、
前記試料水に前記N-1-ナフチルエチレンジアミン溶液を混合した混合溶液を保持して発色反応させるフッ素系チューブと、
前記混合溶液の透過率を測定して亜硝酸イオン濃度を定量化する測定装置と、
前記カドミウム−銅還元カラムを通過させた試料水の測定結果と、前記カドミウム−銅還元カラムを通過させない試料水の測定結果を比較演算して硝酸イオン濃度を定量化する比較処理装置と
からなる亜硝酸イオンと硝酸イオンの測定装置。
Sample water containing nitrite ions and nitrate ions;
A valve that takes in the sample water, is calibrated to a predetermined amount, held and supplied in stages;
A cadmium-copper reduction column for reducing nitrate ions in the sample water to nitrite ions;
An ammonium chloride solution containing ethylenediaminetetraacetate added as a carrier to flush the sample water;
Sulfanilamide and N-1-naphthylethylenediamine solution added as a coloring reaction solution to the sample water,
Holding a mixed solution obtained by mixing the sample water with the N-1-naphthylethylenediamine solution;
A measuring device for measuring the transmittance of the mixed solution to quantify the nitrite ion concentration;
A sub-process comprising: a comparison processing device for comparing and calculating a measurement result of sample water that has passed through the cadmium-copper reduction column and a measurement result of sample water that does not pass through the cadmium-copper reduction column to quantify nitrate ion concentration. Nitrate ion and nitrate ion measuring device.
請求項7に記載の亜硝酸イオンと硝酸イオンの測定装置において、
前記バルブは、6ポート切り換えバルブであり、注入された試料水を一定量の試料水として段階的に分配供給する構成になっていることを特徴とする亜硝酸イオンと硝酸イオンの測定装置。
In the measuring device of nitrite ion and nitrate ion according to claim 7,
The valve is a 6-port switching valve, and is configured to distribute and supply the injected sample water in a stepwise manner as a constant amount of sample water.
請求項7に記載の亜硝酸イオンと硝酸イオンの測定装置において、
前記比較処理装置は、コンピュータであることを特徴とする亜硝酸イオンと硝酸イオンの測定装置。
In the measuring device of nitrite ion and nitrate ion according to claim 7,
The apparatus for measuring nitrite ions and nitrate ions is characterized in that the comparison processing device is a computer.
請求項7に記載の亜硝酸イオンと硝酸イオンの測定装置において、
前記測定装置は、光源が発光ダイオードであり、受光部をフォトダイオードとする測定装置であることを特徴とする亜硝酸イオンと硝酸イオンの測定装置。
In the measuring device of nitrite ion and nitrate ion according to claim 7,
The measuring apparatus is a measuring apparatus in which a light source is a light emitting diode and a light receiving portion is a photodiode, and the measuring apparatus for nitrite ions and nitrate ions is characterized in that:
JP2003400369A 2003-11-28 2003-11-28 Method of measuring nitrite ion and nitrate ion, and its instrument Pending JP2005164289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400369A JP2005164289A (en) 2003-11-28 2003-11-28 Method of measuring nitrite ion and nitrate ion, and its instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003400369A JP2005164289A (en) 2003-11-28 2003-11-28 Method of measuring nitrite ion and nitrate ion, and its instrument

Publications (1)

Publication Number Publication Date
JP2005164289A true JP2005164289A (en) 2005-06-23

Family

ID=34724659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400369A Pending JP2005164289A (en) 2003-11-28 2003-11-28 Method of measuring nitrite ion and nitrate ion, and its instrument

Country Status (1)

Country Link
JP (1) JP2005164289A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005007142A1 (en) * 2005-02-17 2006-08-31 Hach Lange Gmbh Method and device for the determination of nitrite
JP2007271335A (en) * 2006-03-30 2007-10-18 Chugoku Electric Power Co Inc:The Cod measuring system
CN102590540A (en) * 2012-02-15 2012-07-18 浙江大学 In-situ detection system for concentration of deep sea micro-ions
CN106769929A (en) * 2016-12-16 2017-05-31 北京大学 Air gaseous state nitric acid On-line Measuring Method and device based on Flow Injection Analysis
CN107796952A (en) * 2017-12-16 2018-03-13 江翠珍 A kind of Nitrate Content in Food and nitrite detecting system
CN108051382A (en) * 2017-12-02 2018-05-18 江翠珍 A kind of environment water total nitrogen automatic monitoring system
CN108254370A (en) * 2018-04-04 2018-07-06 北京瑞升特科技有限公司 A kind of test device and method of direct injected colorimetric determination detection nitrate content
JP2019100804A (en) * 2017-11-30 2019-06-24 Jfeアドバンテック株式会社 Concentration measurement method, concentration management method, concentration measurement device, and concentration management device
CN114705801A (en) * 2022-01-24 2022-07-05 中国食品药品检定研究院(国家药品监督管理局医疗器械标准管理中心、中国药品检验总所) Method for measuring nitrite ions in rifamycin medicaments
CN114894925A (en) * 2022-04-26 2022-08-12 中国神华煤制油化工有限公司 Method for measuring oxalic acid content in dimethyl oxalate
WO2023188091A1 (en) * 2022-03-30 2023-10-05 ビーエルテック株式会社 Reducing member, analysis device, and analysis method
WO2023206109A1 (en) * 2022-04-26 2023-11-02 中国神华煤制油化工有限公司 Method for determining oxalic acid content of dimethyl oxalate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005007142A1 (en) * 2005-02-17 2006-08-31 Hach Lange Gmbh Method and device for the determination of nitrite
US7655473B2 (en) 2005-02-17 2010-02-02 Hach Lange Gmbh Method and device for determining the concentration of nitrite
JP2007271335A (en) * 2006-03-30 2007-10-18 Chugoku Electric Power Co Inc:The Cod measuring system
CN102590540A (en) * 2012-02-15 2012-07-18 浙江大学 In-situ detection system for concentration of deep sea micro-ions
CN106769929A (en) * 2016-12-16 2017-05-31 北京大学 Air gaseous state nitric acid On-line Measuring Method and device based on Flow Injection Analysis
CN106769929B (en) * 2016-12-16 2023-06-09 北京大学 Atmospheric gaseous nitric acid online measurement method and device based on flow injection analysis
JP2019100804A (en) * 2017-11-30 2019-06-24 Jfeアドバンテック株式会社 Concentration measurement method, concentration management method, concentration measurement device, and concentration management device
CN108051382A (en) * 2017-12-02 2018-05-18 江翠珍 A kind of environment water total nitrogen automatic monitoring system
CN108051382B (en) * 2017-12-02 2020-10-23 江苏凌恒环境科技有限公司 Total nitrogen automatic monitoring system for environmental water body
CN107796952B (en) * 2017-12-16 2020-11-10 普研(上海)标准技术服务股份有限公司 Nitrate and nitrite detecting system in food
CN107796952A (en) * 2017-12-16 2018-03-13 江翠珍 A kind of Nitrate Content in Food and nitrite detecting system
CN108254370A (en) * 2018-04-04 2018-07-06 北京瑞升特科技有限公司 A kind of test device and method of direct injected colorimetric determination detection nitrate content
CN108254370B (en) * 2018-04-04 2024-04-26 北京瑞升特科技有限公司 Testing device and method for quantitatively detecting nitrate content by direct sample introduction colorimetric method
CN114705801A (en) * 2022-01-24 2022-07-05 中国食品药品检定研究院(国家药品监督管理局医疗器械标准管理中心、中国药品检验总所) Method for measuring nitrite ions in rifamycin medicaments
CN114705801B (en) * 2022-01-24 2024-02-27 中国食品药品检定研究院(国家药品监督管理局医疗器械标准管理中心、中国药品检验总所) Determination method of nitrite ions in rifamycin medicaments
WO2023188091A1 (en) * 2022-03-30 2023-10-05 ビーエルテック株式会社 Reducing member, analysis device, and analysis method
CN114894925A (en) * 2022-04-26 2022-08-12 中国神华煤制油化工有限公司 Method for measuring oxalic acid content in dimethyl oxalate
WO2023206109A1 (en) * 2022-04-26 2023-11-02 中国神华煤制油化工有限公司 Method for determining oxalic acid content of dimethyl oxalate

Similar Documents

Publication Publication Date Title
KR910004143B1 (en) Urine compoment measuring method and apparatus
US8236567B2 (en) Method and apparatus for automated determining of chemical oxygen demand of a liquid sample
KR100875629B1 (en) Automatic analysis quantitative monitoring method and automatic analysis quantitative monitoring device
Kröckel et al. Fluorescence detection for phosphate monitoring using reverse injection analysis
JP2005164289A (en) Method of measuring nitrite ion and nitrate ion, and its instrument
Zhu et al. Automated syringe-pump-based flow-batch analysis for spectrophotometric determination of trace hexavalent chromium in water samples
Šraj et al. Determination of trace levels of ammonia in marine waters using a simple environmentally-friendly ammonia (SEA) analyser
Lin et al. An automated spectrophotometric method for the direct determination of nitrite and nitrate in seawater: Nitrite removal with sulfamic acid before nitrate reduction using the vanadium reduction method
CN106872452A (en) A kind of free chlorine in-line analyzer and its application method
US5668014A (en) Device and method for estimating three nitrogen-including ionic substances in water
CN102680462A (en) Method and device for on-line monitoring of contents of multiple heavy metals in water body
CN103411959A (en) Method for directly measuring total nitrogen content in solution
Lin et al. Flow injection analysis method for determination of total dissolved nitrogen in natural waters using on-line ultraviolet digestion and vanadium chloride reduction
KR101581230B1 (en) Total nitrogen and total phosphorus measuring device
Cassella et al. Determination of sulfide in waters by flow-injection solid phase spectrophotometry
KR102613289B1 (en) Acetate complex and acetate quantification method
KR100840181B1 (en) Apparatus and method for automatic detecting total nitrogen and total phosphorus
JP3538957B2 (en) Method and apparatus for analyzing three-state nitrogen in water
Hauser et al. Simultaneous determination of metal ion concentrations in binary mixtures with a multi-LED photometer
Staden Simultaneous Determination of Protein (Nitrogen), Phosphorus, and Calcium in Animal Feedstuffs by Multichannel Flow-Injection Analysis
JP3896795B2 (en) Nitrogen concentration measuring device
KR20180004948A (en) Device for chromium(Ⅵ) determination in water using microfluidic chip
JP2004163191A (en) Metal detection method and device therefor
JP2001174448A (en) Nitrogen concentration measuring apparatus
JP3329071B2 (en) Method and apparatus for analyzing nitrate and nitrite ions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Effective date: 20061221

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070824