JPS63192205A - Manufacture of permanent magnet of rare earth alloy - Google Patents

Manufacture of permanent magnet of rare earth alloy

Info

Publication number
JPS63192205A
JPS63192205A JP62024343A JP2434387A JPS63192205A JP S63192205 A JPS63192205 A JP S63192205A JP 62024343 A JP62024343 A JP 62024343A JP 2434387 A JP2434387 A JP 2434387A JP S63192205 A JPS63192205 A JP S63192205A
Authority
JP
Japan
Prior art keywords
fine powder
rare earth
magnetic
molded form
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62024343A
Other languages
Japanese (ja)
Inventor
Takuo Takeshita
武下 拓夫
Masaki Morikawa
正樹 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP62024343A priority Critical patent/JPS63192205A/en
Publication of JPS63192205A publication Critical patent/JPS63192205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To form the title permanent magnet having high magnetic characteristics stably with excellent reproducibility by giving explosive power to the fine powder of an alloy for a rare earth magnet or the green compact of fine powder, mutually contact-bonding fine powder to form a molded form and executing magnetic characteristic-imparting heat treatment to the molded form. CONSTITUTION:The fine powder of a rare earth magnet or the green compact of fine powder is not magnetic-field orientation-treated or is magnetic-field orientation-treated and is given explosive power, fine powder is contact-bonded mutually to shape a molded form, and the molded form is magnetic characteristic-imparting thermally treated. Since the molded form acquired by explosive power is molded impulsively and instantaneously, oxygen is not increased by adsoprtion, and the molded form having high density of 97% or more of theoretical density is obtained, thus omitting a subsequent sintering process, then resulting in the usage of raw material fine powder having grain size larger than grain size according to a conventional method by twice or decuple. When raw material fine powder having large grain size is employed, the increase of impurity content such as oxygen and carbon can be prevented. Accordingly, the rare earth magnet having superior magnetic characteristics can be shaped stably with excellent reproducibility through one or more of heat treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、すぐれた磁気特性を有する希土類合金製永
久磁石(以下、希土類磁石という)を再現性よく安定的
に製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for stably manufacturing rare earth alloy permanent magnets (hereinafter referred to as rare earth magnets) having excellent magnetic properties with good reproducibility. .

〔従来の技術〕[Conventional technology]

従来、サマリウム・コバルト系やネオジム・鉄・ボロン
系のような、希土類金属を含む磁石は、その高い磁気特
性が評価されて、近年著しく開発が進み、広く実用に供
されている。
Conventionally, magnets containing rare earth metals such as samarium-cobalt and neodymium-iron-boron have been highly evaluated for their high magnetic properties, have been significantly developed in recent years, and are now widely put into practical use.

この希土類磁石は、例えば、所定割合に配合した原料金
属を真空インダクション炉溶解または真空アーク溶解に
よシ溶解し、それによって生成した溶湯を鋳造して得た
インゴットを、窒素またはアルゴンのような不活性ガス
雰囲気の下に、スタンフミル、ハンマーミル、ローラミ
ル等で数10メツシュまで粗粉砕するか、あるいは希土
類金属酸化物を他の金属粉末の共存の下に還元すること
によって得られた粗粉末を、トルエンの−ような有機溶
剤中または不活性ガス中で、ボールミル、振動ミル、ジ
ェットミル、あるいはアトライタ等を用いて微粉砕する
ことにより数μ程度の大きさの微粉末を調製し、ついで
この微粉末を磁場または無磁場の下に圧縮成形して得た
圧粉体を、真空中あるいはアルゴン等の不活性ガス雰囲
気中、例えば1000〜1250℃の範囲内の所定の温
度に30〜60分間保持の条件で焼結することによって
製造されている。
These rare earth magnets are produced by, for example, melting raw metals mixed in a predetermined ratio in a vacuum induction furnace or vacuum arc melting, and casting the resulting molten metal into an ingot, which is then heated using a nitrogen or argon gas. Coarse powder obtained by coarsely pulverizing to several tens of meshes in an active gas atmosphere using a Stampf mill, hammer mill, roller mill, etc., or by reducing a rare earth metal oxide in the coexistence of other metal powders, A fine powder of several micrometers in size is prepared by finely pulverizing it in an organic solvent such as toluene or in an inert gas using a ball mill, vibration mill, jet mill, or attritor, and then this fine powder is prepared. A green compact obtained by compression molding powder under a magnetic field or no magnetic field is held at a predetermined temperature within the range of 1000 to 1250°C for 30 to 60 minutes in a vacuum or an inert gas atmosphere such as argon. It is manufactured by sintering under the following conditions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記希土類合金、特に粉末状の希土類合金は。 The rare earth alloy, especially the rare earth alloy in powder form.

非常に酸化されやすいので、これを粉砕して希土類磁石
の原料粉末を調製する場合の前記粉砕工程中には、希土
類合金の酸化を防ぐため、前記粉砕工程を、前述のとお
シ、蟹素またはアルゴンのような不活性ガスやトルエン
のような有機溶剤中で遂行しなければならないが、この
ような方法によっても、前記原料粉末を調製するまでに
、不活性ガスや有機溶剤などの希土類合金を取シまく雰
囲気中の酸素と炭素がこの希土類合金と結合して原料粉
末中に混入し、それによって磁石の磁気特性が著しく低
下するという問題があシ、特に、これらの不純物量は、
微粉末の粒径に反比例して増加するものである。
Since it is very easily oxidized, in order to prevent oxidation of the rare earth alloy, during the pulverization step when pulverizing it to prepare raw material powder for rare earth magnets, the pulverizing step is performed using the above-mentioned method, crab element or The process must be carried out in an inert gas such as argon or an organic solvent such as toluene, but even with this method, the rare earth alloy such as the inert gas or organic solvent must be used before the raw material powder is prepared. There is a problem that oxygen and carbon in the surrounding atmosphere combine with this rare earth alloy and mix into the raw material powder, thereby significantly reducing the magnetic properties of the magnet.In particular, the amount of these impurities is
It increases in inverse proportion to the particle size of the fine powder.

一方、希土類磁石の磁気特性は、焼結体中の結晶粒径が
大きくなると低下するので、焼結工程中に起る粒成長を
考慮して、原料微粉末の粒径をなるべく小さくする必要
があり、実際に、原料微粉末は、実用上可能な限シ小さ
くして製造しているのが現状である。
On the other hand, the magnetic properties of rare earth magnets deteriorate as the crystal grain size in the sintered body increases, so it is necessary to take into account the grain growth that occurs during the sintering process and reduce the grain size of the raw fine powder as much as possible. In fact, the current situation is that the raw material fine powder is manufactured as small as practically possible.

このように、原料微粉末は、焼結工程中に起る粒成長を
考慮して1粒径をなるべく小さくする必要があるが、原
料微粉末の粒径な小さく調製すると、前述のように酸素
や炭素の不純物量が増加し、希土類磁石の磁気特性を著
しく害するという相反する現象が起き、高特性の希土類
磁石を、品質のバラツキなく安定的に製造することは極
めて困難であるという問題点があった。
In this way, it is necessary to make the grain size of the raw material fine powder as small as possible in consideration of the grain growth that occurs during the sintering process, but if the raw material fine powder is made small in particle size, oxygen A contradictory phenomenon occurs in which the amount of carbon and carbon impurities increases, significantly impairing the magnetic properties of rare earth magnets, and it is extremely difficult to stably produce rare earth magnets with high characteristics without quality variations. there were.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

そこで1本発明者等は、前述のような観点から、高磁気
特性を有する希土類磁石を、再現性よく安定的に製造す
べく研究を行なった結果、希土類a石の微粉末またはこ
の圧粉体に、爆発力を用いて微粉末を相互に圧着せしめ
、成形体を成形せしめることにより高磁気特性の希土類
磁石を再現性よく安定して製造することができるという
知見を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research in order to stably manufacture rare earth magnets with high magnetic properties with good reproducibility, and as a result, they found that fine powder of rare earth a-stone or compacted powder thereof Furthermore, they discovered that rare earth magnets with high magnetic properties can be stably produced with good reproducibility by using explosive force to press fine powders together to form a compact.

この発明は、前記知見にもとづいてなされたものであっ
て、 希土類磁石の微粉末またはこの圧粉体に1磁場配向処理
を施すか又は施すことなく、爆発力を付加し、微粉末を
相互圧着して成形体とし、この成形体に磁気特性付与熱
処理を施すことによシ希土類磁石を製造する点に特徴を
有するものである。
This invention was made based on the above-mentioned knowledge, and involves applying explosive force to fine powder of a rare earth magnet or its green compact, with or without applying a magnetic field orientation treatment, to press the fine powder together. This method is characterized in that a rare earth magnet is produced by forming a molded body and subjecting this molded body to heat treatment to impart magnetic properties.

前記爆発力により得られた成形体は、爆発力により衝撃
的に瞬時に成形されるため、従来の焼結体と比べて吸着
による酸素の増加がなく、シかも。
Since the molded body obtained by the explosive force is instantaneously shaped by the explosive force, there is no increase in oxygen due to adsorption compared to conventional sintered bodies, and there is no increase in oxygen content.

すでにこの段階で、理論密度の9マチ以上の高密度のも
のが得られるから、その後の焼結工程を省くことができ
、焼結工程を省くことができれば、従来のように焼結工
程中に起る粒成長を考慮して原料微粉末の粒径をなるべ
く小さくする必要もなく、従来法で使用する原料微粉末
の粒径の2〜10倍の大きさの粒径な有する原料微粉末
を使用することができる。
Already at this stage, a product with a high density of 9 gussets or more, which is the theoretical density, can be obtained, so the subsequent sintering process can be omitted. There is no need to reduce the particle size of the raw material fine powder as much as possible in consideration of the grain growth that occurs, and it is possible to use a raw material fine powder with a particle size that is 2 to 10 times larger than the particle size of the raw material fine powder used in the conventional method. can be used.

このように、粒径の大きな原料微粉末を使用することが
できれば、成形体中の酸素および炭素のような不純物含
有量の増加を防ぐことができ、磁気特性を害する要因は
除去されるのである。
In this way, if it is possible to use fine raw material powder with a large particle size, it is possible to prevent an increase in the content of impurities such as oxygen and carbon in the compact, and eliminate factors that impair magnetic properties. .

また、前記爆発力によシ成形した成形体に焼結を施すと
しても、従来法よシ低温で短時間の焼結でよく、かかる
焼結工程での結晶粒成長は、はとんどなく、前記焼結工
程を省いた場合と同様の効果が得られるものである。
Furthermore, even if the compact formed by the above-mentioned explosive force is sintered, sintering can be done at a lower temperature and for a shorter time than in the conventional method, and grain growth in such a sintering process is extremely unlikely. , the same effect as when the sintering step is omitted can be obtained.

ここで、前記従来法の2〜10倍の大きさの粒径とは、
具体的には、5〜50μmの平均粒径のものをいう。
Here, the particle size that is 2 to 10 times larger than the conventional method is
Specifically, it refers to particles with an average particle size of 5 to 50 μm.

以上のようにして成形した成形体を、磁場中あるいは無
磁場中で温度:300℃〜1250℃の範囲で一段ある
いは多段の磁気特性のた−めの熱処理を1回以上施すこ
とによって、すぐれた磁気特性を有する希土類磁石を再
現性よく安定的に製造することができるのである。
The molded body formed as described above is heat-treated at least once in a magnetic field or in a non-magnetic field at a temperature in the range of 300°C to 1250°C to improve its magnetic properties. Rare earth magnets with magnetic properties can be stably manufactured with good reproducibility.

〔実施例〕 つぎに、この発明の希土類磁石の製造方法を実施例によ
シ具体的に説明する。
[Example] Next, the method for manufacturing a rare earth magnet of the present invention will be specifically explained with reference to Examples.

実施例1 真空アーク溶解によって溶製したNd14.3DY0.
7F877B8の成分組成を有するネオジウム・鉄・ボ
ロン系磁石用合金塊を各160gとり、窒素雰囲気下で
スタンプミルにより粉砕を行ない、24メツシユの篩に
て分級し、この粗粉末を脱気フロン溶媒中にて回転ボー
ルミルにより微粉砕を行ない、フィッシャー・サブシブ
サイザーによる測定で平均粒径:3μm、5.9μm、
7.2μms  11.2μm、15.4μm、201
μm、25.0μmの原料微粉末を調製し、この原料微
粉末のうち、平均粒径ニア、2μm115.4μm、2
0.1μmおよび25.0μmの各微粉末をそれぞれ6
511とり、これらをアルゴン雰囲気中にて、それぞれ
薄肉のスチール製円筒容器に充填し圧縮成形して密閉し
、これら各微粉末が充填されたスチール製円筒容器を第
1図に示される爆発成形装置に装入し、この爆発成形装
置は。
Example 1 Nd14.3DY0. produced by vacuum arc melting.
160 g each of neodymium/iron/boron alloy ingots for magnets having the component composition of 7F877B8 were taken, ground in a stamp mill in a nitrogen atmosphere, classified with a 24-mesh sieve, and the coarse powder was placed in a degassed CFC solvent. Finely pulverized using a rotating ball mill, and measured using a Fischer subsitive sizer: average particle size: 3 μm, 5.9 μm,
7.2μms 11.2μm, 15.4μm, 201
μm, 25.0 μm raw material fine powder was prepared, and among this raw material fine powder, the average particle size near, 2 μm, 115.4 μm, 2
6 pieces of each fine powder of 0.1μm and 25.0μm
511, each of these is filled into a thin-walled steel cylindrical container in an argon atmosphere, compression molded and sealed, and the steel cylindrical container filled with each of these fine powders is placed in an explosion molding apparatus shown in Fig. 1. This explosive forming device is charged into.

衝撃吸収板1と金型2とからなシ、金型2の装入部3に
原料微粉末4を充填したスチール製円筒容器5を装入し
、その上にフライヤー6を置き、その上方の爆薬7を起
爆用雷管8により爆発せしめて成形体を成形せしめるよ
うになっておシ、前記各微粉末が充填されたスチール製
円筒容器5を、爆薬:260IIを用いて、起爆させて
磁石用合金微粉末を圧着させ、次に、前記圧着体の外周
に付着したスチール層を機械的に削シ取シ、圧着体を切
り出し成形体とし、この成形体を真空炉に導入し、真空
度、1Oiu*H,!i+の真空中で、650℃にて2
時間磁気付与のための熱処理を行ない、終了時にアルゴ
ンガスな導入して冷却を行なうことにより、本発゛明法
な実施し、本発明希土類磁石1〜4を製造した。これら
希土類磁石の磁気特性を第1表に示す。
Between the shock absorbing plate 1 and the mold 2, a steel cylindrical container 5 filled with raw material fine powder 4 is charged into the charging part 3 of the mold 2, a fryer 6 is placed on top of the container, and a fryer 6 is placed above it. The explosive 7 is detonated by a detonator 8 to form a compact, and the steel cylindrical container 5 filled with each of the fine powders is detonated using an explosive 260II to form a magnet. The fine alloy powder is crimped, and then the steel layer adhering to the outer periphery of the crimped body is mechanically scraped off, the crimped body is cut out to form a molded body, and this molded body is introduced into a vacuum furnace where the degree of vacuum is adjusted. 1Oiu*H,! i+ vacuum at 650℃ 2
The method of the present invention was carried out by carrying out heat treatment to impart magnetism over time, and cooling by introducing argon gas at the end of the treatment, thereby producing rare earth magnets 1 to 4 of the present invention. The magnetic properties of these rare earth magnets are shown in Table 1.

比較のため、同じ各微粉末を、圧力1.5 ton/c
I!L2の加圧・下でプレス成形を行ない、−辺10m
11の立方体の圧粉体を成形し、これら圧粉体を真空度
:10−mmHllの真空中にて、温度:1090℃、
1時間保持して焼結した後、急冷し、続いてこの焼結体
を真空度: l O−5wHIの真空中で、温度=65
0℃にて2時間保持の熱処理を施すことによって比較法
を行ない、比較希土類磁石1−4を製造した。
For comparison, each of the same fine powders was subjected to a pressure of 1.5 ton/c.
I! Press molding under L2 pressure, - side 10m
11 cubic powder compacts were molded, and these compacts were placed in a vacuum of 10-mmHll at a temperature of 1090°C.
After sintering by holding for 1 hour, the sintered body was quenched, and then the sintered body was heated to a temperature of 65 in a vacuum of 1 O-5wHI.
A comparative rare earth magnet 1-4 was produced by carrying out a comparative method by performing heat treatment at 0° C. for 2 hours.

この結果得られた比較希土類磁石1〜4の磁気特性も第
1表に示す。
The magnetic properties of comparative rare earth magnets 1 to 4 obtained as a result are also shown in Table 1.

実施例2 実施例1の製法に於いて、原料微粉末を20にエルステ
ッドの磁場中にて配向させると共に、円筒容器5として
非磁性のアルミニウム製のものを使用する以外は、全く
同じ条件で本発明法を実施し、希土類磁石を製造した。
Example 2 The production method of Example 1 was carried out under exactly the same conditions except that the raw material fine powder was oriented in an Oersted magnetic field and a non-magnetic aluminum cylinder was used as the cylindrical container 5. A rare earth magnet was manufactured by implementing the invented method.

こうして得られた本発明希土類磁石5〜8および比較希
土類磁石5〜8の磁気特性を第2表に示す。
The magnetic properties of the rare earth magnets 5 to 8 of the present invention and comparative rare earth magnets 5 to 8 thus obtained are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

第1表および第2表に示される結果から、この発明の方
法によって製造された本発明希土類磁石1〜8は、いず
れも酸素含有量が比較法によって製造された比較希土類
磁石1〜8に比して格段に少なく、その保磁力も著しく
大きいことが明らかである。また、最大エネルギー積に
ついても、この発明の方法によって製造された本発明希
土類磁石1〜8は、原料微粉末の平均粒径に関係なく一
定であるのに対し、比較法によって製造された比較希土
類磁石1〜8は、原料微粉末の平均粒径に著しく左右さ
れ、平均粒径が大きくなるほど最大エネルギー積は小さ
くなることが明らかであるから、この発明の希土類磁石
の製造方法は、製品の特性のバラツキが少ない優れた製
造方法であることがわかる。
From the results shown in Tables 1 and 2, it can be seen that the rare earth magnets 1 to 8 of the present invention manufactured by the method of the present invention have oxygen contents that are compared to comparative rare earth magnets 1 to 8 manufactured by the comparative method. It is clear that the coercive force is significantly smaller and the coercive force is also significantly larger. Furthermore, regarding the maximum energy product, the rare earth magnets 1 to 8 of the present invention manufactured by the method of the present invention are constant regardless of the average particle size of the raw material fine powder, whereas the comparative rare earth magnets manufactured by the comparative method Magnets 1 to 8 are significantly influenced by the average particle size of the raw material fine powder, and it is clear that the larger the average particle size, the smaller the maximum energy product. It can be seen that this is an excellent manufacturing method with little variation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、希土類磁石の微粉末またはその圧粉体を爆発
成形するための実施装置の断面図である。 1・・・衝撃吸収板、   2・・・金型、3・・・装
入部、     4・・・微粉末、5・・・円筒容器、
    6・・・フライヤー、7・・・爆薬、    
  8・・・起爆用雷管。
FIG. 1 is a sectional view of an apparatus for explosively molding fine powder of rare earth magnets or green compacts thereof. DESCRIPTION OF SYMBOLS 1...Shock absorbing plate, 2...Mold, 3...Charging part, 4...Fine powder, 5...Cylindrical container,
6...flyer, 7...explosives,
8... Detonator for detonation.

Claims (2)

【特許請求の範囲】[Claims] (1)希土類磁石用合金の微粉末またはこれの圧粉体に
、爆発力を付加し、微粉末を相互圧着して成形体とし、
この成形体に磁気特性付与熱処理を施すことを特徴とす
る希土類合金製永久磁石の製造方法。
(1) Applying explosive force to a fine powder of a rare earth magnet alloy or a compact thereof, and pressing the fine powders together to form a compact;
A method for producing a rare earth alloy permanent magnet, which comprises subjecting the compact to heat treatment to impart magnetic properties.
(2)上記希土類磁石用合金の微粉末またはこれの圧粉
体に、磁場配向処理を施すことを特徴とする特許請求の
範囲第1項記載の希土類合金製永久磁石の製造方法。
(2) The method for producing a permanent magnet made of a rare earth alloy according to claim 1, characterized in that the fine powder of the alloy for rare earth magnets or the green compact thereof is subjected to a magnetic field orientation treatment.
JP62024343A 1987-02-04 1987-02-04 Manufacture of permanent magnet of rare earth alloy Pending JPS63192205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62024343A JPS63192205A (en) 1987-02-04 1987-02-04 Manufacture of permanent magnet of rare earth alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62024343A JPS63192205A (en) 1987-02-04 1987-02-04 Manufacture of permanent magnet of rare earth alloy

Publications (1)

Publication Number Publication Date
JPS63192205A true JPS63192205A (en) 1988-08-09

Family

ID=12135539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62024343A Pending JPS63192205A (en) 1987-02-04 1987-02-04 Manufacture of permanent magnet of rare earth alloy

Country Status (1)

Country Link
JP (1) JPS63192205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283301A (en) * 1988-03-03 1989-11-14 General Motors Corp <Gm> Explosive compression of rare earth/transition alloy in fluid
US7938915B2 (en) 2005-08-08 2011-05-10 Hitachi Metals, Ltd. Rare earth alloy binderless magnet and method for manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261448A (en) * 1985-05-15 1986-11-19 Kawasaki Steel Corp Production of permanent magnet having high energy product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261448A (en) * 1985-05-15 1986-11-19 Kawasaki Steel Corp Production of permanent magnet having high energy product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283301A (en) * 1988-03-03 1989-11-14 General Motors Corp <Gm> Explosive compression of rare earth/transition alloy in fluid
US7938915B2 (en) 2005-08-08 2011-05-10 Hitachi Metals, Ltd. Rare earth alloy binderless magnet and method for manufacture thereof

Similar Documents

Publication Publication Date Title
US4541877A (en) Method of producing high performance permanent magnets
JPWO2013108830A1 (en) Method for producing RTB-based sintered magnet
JPH0468361B2 (en)
JPH0345885B2 (en)
JPS6181603A (en) Preparation of rare earth magnet
EP0571002A2 (en) Permanent magnet alloy having improved resistance to oxidation and process for production thereof
JPS63192205A (en) Manufacture of permanent magnet of rare earth alloy
JPS6181607A (en) Preparation of rare earth magnet
JPS6181605A (en) Preparation of rare earth magnet
JPS62173704A (en) Manufacture of permanent magnet
JPS6350444A (en) Manufacture of nd-fe-b sintered alloy magnet
JPH0344405B2 (en)
JPS62132304A (en) Manufacture of sintered rare earth element magnet
JPS61261448A (en) Production of permanent magnet having high energy product
JPS5853699B2 (en) Method for manufacturing rare earth intermetallic compound magnets
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPS6236366B2 (en)
JPS6351606A (en) Manufacture of rear earth permanent magnet
USRE32714E (en) Method of producing high performance permanent magnets
JPH0431164B2 (en)
JPS60165702A (en) Manufacture of permanent magnet
JPS62137809A (en) Manufacture of rare earth bonding magnet
JPS6140738B2 (en)
JPS5839881B2 (en) Method for manufacturing lanthanide-cobalt permanent magnet alloy
JPH06279807A (en) Production of amorphous molded article