JP2003181461A - Water treatment apparatus and water treatment method - Google Patents

Water treatment apparatus and water treatment method

Info

Publication number
JP2003181461A
JP2003181461A JP2001386191A JP2001386191A JP2003181461A JP 2003181461 A JP2003181461 A JP 2003181461A JP 2001386191 A JP2001386191 A JP 2001386191A JP 2001386191 A JP2001386191 A JP 2001386191A JP 2003181461 A JP2003181461 A JP 2003181461A
Authority
JP
Japan
Prior art keywords
water
treated
electrodes
amount
electrode pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001386191A
Other languages
Japanese (ja)
Inventor
Takuya Noro
拓哉 野呂
Koji Yamamoto
康次 山本
Sayoko Okumura
早代子 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001386191A priority Critical patent/JP2003181461A/en
Publication of JP2003181461A publication Critical patent/JP2003181461A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment apparatus and a water treatment method which enables easy and proper control of supply quantity of chlorine for disinfection with respect to water to be treated. <P>SOLUTION: Electrodes 11, 12, electrodes 13, 14 and electrodes 15, 16 in a treated water tank 10 respectively constitute a pair of electrodes and electric power is supplied from an electric source 51 thereto. A controller 50 controls the operation of the electric source 51 and, thereby, electric power supplied to the respective pairs of electrodes and a quantity of current flowing between the electrodes are controlled. The controller 50 calculates the difference between oxidation-reduction potentials measured by a second ORP (oxidation-reduction potential) meter 31 and a first ORP meter 21. Then, the value of the difference is compared with the reference value which differs in accordance with PH value of water to be treated measured by a PH meter 60 and, based on the comparison result, the value of current flowing between the respective pairs of electrodes is controlled. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水処理装置および
水処理方法に関し、特に、塩素系の化合物により排水を
消毒する水処理装置および水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment device and a water treatment method, and more particularly to a water treatment device and a water treatment method for disinfecting waste water with a chlorine-based compound.

【0002】[0002]

【従来の技術】従来から、家庭用合併処理浄化槽を含む
排水処理システムにおいては、安全性の確保から、放流
水で、大腸菌群数3000個/mL以内という基準を満
たすように、消毒が行なわれてきた。なお、多くの処理
施設では、消毒は、維持管理頻度等の制約に基づいて、
塩素系の固形消毒剤を投入することにより、行なわれて
いた。これにより、比較的低コストで、消毒が行なわれ
ていた。
2. Description of the Related Art Conventionally, in a wastewater treatment system including a combined treatment septic tank for household use, in order to ensure safety, disinfection is performed with discharged water so as to meet a standard of 3000 coliform bacteria / mL or less. Came. In many treatment facilities, disinfection is based on constraints such as maintenance frequency.
This was done by adding a chlorine-based solid disinfectant. As a result, disinfection was performed at a relatively low cost.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、消毒剤
の投入による消毒は、添加量を厳密に制御することが困
難であるため、多くの場合、上記した大腸菌群数につい
ての基準を満たすために、必要より多めに、消毒剤が投
入されていた。なお、消毒剤が多めに投入されると、処
理水の消毒のしすぎによって、つまり、放流水中の塩素
系化合物の残留量が過剰となって、トリハロメタンの生
成や排水処理システムの放流先の生態系に何らかの影響
を与える、という事態が考えられる。
However, in disinfection by adding a disinfectant, it is difficult to strictly control the amount added, so in many cases, in order to satisfy the above-mentioned criteria for the coliform group number, The disinfectant was added more than necessary. If a large amount of disinfectant is added, excessive disinfection of the treated water will result in an excessive amount of chlorine compounds remaining in the discharged water, which will cause trihalomethane generation and the ecology of the discharge destination of the wastewater treatment system. It is possible that the system will be affected in some way.

【0004】本発明は、かかる実情に鑑み考え出された
ものであり、その目的は、消毒用の塩素の供給量を、容
易にかつ適切に制御できる、水処理装置および水処理方
法を提供することである。
The present invention has been conceived in view of such circumstances, and an object thereof is to provide a water treatment apparatus and a water treatment method capable of easily and appropriately controlling the supply amount of chlorine for disinfection. That is.

【0005】[0005]

【課題を解決するための手段】本発明のある局面に従っ
た水処理装置は、被処理水を収容する収容部と、前記収
容部内に浸され、対をなす電極からなる電極対と、前記
電極対に電圧を印加する電源と、前記収容部内の被処理
水の酸化還元電位を測定する酸化還元電位測定部と、前
記電極対の電極間に流れる電流値が前記酸化還元電位測
定部の測定結果に対応した値となるように、前記電源の
出力を制御する、電源制御部とを含むことを特徴とす
る。
According to an aspect of the present invention, there is provided a water treatment device, which contains a container for containing water to be treated, an electrode pair which is a pair of electrodes immersed in the container, A power supply for applying a voltage to the electrode pair, a redox potential measuring unit for measuring the redox potential of the water to be treated in the housing, and a current value flowing between the electrodes of the electrode pair is measured by the redox potential measuring unit. And a power supply control unit that controls the output of the power supply so that the value corresponds to the result.

【0006】本発明のある局面に従うと、電極対に電圧
が印加されることにより、被処理水内に含まれる塩素イ
オンが、電気分解され、塩素ガスを経て次亜塩素酸とな
り、消毒剤として作用する。なお、被処理水内の残留塩
素量は、被処理水の酸化還元電位と関連がある。つま
り、残留塩素量を検出するために指示薬を加えた際の溶
液の色を見る等の煩雑な作業を行なうことなく、酸化還
元電位に基づいて電極間の電流値を制御することによ
り、処理水中の塩素の残留量が過剰にならないように塩
素の供給量を制御できる。
According to one aspect of the present invention, when a voltage is applied to the pair of electrodes, chlorine ions contained in the water to be treated are electrolyzed and converted to hypochlorous acid through chlorine gas to serve as a disinfectant. To work. The amount of residual chlorine in the water to be treated is related to the redox potential of the water to be treated. In other words, by controlling the current value between the electrodes based on the oxidation-reduction potential without performing complicated work such as observing the color of the solution when adding the indicator to detect the residual chlorine amount, The supply amount of chlorine can be controlled so that the residual amount of chlorine is not excessive.

【0007】これにより、水処理装置において、被処理
水に対する塩素供給量を、容易にかつ適切に、制御でき
る。
As a result, the amount of chlorine supplied to the water to be treated can be controlled easily and appropriately in the water treatment device.

【0008】本発明の他の局面に従った水処理装置は、
被処理水を収容する収容部と、前記収容部内に浸され、
対をなす電極からなる電極対と、前記電極対に電圧を印
加する電源と、前記収容部内の被処理水の酸化還元電位
を測定する酸化還元電位測定部と、前記収容部内の被処
理水のpHを測定するpH測定部と、前記電極対の電極
間に流れる電流値が、前記pH測定部の測定結果および
前記酸化還元電位測定部の測定結果に対応した値となる
ように、前記電源の出力を制御する、電源制御部とを含
むことを特徴とする。
A water treatment apparatus according to another aspect of the present invention is
A storage unit for storing the water to be treated, and immersed in the storage unit,
An electrode pair composed of a pair of electrodes, a power source for applying a voltage to the electrode pair, an oxidation-reduction potential measurement unit for measuring the oxidation-reduction potential of the water to be treated in the containing portion, and the water to be treated in the containing portion. The current value flowing between the pH measuring unit for measuring pH and the electrode of the electrode pair is set to a value corresponding to the measurement result of the pH measuring unit and the measurement result of the oxidation-reduction potential measuring unit. And a power supply control unit for controlling output.

【0009】本発明の他の局面に従うと、電極対に電圧
が印加されることにより、被処理水内に含まれる塩素イ
オンが、電気分解されて、塩素ガスを経て次亜塩素酸と
なり、消毒剤として作用する。なお、被処理水内の残留
塩素量は、被処理水の酸化還元電位に関連があり、ま
た、被処理水のpHが変化する場合にはpHにも関連が
ある。つまり、残留塩素量を検出するために指示薬を加
えた際の溶液の色を見る等の煩雑な作業を行なうことな
く、酸化還元電位およびpHに基づいて電極間の電流値
を制御することにより、処理水中の塩素の残留量が過剰
にならないように塩素の供給量を制御できる。
According to another aspect of the present invention, when a voltage is applied to the pair of electrodes, chlorine ions contained in the water to be treated are electrolyzed and converted to hypochlorous acid through chlorine gas to disinfect. Acts as an agent. The amount of residual chlorine in the water to be treated is related to the redox potential of the water to be treated, and is also related to the pH when the pH of the water to be treated changes. That is, by controlling the current value between the electrodes based on the oxidation-reduction potential and pH without performing complicated work such as observing the color of the solution when an indicator is added to detect the residual chlorine amount, The supply amount of chlorine can be controlled so that the residual amount of chlorine in the treated water does not become excessive.

【0010】これにより、水処理装置において、被処理
水のpH値が未知の場合でも、被処理水に対する塩素供
給量を、容易にかつ適切に、制御できる。
As a result, in the water treatment apparatus, even when the pH value of the water to be treated is unknown, the amount of chlorine supplied to the water to be treated can be easily and appropriately controlled.

【0011】また、本発明の水処理装置では、前記酸化
還元電位測定部は、前記収容部において、前記収容部へ
の被処理水の流入部分と前記収容部からの被処理水の流
出部分とで、前記酸化還元電位を測定することが好まし
い。
Further, in the water treatment apparatus of the present invention, the oxidation-reduction potential measuring section includes, in the accommodating section, an inflowing portion of the treated water into the accommodating section and an outflowing portion of the treated water from the accommodating section. Then, it is preferable to measure the redox potential.

【0012】これにより、複数の箇所で、被処理水の酸
化還元電位を測定できる。したがって、より確実に、適
切な残留量となるよう、被処理水内の塩素供給量を制御
できる。
Thus, the redox potential of the water to be treated can be measured at a plurality of points. Therefore, the chlorine supply amount in the water to be treated can be controlled more surely so that the residual amount becomes appropriate.

【0013】また、本発明の水処理装置では、前記電源
制御部は、前記流入部分の酸化還元電位と前記流出部分
の酸化還元電位の差分を、前記酸化還元電位測定部の測
定結果として用いることが好ましい。
Further, in the water treatment apparatus of the present invention, the power supply control section uses the difference between the redox potential of the inflow section and the redox potential of the outflow section as the measurement result of the redox potential measuring section. Is preferred.

【0014】これにより、収容部における電気分解の前
後での、被処理水の酸化還元電位の変化を測定できる。
したがって、より確実に、適切な残留量となるよう、被
処理水内の塩素供給量を制御できる。
This makes it possible to measure the change in the redox potential of the water to be treated before and after the electrolysis in the accommodating portion.
Therefore, the chlorine supply amount in the water to be treated can be controlled more surely so that the residual amount becomes appropriate.

【0015】また、本発明の水処理装置では、前記酸化
還元電位測定部は、前記流出部分の酸化還元電位を測定
するための測定部材を備え、前記測定部材と前記電極と
の間に設置され、前記被処理水をばっ気するばっ気部材
をさらに含むことが好ましい。
Further, in the water treatment apparatus of the present invention, the oxidation-reduction potential measuring section includes a measurement member for measuring the oxidation-reduction potential of the outflow portion, and is installed between the measurement member and the electrode. It is preferable to further include an aeration member for aeration of the water to be treated.

【0016】これにより、電極対に電圧が印加されるこ
とによる水の電気分解によって生じる水素ガスが、塩素
系化合物の残留量の尺度とされる被処理水の酸化還元電
位に影響を与えることを、回避できる。したがって、よ
り確実に、適切な残留量となるよう、被処理水内の塩素
供給量を制御できる。
As a result, the hydrogen gas produced by the electrolysis of water by applying a voltage to the electrode pair influences the redox potential of the water to be treated, which is a measure of the residual amount of chlorine compounds. Can be avoided. Therefore, the chlorine supply amount in the water to be treated can be controlled more surely so that the residual amount becomes appropriate.

【0017】本発明のさらに他の局面に従った水処理方
法は、被処理水に電極対を浸し、当該電極対に電圧を印
加することにより当該被処理水を処理する水処理方法で
あって、前記被処理水の酸化還元電位を測定するステッ
プと、前記電極対の電極間に流れる電流値が、前記被処
理水の酸化還元電位の測定結果に対応した値となるよう
に前記電源の出力を制御するステップとを含むことを特
徴とする。
A water treatment method according to still another aspect of the present invention is a water treatment method in which an electrode pair is immersed in water to be treated and a voltage is applied to the electrode pair to treat the water to be treated. The step of measuring the oxidation-reduction potential of the water to be treated, and the current value flowing between the electrodes of the electrode pair so that the output of the power supply is set to a value corresponding to the measurement result of the oxidation-reduction potential of the water to be treated. And a step of controlling

【0018】本発明のさらに他の局面に従うと、電極対
に電圧が印加されることにより、被処理水内に含まれる
塩素イオンが、電気分解され、塩素ガスを経て次亜塩素
酸となり、消毒剤として作用する。なお、被処理水内の
残留塩素量は、被処理水の酸化還元電位と関連がある。
つまり、残留塩素量を検出するために指示薬を加えた際
の溶液の色を見る等の煩雑な作業を行なうことなく、酸
化還元電位に基づいて電極間の電流値を制御することに
より、処理水中の塩素の残留量が過剰にならないように
塩素の供給量を制御できる。
According to still another aspect of the present invention, when a voltage is applied to the electrode pair, chlorine ions contained in the water to be treated are electrolyzed and converted to hypochlorous acid through chlorine gas to disinfect. Acts as an agent. The amount of residual chlorine in the water to be treated is related to the redox potential of the water to be treated.
In other words, by controlling the current value between the electrodes based on the oxidation-reduction potential without performing complicated work such as observing the color of the solution when adding the indicator to detect the residual chlorine amount, The supply amount of chlorine can be controlled so that the residual amount of chlorine is not excessive.

【0019】これにより、被処理水に対する塩素供給量
を、容易にかつ適切に制御できる。本発明の別の局面に
従った水処理方法は、被処理水に電極対を浸し、当該電
極対に電圧を印加することにより当該被処理水を処理す
る水処理方法であって、前記被処理水の酸化還元電位を
測定するステップと、前記被処理水のpHを測定するス
テップと、前記電極対の電極間に流れる電流値が、前記
被処理水のpHおよび酸化還元電位の測定結果に対応し
た値となるように前記電源の出力を制御するステップと
を含むことを特徴とする。
Thus, the amount of chlorine supplied to the water to be treated can be controlled easily and appropriately. A water treatment method according to another aspect of the present invention is a water treatment method in which an electrode pair is immersed in water to be treated, and the water to be treated is applied by applying a voltage to the electrode pair. The step of measuring the redox potential of water, the step of measuring the pH of the water to be treated, and the current value flowing between the electrodes of the electrode pair correspond to the measurement results of the pH and the redox potential of the water to be treated. The step of controlling the output of the power source so as to obtain the above value.

【0020】本発明の別の局面に従うと、電極対に電圧
が印加されることにより、被処理水内に含まれる塩素イ
オンが、電気分解されて、塩素ガスを経て次亜塩素酸と
なり、消毒剤として作用する。なお、被処理水内の残留
塩素量は、被処理水の酸化還元電位に関連があり、ま
た、被処理水のpHが変化する場合にはpHにも関連が
ある。つまり、残留塩素量を検出するために指示薬を加
えた際の溶液の色を見る等の煩雑な作業を行なうことな
く、酸化還元電位およびpHに基づいて電極間の電流値
を制御することにより、処理水中の塩素の残留量が過剰
にならないように塩素の供給量を制御できる。
According to another aspect of the present invention, when a voltage is applied to the electrode pair, the chlorine ions contained in the water to be treated are electrolyzed and converted to hypochlorous acid via chlorine gas to disinfect. Acts as an agent. The amount of residual chlorine in the water to be treated is related to the redox potential of the water to be treated, and is also related to the pH when the pH of the water to be treated changes. That is, by controlling the current value between the electrodes based on the oxidation-reduction potential and pH without performing complicated work such as observing the color of the solution when an indicator is added to detect the residual chlorine amount, The supply amount of chlorine can be controlled so that the residual amount of chlorine in the treated water does not become excessive.

【0021】これにより、被処理水のpH値が未知の場
合でも、被処理水に対する塩素供給量を、容易にかつ適
切に、制御できる。
Thus, even when the pH value of the water to be treated is unknown, the amount of chlorine supplied to the water to be treated can be controlled easily and appropriately.

【0022】[0022]

【発明の実施の形態】以下、図面を参照しつつ、本発明
の実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0023】図1に、水処理装置を模式的に示す。水処
理装置において、処理水槽10には、嫌気槽および好気
槽での処理を行なわれた被処理水が導入され、当該被処
理水には、電極11〜16が浸されている。電極11と
電極12、電極13と電極14、電極15と電極16
が、それぞれ電極対を構成している。つまり、図1の水
処理装置には、3組の電極対が含まれる。なお、本発明
の水処理装置では、電極対の数は限定されない。電極1
1〜16は、電源51から電力を供給される。電源51
が、制御器50にその動作を制御されることにより、電
極11と電極12、電極13と電極14、電極15と電
極16のそれぞれの電極対に供給される電力および電極
間に流れる電流値が制御される。
FIG. 1 schematically shows a water treatment device. In the water treatment apparatus, the treated water that has been treated in the anaerobic tank and the aerobic tank is introduced into the treated water tank 10, and the electrodes 11 to 16 are immersed in the treated water. Electrode 11 and electrode 12, electrode 13 and electrode 14, electrode 15 and electrode 16
, Each of which constitutes an electrode pair. That is, the water treatment device of FIG. 1 includes three electrode pairs. In the water treatment device of the present invention, the number of electrode pairs is not limited. Electrode 1
Power is supplied from the power supply 51 to the power supplies 1 to 16. Power supply 51
However, when the operation is controlled by the controller 50, the electric power supplied to the electrode pairs of the electrode 11 and the electrode 12, the electrode 13 and the electrode 14, the electrode 15 and the electrode 16 and the current value flowing between the electrodes can be controlled. Controlled.

【0024】処理水槽10は、流入口10Aと流出口1
0Bを備える。被処理水は、流入口10Aから処理水槽
10へ導入され、処理水槽10からは流出口10Bから
排出される。流入口10Aより上流側、および、流出口
10Bよりも下流側には、それぞれ、電位検出槽20,
30が設けられている。電位検出槽20,30には、そ
れぞれ、第1ORP(oxidation-reduction potentia
l)計21、第2ORP計31が設置されている。OR
Pは、被処理水の酸化還元電位を測定するものである。
第1ORP計21および第2ORP計31の検出出力
は、制御器50に入力される。
The treated water tank 10 has an inflow port 10A and an outflow port 1
With 0B. The water to be treated is introduced into the treated water tank 10 through the inflow port 10A and discharged from the treated water tank 10 through the outflow port 10B. An electric potential detection tank 20 is provided on the upstream side of the inflow port 10A and on the downstream side of the outflow port 10B, respectively.
30 are provided. Each of the potential detection tanks 20 and 30 has a first ORP (oxidation-reduction potentia).
l) A total of 21 and a second ORP total 31 are installed. OR
P is for measuring the redox potential of the water to be treated.
The detection outputs of the first ORP meter 21 and the second ORP meter 31 are input to the controller 50.

【0025】処理水槽10の流出口10Bと、電位検出
槽30との間には、ばっ気槽40が設けられている。ば
っ気槽40内には、ばっ気部材41が設置されている。
ばっ気部材41は、ブロワ42より空気を導入されるこ
とにより、ばっ気槽40内をばっ気する。
An aeration tank 40 is provided between the outlet 10B of the treated water tank 10 and the potential detection tank 30. An aeration member 41 is installed in the aeration tank 40.
The aeration member 41 aerates the inside of the aeration tank 40 by introducing air from the blower 42.

【0026】本実施の形態では、図1に示す水処理装置
において、制御器50は、第1ORP計21で測定した
被処理水の酸化還元電位と第2ORP計31で測定した
被処理水の酸化還元電位との差分に基づいて、電極11
〜16によって構成される各電極対の、電極間の電解電
流値を制御する。以下に、この制御態様について、説明
する。
In the present embodiment, in the water treatment apparatus shown in FIG. 1, the controller 50 controls the oxidation-reduction potential of the treated water measured by the first ORP meter 21 and the oxidation of the treated water measured by the second ORP meter 31. Based on the difference from the reduction potential, the electrode 11
Controls the electrolytic current value between the electrodes of each electrode pair constituted by ˜16. Hereinafter, this control mode will be described.

【0027】まず、図2を参照して、実際の排水を被処
理水として図1の水処理装置に導入し当該被処理水に塩
素系消毒剤を添加した際の、塩素の添加量と、被処理水
における塩素系化合物の残量と、被処理水の酸化還元電
位との関係を説明する。図2では、横軸に、被処理水へ
の塩素の添加量が、縦軸には、総残留塩素量(◆)と、
遊離残塩量(◇)と、ORP変化量(実線のみ)が取ら
れている。塩素の添加量とは、塩素単体(塩素原子およ
び塩素イオン)としての添加量という意味であり、塩素
系消毒剤の添加量を塩素単体の添加量に換算したもので
ある。遊離残塩量とは、被処理水中の次亜塩素酸および
次亜塩素酸イオンの量であり、総残留塩素量とは、遊離
残塩量と結合塩素(クロラミン等、窒素化合物と結合し
たもの)との総量である。また、ORP変化量とは、第
2ORP計31で測定された電圧値から第1ORP計2
1の測定された電圧値を引いたものである。
First, referring to FIG. 2, the amount of chlorine added when actual wastewater is introduced into the water treatment apparatus of FIG. 1 as treated water and a chlorine-based disinfectant is added to the treated water, The relationship between the residual amount of chlorine compounds in the water to be treated and the redox potential of the water to be treated will be described. In FIG. 2, the horizontal axis represents the amount of chlorine added to the water to be treated, and the vertical axis represents the total residual chlorine amount (◆).
Free residual salt amount (⋄) and ORP change amount (solid line only) are taken. The amount of chlorine added means the amount added as chlorine simple substance (chlorine atom and chlorine ion), and the added amount of chlorine-based disinfectant is converted into the added amount of chlorine single substance. The amount of free residual salt is the amount of hypochlorous acid and hypochlorite ion in the water to be treated, and the total residual chlorine amount is the amount of free residual salt and bound chlorine (chlorine, etc., combined with nitrogen compounds). ) And the total amount. In addition, the ORP change amount is calculated from the voltage value measured by the second ORP meter 31 to the first ORP meter 2
1 minus the measured voltage value.

【0028】図2を参照して、塩素の添加量が上昇する
と、総残留塩素量、遊離残塩量、および、ORP変化量
が上昇している。また、塩素添加量が1〜3mg/Lで
は、総残留塩素量が1mg/L程度となっている。
Referring to FIG. 2, as the amount of chlorine added increases, the total residual chlorine amount, the amount of free residual salt, and the ORP change amount increase. Further, when the chlorine addition amount is 1 to 3 mg / L, the total residual chlorine amount is about 1 mg / L.

【0029】つまり、被処理水において、総残留塩素量
の観点からすると、塩素添加量は、1〜3mg/L程度
が適していることになり、また、ORP変化量は、塩素
添加量に応じて変化する。
That is, from the viewpoint of the total residual chlorine amount in the water to be treated, the chlorine addition amount is suitable to be about 1 to 3 mg / L, and the ORP change amount depends on the chlorine addition amount. Change.

【0030】次に、図3を参照して、実際の排水を被処
理水として図1の水処理装置に導入し当該被処理水に塩
素系消毒剤を添加した際の、塩素の添加量による、当該
被処理水における大腸菌群数の経時変化の違いを説明す
る。図3では、横軸に、消毒剤を添加してからの経過時
間が、縦軸に、大腸菌群数減少率の対数が、取られてい
る。なお、大腸菌群数減少率の対数は、N0を経過時間
0のとき(つまり、消毒剤添加時)の大腸菌群数、N1
を対応する経過時間後の大腸菌群数とした場合、Log
(N1/N0)で表される。また、図3では、塩素の添
加量が3mg/Lの場合を実線で、1mg/Lの場合を
破線で示している。塩素の添加量とは、図2と同様の量
である。
Next, referring to FIG. 3, depending on the amount of chlorine added when the actual wastewater is introduced into the water treatment apparatus of FIG. 1 as treated water and a chlorine-based disinfectant is added to the treated water. The difference in the change with time of the number of coliform bacteria in the treated water will be explained. In FIG. 3, the horizontal axis represents the time elapsed since the disinfectant was added, and the vertical axis represents the logarithm of the reduction rate of coliform bacteria. In addition, the logarithm of the reduction rate of the coliform group is N1 when the elapsed time is 0 (that is, when the disinfectant is added), N1.
Is the number of coliforms after the corresponding elapsed time, Log
It is represented by (N1 / N0). Further, in FIG. 3, the case where the amount of chlorine added is 3 mg / L is shown by a solid line, and the case where the amount of chlorine added is 1 mg / L is shown by a broken line. The amount of chlorine added is the same as in FIG.

【0031】図3を参照して、塩素の添加量が上昇する
と、より短時間で、大腸菌群数の減少率が上がってい
る。つまり、塩素の添加から15分経過した状態で比較
すると、大腸菌群数減少率の対数は、添加量が3mg/
Lの場合で「−3」程度(つまり、大腸菌群数が1/1
000程度にまで減少した)、添加量が1mg/Lの場
合で「−1」程度(つまり、大腸菌群数が1/10程度
にまで減少した)となっている。
Referring to FIG. 3, as the amount of chlorine added increases, the rate of decrease in the number of coliforms increases in a shorter time. In other words, when comparing 15 minutes after the addition of chlorine, the logarithm of the reduction rate of coliforms is 3 mg /
In the case of L, about "-3" (that is, the number of coliform bacteria is 1/1
000), and when the amount added is 1 mg / L, it is about "-1" (that is, the number of coliforms has been reduced to about 1/10).

【0032】なお、図2を用いて説明したように総残留
塩素量の観点から消毒に適しているとした、塩素の添加
量が1〜3mg/Lの場合は、大腸菌群数減少率の観点
からも、消毒に適していると言える。
As described with reference to FIG. 2, it is said that the method is suitable for disinfection from the viewpoint of the total residual chlorine amount. When the added amount of chlorine is 1 to 3 mg / L, the reduction rate of the coliform group is considered. Therefore, it can be said that it is suitable for disinfection.

【0033】なお、図2および図3の被処理水は、通
常、水処理装置で扱われる被処理水と同様の、pH7に
調整されたものである。そして、次に、図4を参照し
て、塩素系消毒剤の添加量と、被処理水における塩素系
化合物の残量と、被処理水の酸化還元電位との関係が、
溶液のpHによってどのように変化するかを考察する。
The water to be treated shown in FIGS. 2 and 3 is usually adjusted to pH 7, which is the same as the water to be treated in the water treatment device. Then, referring to FIG. 4, the relationship between the addition amount of the chlorine-based disinfectant, the remaining amount of the chlorine-based compound in the water to be treated, and the oxidation-reduction potential of the water to be treated is as follows.
Consider how it changes with the pH of the solution.

【0034】図4は、上記の考察を行なうための実験の
結果である。具体的には、pHを5〜8に調整したリン
酸緩衝液に、当該緩衝液中の塩素の添加量を横軸に、縦
軸に、各pHの遊離残塩量(pH=5,6,7,8で、
それぞれ、◇,○,△,□の記号で示す)と、各pHの
総残留塩素量(◆等、各pHの遊離残塩量で使用した記
号を黒塗りした記号で示す)と、各pHのORP変化量
(線のみ、pH5は実線、pH6は破線、pH7は一点
鎖線、pH8は二点鎖線)が取られている。
FIG. 4 shows the result of an experiment for carrying out the above consideration. Specifically, in a phosphate buffer solution having a pH adjusted to 5 to 8, the amount of chlorine added in the buffer solution is plotted on the horizontal axis and the vertical axis is plotted on the vertical axis, the amount of free residual salt at each pH (pH = 5, 6). , 7, 8
◇, ○, △, □), the total residual chlorine amount for each pH (◆, etc., the symbols used for the residual residual salt amount for each pH are shown in black), and each pH Of ORP (only line, solid line for pH5, broken line for pH6, one-dot chain line for pH7, two-dot chain line for pH8).

【0035】図4を参照して、総残留塩素量と遊離残塩
量については、塩素添加量が変化した際の挙動は、溶液
のpHが変化しても、ほとんど差が見られない。一方、
ORP変化量については、図2および図3を用いた説明
から消毒に適しているとした塩素添加量1〜3mg/
L、および、その周辺で、溶液のpHが変化することに
より、差が見られる。たとえば、総残留塩素量が1mg
/Lの場合であれば、pH6の溶液では、ORP変化量
は300mV程度と、一番値が高く、その次に、pH5
とpH7の溶液では250mVから300mVというほ
ぼ同じ値を示し、そして、pH8の溶液では、200m
Vを下回る値となっている。
With reference to FIG. 4, regarding the total residual chlorine amount and the amount of free residual salt, there is almost no difference in the behavior when the chlorine addition amount changes, even if the pH of the solution changes. on the other hand,
Regarding the ORP change amount, the chlorine addition amount of 1 to 3 mg /
Differences are seen as the pH of the solution changes at and around L. For example, the total residual chlorine content is 1 mg
In the case of / L, the ORP change amount is about 300 mV, which is the highest value in the solution of pH 6, and then the pH of 5
And the solution of pH 7 show almost the same value of 250 mV to 300 mV, and the solution of pH 8 shows 200 mV.
The value is below V.

【0036】なお、図2および図4を参照して、pH7
における総残留塩素量が1mg/Lの場合のORP変化
量を考えると、被処理水におけるORP変化量(図2)
の方が、リン酸緩衝液中のORP変化量(図4)よりも
低い値を示している。つまり、図4に、各pHに調整さ
れたリン酸緩衝液中でのORP変化量を示したが、被処
理水中では、各pHのORP変化量は、若干低い値を示
すと考えられる。
Incidentally, referring to FIG. 2 and FIG.
Considering the ORP change amount in the case where the total residual chlorine amount in 1 is 1 mg / L, the ORP change amount in the treated water (Fig. 2)
Shows a lower value than the ORP change amount in the phosphate buffer (FIG. 4). That is, although the ORP change amount in the phosphate buffer solution adjusted to each pH is shown in FIG. 4, it is considered that the ORP change amount at each pH shows a slightly low value in the water to be treated.

【0037】以上のように説明した、被処理水またはリ
ン酸緩衝溶液を用いた実験結果から、本実施の形態の水
処理装置では、ORP変化量(消毒のために塩素を含む
被処理水を電気分解する処理水槽10の前後のORP値
の差分)は、消毒に必要な程度の量の塩素が被処理水に
含まれている場合、総残留塩素量に応じて変化すると考
えられる。また、そのような場合のORP変化量は、リ
ン酸緩衝液による実験結果から、被処理水においても、
被処理水のpHの影響を受けると考えられる。
From the above-described experimental results using the water to be treated or the phosphate buffer solution, in the water treatment apparatus of this embodiment, the ORP change amount (the water to be treated containing chlorine for disinfection was It is considered that the difference between the ORP values before and after the electrolyzed treated water tank 10) changes according to the total residual chlorine amount when the amount of chlorine required for disinfection is contained in the water to be treated. In addition, the ORP change amount in such a case is also shown in the treated water based on the experimental results obtained with the phosphate buffer solution.
It is considered to be affected by the pH of the water to be treated.

【0038】したがって、本実施の形態の水処理装置で
は、pHが7程度で大きな変化がないと考えれる生活排
水を処理する場合には、制御器50は、電源51の出力
を制御する際、図5に示すような処理を実行する。
Therefore, in the water treatment apparatus of the present embodiment, when treating domestic wastewater, which is considered to have a pH of about 7 and does not change significantly, the controller 50 controls the output of the power source 51 when The processing as shown in FIG. 5 is executed.

【0039】図5を参照して、まず、制御器50は、S
1で、第2ORP計30の測定した酸化還元電位から第
1ORP計20の測定した酸化還元電位を差引くことに
より、これらのORP計の測定値の差分(上記したOR
P変化量。以下、△ORPとも記載する)を算出する。
Referring to FIG. 5, first, the controller 50 sets S
In step 1, the redox potential measured by the first ORP meter 20 is subtracted from the redox potential measured by the second ORP meter 30 to obtain the difference between the measured values of these ORP meters (the above-mentioned OR
P change amount. Hereinafter, it is also described as ΔORP).

【0040】次に、制御器50は、S2で、△ORPが
250mV以上であるか否かを判断する。この250m
Vとは、pH7の被処理水とリン酸緩衝溶液中での実験
結果とから導き出された値であり、大腸菌群数の減少率
および総残留塩素量の観点から適するとされる量の塩素
が添加された際のORP変化量となる。なお、この値の
算出法の一例としては、具体的には、図2〜図4から、
総残留塩素量が1mg/Lとなる場合の、リン酸緩衝溶
液におけるORP変化量と、同pHに調整した排水中で
のORP変化量との平均のように算出される。
Next, the controller 50 determines whether or not ΔORP is 250 mV or more in S2. This 250m
V is a value derived from the water to be treated having a pH of 7 and the results of experiments in a phosphate buffer solution, and the amount of chlorine that is considered suitable from the viewpoints of the reduction rate of coliform bacteria and the total residual chlorine amount. It is the ORP change amount when added. In addition, as an example of a method of calculating this value, specifically, from FIGS.
It is calculated as an average of the ORP change amount in the phosphate buffer solution and the ORP change amount in the waste water adjusted to the same pH when the total residual chlorine amount is 1 mg / L.

【0041】そして、制御器50は、S2で、△ORP
が250mV以上であると判断すると、S3で、電極1
1〜16における電解の電流を減少させるよう、電源5
1を制御した後、S5に処理を進める。一方、S2で、
△ORPが250mV未満であると判断すると、S4
で、電極11〜16における電解の電流を増加させるよ
う、電源51を制御した後、S5に処理を進める。
Then, the controller 50 makes the ΔORP in S2.
If it is determined that the voltage is 250 mV or more, the electrode 1
Power supply 5 to reduce the electrolysis current in 1-16
After controlling 1, the process proceeds to S5. On the other hand, in S2,
When it is judged that the ORP is less than 250 mV, S4
Then, after controlling the power supply 51 so as to increase the electrolysis current in the electrodes 11 to 16, the process proceeds to S5.

【0042】制御器50は、S5で、外部から、図1に
示す水処理装置における水処理が終了するための操作が
なされたか否かを判断する。まだそのような操作がなさ
れていないと判断すると、S1に処理を戻す。一方、そ
のような操作がなされたと判断すると、処理を終了させ
る。
The controller 50 determines in S5 whether or not an operation for ending the water treatment in the water treatment apparatus shown in FIG. 1 has been performed from the outside. If it is determined that such an operation has not been performed yet, the process returns to S1. On the other hand, if it is determined that such an operation has been performed, the processing is ended.

【0043】以上説明したように、本実施の形態の水処
理装置では、被処理水のpHが安定していると考えられ
る場合には、図5に示したように、被処理水のORP値
に基づいて、電極対の電極間に流れる電流値が制御され
る。
As described above, in the water treatment apparatus of the present embodiment, when it is considered that the pH of the treated water is stable, the ORP value of the treated water is changed as shown in FIG. The value of the current flowing between the electrodes of the electrode pair is controlled based on

【0044】また、本実施の形態では、ORP値とし
て、処理水槽10の流出側と流入側のORP値の差分を
使用している。これにより、常時、被処理水における総
残留塩素量に応じた制御ができるようになっている。つ
まり、上記したようにORP値の差分を制御の対象とし
て採用することにより、被処理水自体のORP値に無関
係に、残留塩素量に基づいた制御が行なえる。
Further, in this embodiment, the difference between the ORP values on the outflow side and the inflow side of the treated water tank 10 is used as the ORP value. As a result, it is possible to constantly control the amount of residual chlorine in the water to be treated. That is, as described above, by adopting the difference of the ORP value as the control target, the control based on the residual chlorine amount can be performed regardless of the ORP value of the water to be treated itself.

【0045】一方、本実施の形態の水処理装置が、メッ
キ工場や食品工場の排水のように特殊な排水を被処理水
とする場合には、溶液のpHをも加味して電極対の電極
間に流れる電流値を制御するよう、修正を加えられるこ
とが好ましい。
On the other hand, when the water treatment apparatus of the present embodiment uses special wastewater as the water to be treated, such as the wastewater of a plating factory or a food factory, the pH of the solution is also taken into consideration in the electrode pair. Modifications are preferably made to control the amount of current flowing in between.

【0046】なお、処理水槽10と電位検出槽30との
間にばっ気槽40が設けられることにより、処理水槽1
0中で水が電解された際に生じる水素ガスが、第2OR
P計31で測定されるORP値に影響を与えることが回
避される。
Since the aeration tank 40 is provided between the treated water tank 10 and the potential detection tank 30, the treated water tank 1
Hydrogen gas produced when water is electrolyzed in
The influence on the ORP value measured by the P meter 31 is avoided.

【0047】図6は、図1の水処理装置の変形例を示す
図である。図6に示す水処理装置は、図1に示した水処
理装置の電位検出槽30中の被処理水に、pH計60が
浸されている。pH計60の検出出力は、制御器50に
導入されている。これにより、制御器50は、被処理水
のpHにも応じて、電源51の出力を制御できる。以下
に、制御器50の、被処理水のORP値およびpHに基
づいた電源51の制御態様を、図7を参照しつつ説明す
る。
FIG. 6 is a diagram showing a modification of the water treatment device of FIG. In the water treatment device shown in FIG. 6, the pH meter 60 is immersed in the water to be treated in the potential detection tank 30 of the water treatment device shown in FIG. The detection output of the pH meter 60 is introduced into the controller 50. As a result, the controller 50 can control the output of the power supply 51 according to the pH of the water to be treated. Hereinafter, a control mode of the power source 51 of the controller 50 based on the ORP value and the pH of the water to be treated will be described with reference to FIG. 7.

【0048】まず、S11で、制御器50は、第2OR
P計31の測定した酸化還元電位から第1ORP計21
の測定した酸化還元電位を差引くことにより、これらの
ORP計の測定値の差分を算出する。
First, in S11, the controller 50 causes the second OR
From the redox potential measured by the P meter 31, the first ORP meter 21
The difference between the measured values of these ORP meters is calculated by subtracting the measured redox potential of.

【0049】次に、制御器50は、S12で、被処理水
のpHが5.5以下であるか否かを判断し、5.5以下
であればS13へ、5.5を越えていればS14へ、処
理を進める。
Next, the controller 50 determines in S12 whether or not the pH of the water to be treated is 5.5 or less, and if it is 5.5 or less, the process goes to S13 and exceeds 5.5. If so, the process proceeds to S14.

【0050】S13で、制御器50は、△ORPが25
0mV以上であると判断する。そして、250mV以上
であると判断すれば、S20で、電極11〜16におけ
る電解の電流を減少させるよう電源51を制御した後、
S21に処理を進める。一方、250mV未満であると
判断すると、S19で、電極11〜16における電解の
電流を増加させるよう電源51を制御した後、S21に
処理を進める。
At S13, the controller 50 sets the ΔORP to 25.
It is judged to be 0 mV or higher. Then, if it is determined that the voltage is 250 mV or higher, in S20, after controlling the power supply 51 to reduce the electrolysis current in the electrodes 11 to 16,
The process proceeds to S21. On the other hand, if it is determined that the voltage is less than 250 mV, in S19, the power supply 51 is controlled to increase the electrolysis current in the electrodes 11 to 16, and then the process proceeds to S21.

【0051】次に、制御器50は、S14で、被処理水
のpHが6.5以下であるか否かを判断し、6.5以下
であればS15へ、6.5を越えていればS16へ、処
理を進める。
Next, the controller 50 determines in S14 whether or not the pH of the water to be treated is 6.5 or less, and if it is 6.5 or less, the process goes to S15, where it exceeds 6.5. If so, the process proceeds to S16.

【0052】S15で、制御器50は、△ORPが28
5mV以上であると判断する。そして、285mV以上
であると判断すれば、S20で、電極11〜16におけ
る電解の電流を減少させるよう電源51を制御した後、
S21に処理を進める。一方、285mV未満であると
判断すると、S19で、電極11〜16における電解の
電流を増加させるよう電源51を制御した後、S21に
処理を進める。
At S15, the controller 50 sets the ΔORP to 28.
It is judged to be 5 mV or more. If it is determined that the voltage is 285 mV or higher, in S20, after controlling the power supply 51 to reduce the electrolysis current in the electrodes 11 to 16,
The process proceeds to S21. On the other hand, if it is determined that the voltage is less than 285 mV, the power source 51 is controlled to increase the electrolysis current in the electrodes 11 to 16 in S19, and then the process proceeds to S21.

【0053】次に、制御器50は、S16で、被処理水
のpHが7.5以下であるか否かを判断し、7.5以下
であればS17へ、7.5を越えていればS18へ、処
理を進める。
Next, the controller 50 determines in S16 whether or not the pH of the water to be treated is 7.5 or less, and if it is 7.5 or less, the process proceeds to S17, where the value exceeds 7.5. If so, the process proceeds to S18.

【0054】S17で、制御器50は、△ORPが23
5mV以上であると判断する。そして、235mV以上
であると判断すれば、S20で、電極11〜16におけ
る電解の電流を減少させるよう電源51を制御した後、
S21に処理を進める。一方、235mV未満であると
判断すると、S19で、電極11〜16における電解の
電流を増加させるよう電源51を制御した後、S21に
処理を進める。
At S17, the controller 50 sets the ΔORP to 23.
It is judged to be 5 mV or more. If it is determined that the voltage is 235 mV or higher, in S20, after controlling the power supply 51 to reduce the electrolysis current in the electrodes 11 to 16,
The process proceeds to S21. On the other hand, if it is determined that the voltage is less than 235 mV, in S19, the power supply 51 is controlled to increase the electrolysis current in the electrodes 11 to 16, and then the process proceeds to S21.

【0055】S18で、制御器50は、△ORPが17
0mV以上であると判断する。そして、170mV以上
であると判断すれば、S20で、電極11〜16におけ
る電解の電流を減少させるよう電源51を制御した後、
S21に処理を進める。一方、170mV未満であると
判断すると、S19で、電極11〜16における電解の
電流を増加させるよう電源51を制御した後、S21に
処理を進める。
At S18, the controller 50 sets the ΔORP to 17
It is judged to be 0 mV or higher. Then, if it is determined that the voltage is 170 mV or more, in S20, after controlling the power supply 51 to reduce the electrolysis current in the electrodes 11 to 16,
The process proceeds to S21. On the other hand, if it is determined that the voltage is less than 170 mV, in S19, the power supply 51 is controlled to increase the electrolysis current in the electrodes 11 to 16, and then the process proceeds to S21.

【0056】S21で、制御器50は、外部から、図6
に示す水処理装置における水処理が終了するための操作
がなされたか否かを判断する。まだそのような操作がな
されていないと判断すると、S11に処理を戻す。一
方、そのような操作がなされたと判断すると、処理を終
了させる。
In step S21, the controller 50 is operated from the outside as shown in FIG.
It is determined whether or not an operation for ending the water treatment in the water treatment apparatus shown in (3) is performed. If it is determined that such an operation has not been performed yet, the process returns to S11. On the other hand, if it is determined that such an operation has been performed, the processing is ended.

【0057】以上説明したように、図6の水処理装置で
は、被処理水のpHごとに異なる△ORP値を基準値に
基づいて、電極対の電極間に流れる電流値が制御され
る。△ORP値の基準値とは、pH5付近では250m
V(S13)、pH6付近では285mV(S15)、
pH7付近では235mV(S17)、pH8付近では
170mV(S18)となっている。
As described above, in the water treatment apparatus of FIG. 6, the current value flowing between the electrodes of the electrode pair is controlled based on the reference value of the ΔORP value which varies depending on the pH of the water to be treated. The standard value of △ ORP value is 250 m near pH 5.
V (S13), 285 mV (S15) near pH6,
It is 235 mV (S17) near pH7 and 170 mV (S18) near pH8.

【0058】各pHにおける基準値は、リン酸緩衝溶液
中での実験結果から導き出された値であり、大腸菌群数
の減少率および総残留塩素量の観点から適するとされる
量の塩素が添加された際のORP変化量となる。なお、
これらの基準値は、具体的には、被処理水の各pHでの
ORP変化量は、対応するリン酸緩衝液中のORP変化
量よりも低いと考えられるため、総残留塩素量が1mg
/Lとなる場合の、リン酸緩衝溶液におけるORP変化
量と、同pHに調整した排水中でのORP変化量との平
均として、算出される。
The reference value at each pH is a value derived from an experimental result in a phosphate buffer solution, and an amount of chlorine which is considered appropriate from the viewpoint of the reduction rate of coliform bacteria and the total residual chlorine amount is added. It is the amount of ORP change when it is performed. In addition,
These reference values are specifically considered to be such that the ORP change amount at each pH of the water to be treated is lower than the ORP change amount in the corresponding phosphate buffer solution, so that the total residual chlorine amount is 1 mg.
It is calculated as the average of the ORP change amount in the phosphate buffer solution and the ORP change amount in the waste water adjusted to the same pH when the value becomes / L.

【0059】今回開示された実施の形態はすべての点で
例示であって制限的なものではないと考えられるべきで
ある。本発明の範囲は上記した説明ではなくて特許請求
の範囲によって示され、特許請求の範囲と均等の意味お
よび範囲内でのすべての変更が含まれることが意図され
る。
The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第一の実施の形態である水処理装置
を模式的に示す図である。
FIG. 1 is a diagram schematically showing a water treatment device according to a first embodiment of the present invention.

【図2】 塩素系消毒剤の添加量と、被処理水における
塩素系化合物の残量と、被処理水の酸化還元電位との関
係を説明するための図である。
FIG. 2 is a diagram for explaining the relationship between the amount of chlorine-based disinfectant added, the remaining amount of chlorine-based compounds in the water to be treated, and the redox potential of the water to be treated.

【図3】 塩素の添加量による、被処理水での大腸菌群
数の経時変化の違いを説明するための図である。
FIG. 3 is a diagram for explaining the difference in the change over time in the number of coliform bacteria in the water to be treated depending on the amount of chlorine added.

【図4】 塩素系消毒剤の添加量と、溶液における塩素
系化合物の残量と、溶液の酸化還元電位との関係の、溶
液のpHによる影響を説明するための図である。
FIG. 4 is a diagram for explaining the influence of the pH of the solution on the relationship between the amount of the chlorine-based disinfectant added, the remaining amount of the chlorine-based compound in the solution, and the redox potential of the solution.

【図5】 図1の制御器の実行する処理の一例を示す図
である。
5 is a diagram showing an example of processing executed by the controller of FIG.

【図6】 図1の水処理装置の変形例を示す図である。FIG. 6 is a diagram showing a modification of the water treatment device of FIG. 1.

【図7】 図6の制御器の実行する処理の一例を示す図
である。
FIG. 7 is a diagram showing an example of processing executed by the controller of FIG.

【符号の説明】[Explanation of symbols]

10 処理水槽、11〜16 電極、20,30 電位
検出槽、21 第1ORP計、31 第2ORP計、4
0 ばっ気槽、41 ばっ気部材、42 ブロワ、50
制御器、51 電源、60 pH計。
10 treated water tank, 11 to 16 electrodes, 20, 30 potential detection tank, 21 first ORP meter, 31 second ORP meter, 4
0 aeration tank, 41 aeration member, 42 blower, 50
Controller, 51 power supply, 60 pH meter.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 C02F 1/50 550L 1/46 1/46 Z 1/76 1/76 A G01N 27/26 361 G01N 27/26 361E 27/416 27/46 351K Fターム(参考) 4D050 AA15 AB06 BB04 BD04 BD08 CA10 CA20 4D061 DA08 DB01 DB10 EA02 EB01 EB04 EB14 EB20 EB37 EB39 FA20 GA07 GA08 GA23 GC12Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 1/50 C02F 1/50 550L 1/46 1/46 Z 1/76 1/76 A G01N 27/26 361 G01N 27 / 26 361E 27/416 27/46 351K F term (reference) 4D050 AA15 AB06 BB04 BD04 BD08 CA10 CA20 4D061 DA08 DB01 DB10 EA02 EB01 EB04 EB14 EB20 EB37 EB39 FA20 GA07 GA08 GA23 GC12

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被処理水を収容する収容部と、 前記収容部内に浸され、対をなす電極からなる電極対
と、 前記電極対に電圧を印加する電源と、 前記収容部内の被処理水の酸化還元電位を測定する酸化
還元電位測定部と、 前記電極対の電極間に流れる電流値が前記酸化還元電位
測定部の測定結果に対応した値となるように、前記電源
の出力を制御する、電源制御部とを含む、水処理装置。
1. An accommodating portion for accommodating water to be treated, an electrode pair formed of a pair of electrodes immersed in the accommodating portion, a power source for applying a voltage to the electrode pair, and water to be treated in the accommodating portion. An oxidation-reduction potential measurement unit for measuring the oxidation-reduction potential of the electrode pair, and the output of the power supply is controlled so that the current value flowing between the electrodes of the electrode pair becomes a value corresponding to the measurement result of the oxidation-reduction potential measurement unit. A water treatment device including a power control unit.
【請求項2】 被処理水を収容する収容部と、 前記収容部内に浸され、対をなす電極からなる電極対
と、 前記電極対に電圧を印加する電源と、 前記収容部内の被処理水の酸化還元電位を測定する酸化
還元電位測定部と、 前記収容部内の被処理水のpHを測定するpH測定部
と、 前記電極対の電極間に流れる電流値が、前記pH測定部
の測定結果および前記酸化還元電位測定部の測定結果に
対応した値となるように、前記電源の出力を制御する、
電源制御部とを含む、水処理装置。
2. An accommodating portion for accommodating water to be treated, an electrode pair made up of electrodes that are paired in the accommodating portion, a power source for applying a voltage to the electrode pair, and water to be treated in the accommodating portion. A redox potential measuring part for measuring the redox potential of the, a pH measuring part for measuring the pH of the water to be treated in the containing part, and a current value flowing between the electrodes of the electrode pair is a measurement result of the pH measuring part. And to control the output of the power supply so that the value corresponds to the measurement result of the redox potential measurement unit,
A water treatment device including a power supply control unit.
【請求項3】 前記酸化還元電位測定部は、前記収容部
において、前記収容部への被処理水の流入部分と前記収
容部からの被処理水の流出部分とで、前記酸化還元電位
を測定する、請求項1または請求項2に記載の水処理装
置。
3. The oxidation-reduction potential measuring unit measures the oxidation-reduction potential at a portion of the treated water that flows into the accommodation unit and at a portion of the treated water that flows out of the accommodation unit in the accommodation unit. The water treatment device according to claim 1 or 2.
【請求項4】 前記電源制御部は、前記流入部分の酸化
還元電位と前記流出部分の酸化還元電位の差分を、前記
酸化還元電位測定部の測定結果として用いる、請求項3
に記載の水処理装置。
4. The power supply control unit uses the difference between the redox potential of the inflow portion and the redox potential of the outflow portion as the measurement result of the redox potential measurement unit.
The water treatment device described in 1.
【請求項5】 前記酸化還元電位測定部は、前記流出部
分の酸化還元電位を測定するための測定部材を備え、 前記測定部材と前記電極との間に設置され、前記被処理
水をばっ気するばっ気部材をさらに含む、請求項3また
は請求項4に記載の水処理装置。
5. The oxidation-reduction potential measurement unit includes a measurement member for measuring the oxidation-reduction potential of the outflow portion, and is installed between the measurement member and the electrode to aerate the water to be treated. The water treatment device according to claim 3 or 4, further comprising an aeration member.
【請求項6】 被処理水に電極対を浸し、当該電極対に
電圧を印加することにより当該被処理水を処理する水処
理方法であって、 前記被処理水の酸化還元電位を測定するステップと、 前記電極対の電極間に流れる電流値が、前記被処理水の
酸化還元電位の測定結果に対応した値となるように前記
電源の出力を制御するステップとを含む、水処理方法。
6. A water treatment method of treating an untreated water by immersing the electrode pair in the untreated water and applying a voltage to the electrode pair, the method comprising measuring an oxidation-reduction potential of the untreated water. And a step of controlling the output of the power source so that the current value flowing between the electrodes of the electrode pair becomes a value corresponding to the measurement result of the oxidation-reduction potential of the water to be treated.
【請求項7】 被処理水に電極対を浸し、当該電極対に
電圧を印加することにより当該被処理水を処理する水処
理方法であって、 前記被処理水の酸化還元電位を測定するステップと、 前記被処理水のpHを測定するステップと、 前記電極対の電極間に流れる電流値が、前記被処理水の
pHおよび酸化還元電位の測定結果に対応した値となる
ように前記電源の出力を制御するステップとを含む、水
処理方法。
7. A water treatment method for treating an untreated water by immersing the electrode pair in the untreated water and applying a voltage to the electrode pair, the step of measuring an oxidation-reduction potential of the untreated water. A step of measuring the pH of the water to be treated, and a current value flowing between the electrodes of the electrode pair so that the current value of the power source is adjusted to a value corresponding to the measurement results of the pH and the redox potential of the water to be treated. Controlling the output of the water.
JP2001386191A 2001-12-19 2001-12-19 Water treatment apparatus and water treatment method Withdrawn JP2003181461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386191A JP2003181461A (en) 2001-12-19 2001-12-19 Water treatment apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001386191A JP2003181461A (en) 2001-12-19 2001-12-19 Water treatment apparatus and water treatment method

Publications (1)

Publication Number Publication Date
JP2003181461A true JP2003181461A (en) 2003-07-02

Family

ID=27595408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386191A Withdrawn JP2003181461A (en) 2001-12-19 2001-12-19 Water treatment apparatus and water treatment method

Country Status (1)

Country Link
JP (1) JP2003181461A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199127A (en) * 2004-01-13 2005-07-28 Sanyo Electric Co Ltd Nitrogen removing method and device
KR100724707B1 (en) 2005-11-18 2007-06-08 김현욱 Method of Determinnig Injection Amount of Chlorine/Dechlorination Agent, Controller and Wastewater Purification Apparatus Using the same
WO2013009106A2 (en) * 2011-07-13 2013-01-17 서울시립대학교 산학협력단 Method and apparatus for measuring a residual chloride concentration using a sensor, and water treatment system using the method and apparatus
JP2013527798A (en) * 2011-03-15 2013-07-04 セバーン トレント デ ノラ,エルエルシー Method and system for ballast water and filtering
JP2017176969A (en) * 2016-03-29 2017-10-05 アクアス株式会社 Processing method of raw water
WO2021049348A1 (en) * 2019-09-12 2021-03-18 株式会社ちとせ研究所 System for inference of measurement target dynamic state using redox potential
CN113213613A (en) * 2021-05-19 2021-08-06 上海波赛统环境科技有限公司 Method for controlling dosage of ammonia nitrogen wastewater chlorination and oxidation agent

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199127A (en) * 2004-01-13 2005-07-28 Sanyo Electric Co Ltd Nitrogen removing method and device
KR100724707B1 (en) 2005-11-18 2007-06-08 김현욱 Method of Determinnig Injection Amount of Chlorine/Dechlorination Agent, Controller and Wastewater Purification Apparatus Using the same
JP2013527798A (en) * 2011-03-15 2013-07-04 セバーン トレント デ ノラ,エルエルシー Method and system for ballast water and filtering
WO2013009106A2 (en) * 2011-07-13 2013-01-17 서울시립대학교 산학협력단 Method and apparatus for measuring a residual chloride concentration using a sensor, and water treatment system using the method and apparatus
WO2013009106A3 (en) * 2011-07-13 2013-05-10 서울시립대학교 산학협력단 Method and apparatus for measuring a residual chloride concentration using a sensor, and water treatment system using the method and apparatus
JP2017176969A (en) * 2016-03-29 2017-10-05 アクアス株式会社 Processing method of raw water
WO2021049348A1 (en) * 2019-09-12 2021-03-18 株式会社ちとせ研究所 System for inference of measurement target dynamic state using redox potential
CN113213613A (en) * 2021-05-19 2021-08-06 上海波赛统环境科技有限公司 Method for controlling dosage of ammonia nitrogen wastewater chlorination and oxidation agent
CN113213613B (en) * 2021-05-19 2023-02-10 上海波赛统环境科技有限公司 Method for controlling dosage of ammonia nitrogen wastewater chlorination and oxidation agent

Similar Documents

Publication Publication Date Title
US7390399B2 (en) Water treatment control systems and methods of use
US6106691A (en) Medical instrument sterilizing and washing method and apparatus
JP3906088B2 (en) Water treatment equipment
KR102387513B1 (en) Ship Ballast Water Management System
KR20020090888A (en) Water treatment apparatus
JP2017530865A (en) System and method for oxidation of ammonia
JP2003181461A (en) Water treatment apparatus and water treatment method
JP3201860B2 (en) Method and apparatus for producing electrolyzed water
KR101274983B1 (en) Method and apparatus for determining of the remained chlorine concentration using a sensor, and purified-water treatment system using the same
KR102387514B1 (en) Ballast water treatment and neutralization
JP2007044612A (en) Apparatus for treating sludge
US20090173696A1 (en) Method and system of digesting excess sludge
JP2007252965A (en) Apparatus for treating waste water
JP7284624B2 (en) Residual chlorine removal method, controller for residual chlorine removal system, and residual chlorine removal system
JP2003211163A (en) Sterilization/disinfection device for city water
JP2627258B2 (en) Electrolytic disinfection equipment for stored water
JPH1190447A (en) Apparatus for circulating bath water
KR101674984B1 (en) Apparatus for controlling ozone and method for controlling ozone
JPH08215684A (en) Ionic water making apparatus
JP2014136202A (en) Device and method for treating ballast water
KR20000032639A (en) Acidic water generator for medical application
JPH06238281A (en) Sterilization system for water tank
KR100607436B1 (en) Water treatment device
JP2000061481A (en) Control method for ozone injection
JP2003088865A (en) Water treatment apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301