JPS6319021B2 - - Google Patents

Info

Publication number
JPS6319021B2
JPS6319021B2 JP56049873A JP4987381A JPS6319021B2 JP S6319021 B2 JPS6319021 B2 JP S6319021B2 JP 56049873 A JP56049873 A JP 56049873A JP 4987381 A JP4987381 A JP 4987381A JP S6319021 B2 JPS6319021 B2 JP S6319021B2
Authority
JP
Japan
Prior art keywords
clamping
subject
electrodes
electrode
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56049873A
Other languages
Japanese (ja)
Other versions
JPS57163860A (en
Inventor
Eiji Shintaku
Takashi Sasai
Norimoto Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP4987381A priority Critical patent/JPS57163860A/en
Publication of JPS57163860A publication Critical patent/JPS57163860A/en
Publication of JPS6319021B2 publication Critical patent/JPS6319021B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/226Construction of measuring vessels; Electrodes therefor

Description

【発明の詳細な説明】 本発明は、物体に含まれている水分を測定する
ための水分測定装置に関するもので、更に詳しく
は、被験体をプローブに挟持させることによつて
その水分率を測定するようにした挟持方式採用の
水分測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a moisture measuring device for measuring the moisture contained in an object, and more specifically, the present invention relates to a moisture measuring device for measuring moisture contained in an object. The present invention relates to a moisture measuring device using a clamping method.

一般に、狭い間隔の電極間にある誘電率をもつ
物体を挿入して高周波電圧を印加すると、電極間
には(1)式に示すような誘電率に比例した高周波電
流が流れる。
Generally, when an object with a certain dielectric constant is inserted between closely spaced electrodes and a high-frequency voltage is applied, a high-frequency current proportional to the dielectric constant flows between the electrodes as shown in equation (1).

i=ωεS/4πdν ……(1) ν:印加高周波電圧 d:電極間距離 S:電極面積、 ε:誘電率 ω:2π 水の誘電率は他の物質に比べて非常に大きいた
め、上記高周波電流は物体中の水分率にほぼ比例
したものとなり、従つて、この電流を測定するこ
とにより物体中の水分率を知ることができる。
i = ωεS / 4πdν ... (1) ν: Applied high frequency voltage d: Distance between electrodes S: Electrode area, ε: Dielectric constant ω: 2π Since the dielectric constant of water is very large compared to other substances, the above high frequency The current is approximately proportional to the moisture content in the object, and therefore, by measuring this current, the moisture content in the object can be determined.

このような原理に基づいて物体の水分を測定す
る測定装置はすでに幾例か知られているが、被験
体を電極間に挾持させる挾持方式を採用したもの
は提案されていない。このことは、(1)式において
高周波電流iと電極間距離dとが反比例関係にあ
ることから、dの変動が避けられない挾持方式で
は正確に水分測定を行うことができないという従
来からの通念のためである。
Although some measuring devices for measuring the moisture content of objects based on such a principle are already known, no device has been proposed that employs a clamping method in which a subject is clamped between electrodes. This is based on the conventional wisdom that moisture cannot be measured accurately using the clamping method, where fluctuations in d are unavoidable, since the high-frequency current i and the inter-electrode distance d are inversely proportional in equation (1). This is for the sake of

本発明は、一対の挾持アームのそれぞれに高周
波電圧印加用のホツト電極とこれに対応するアー
ス電極とを取付ければ、これらの電極間距離がア
ームの挾持間隔とは無関係に一定になる点に着目
し、このような観点から高精度の測定を行うこと
のできる挾持方式採用の水分測定装置を提供しよ
うとするものである。
The present invention has the advantage that if a hot electrode for applying a high-frequency voltage and a corresponding ground electrode are attached to each of a pair of clamping arms, the distance between these electrodes becomes constant regardless of the clamping interval of the arms. From this point of view, the present invention aims to provide a moisture measuring device that uses a clamping method and is capable of performing highly accurate measurements.

即ち、第1図Aに示すように、挾持アーム1
a,1bのそれぞれにホツト電極2a,2bとア
ース電極3a,3bとを取付ければ、電極間距離
dは挾持間隔lとは無関係に一定となり、理論上
はアーム1a,1b間に任意量の被験体を挾持さ
せて測定することができるはずである。しかしな
がら、実際には、第1図Bに示すように、dが一
定であつてもlに応じて水分率の測定値は変化す
る。これは、ホツト電極2a,2bから自アーム
のアース電極3a,3bに向う電気力線が相互に
影響を及ぼし合つて互いに相手方の電気力線を遮
蔽する遮蔽効果を生じ、この効果の度合がアーム
の間隔に応じて変化するため電気力線の到達深度
が変化するためであろうと推測される。而して、
このときの水分率は、第1図Bから分るように挟
持間隔lとほぼ比例的に変化しており、この関係
は(1)式におけるiとdとの関係とは逆である。
That is, as shown in FIG. 1A, the clamping arm 1
If hot electrodes 2a, 2b and ground electrodes 3a, 3b are attached to arms 1a, 1b, respectively, the distance d between the electrodes will be constant regardless of the clamping interval l, and theoretically an arbitrary amount of distance can be formed between arms 1a and 1b. It should be possible to measure by holding the subject in place. However, in reality, as shown in FIG. 1B, even if d is constant, the measured value of moisture content changes depending on l. This is because the lines of electric force from the hot electrodes 2a, 2b toward the ground electrodes 3a, 3b of the own arm influence each other, producing a shielding effect in which each other shields the lines of electric force of the other, and the degree of this effect varies depending on the arm. It is assumed that this is because the depth at which the electric lines of force reach changes depending on the distance between the two. Then,
As can be seen from FIG. 1B, the moisture content at this time changes almost proportionally to the sandwiching interval l, and this relationship is opposite to the relationship between i and d in equation (1).

本発明は、特に、このような電気力線相互の影
響を少なくして測定精度を高めたことを特徴とす
るものである。
The present invention is particularly characterized in that the influence of such electric lines of force on each other is reduced to improve measurement accuracy.

以下、本発明を図面を参照しながら更に詳細に
説明するに、本発明の測定装置は、第2図に示す
ように、ホツト電極及びアース電極からなるセン
サ電極を備えたプローブ10と、該プローブ10
におけるセンサ電極に接続された制御回路と、該
制御回路に接続された演算回路及び表示部とを備
え、さらに高周波発振回路を備えている。
Hereinafter, the present invention will be described in more detail with reference to the drawings. As shown in FIG. 10
The device includes a control circuit connected to the sensor electrode, an arithmetic circuit and a display section connected to the control circuit, and further includes a high frequency oscillation circuit.

上記プローブ10は、第3図からも明らかなよ
うに、握柄11の先端に一対の絶縁体からなる挾
持アーム12a,12bを開閉自在に取付け、こ
れらのアーム12a,12bを押釦等の操作手段
13によつて開閉操作できるようにしたもので、
各アームの挾持面に、それぞれ高周波電圧を印加
するための小径のホツト電極14a,14bと該
ホツト電極を挾んで対向する長径棒状のアース電
極15a,15bとを取付けると共に、両アーム
12a,12bにおけるホツト電極14a,14
bを、それらの取付位置を挟持面に沿つて相互に
ずらすことにより、互いに非対向な位置に配置せ
しめている。
As is clear from FIG. 3, the probe 10 has a pair of clamping arms 12a and 12b made of an insulator attached to the tip of a handle 11 so as to be openable and closable, and these arms 12a and 12b are operated by operating means such as push buttons. 13 so that it can be opened and closed.
Small-diameter hot electrodes 14a, 14b for applying a high-frequency voltage, and long-diameter rod-shaped earth electrodes 15a, 15b facing each other with the hot electrodes sandwiched therebetween are attached to the clamping surfaces of each arm. Hot electrodes 14a, 14
b are disposed at positions not facing each other by shifting their mounting positions along the clamping surface.

なお、16a,16bは挾持圧を被験体のみに
作用させるためのアーム12a,12bの逃げで
ある。
Note that 16a and 16b are reliefs for arms 12a and 12b for applying clamping pressure only to the subject.

上記両ホツト電極の位置をずらせることは、前
述したような電気力線相互の影響を少なくする上
で極めて有効であり、これによつて、アーム12
a,12bの挾持間隔lに伴つて高周波電流iが
変化するのを防止することができる。即ち、第4
図に示す如く、位置をずらせることによつてホツ
ト電極14a,14bにおける電気力線がまとも
に影響し合う割合が少なくなり、そのため相手ア
ーム上のアース電極に向う電気力線が増大し、こ
れによつて電気力線の到達深度が間隔lの影響を
受けにくくなるからである。
Shifting the positions of the two hot electrodes is extremely effective in reducing the influence of the electric lines of force on each other as described above.
It is possible to prevent the high frequency current i from changing with the clamping interval l between a and 12b. That is, the fourth
As shown in the figure, by shifting the positions, the proportion of the lines of electric force in the hot electrodes 14a and 14b that directly influence each other is reduced, and as a result, the lines of electric force directed toward the ground electrode on the other arm increase, and this This is because the reach depth of the electric lines of force is less affected by the interval l.

而して、上記ホツト電極14a,14bをずら
す方向は、第5図Aに挾持面を展開図によつて示
すように、アーム12a,12bの挾持面におけ
るx軸方向、即ちアース電極15a,15bの軸
線と直交する方向であつても、あるいは、y軸方
向即ちアース電極の軸線と平行な方向であつても
よく、また、その両方向に動かすようにしてもよ
い。
The direction in which the hot electrodes 14a, 14b are shifted is the x-axis direction of the clamping surfaces of the arms 12a, 12b, that is, the direction of the earth electrodes 15a, 15b, as shown in FIG. 5A, which is a developed view of the clamping surfaces. It may be moved in a direction perpendicular to the axis of the earth electrode, or in the y-axis direction, that is, a direction parallel to the axis of the ground electrode, or in both directions.

上記のごとくホツト電極の位置をずらせた場合
には、高周波電流i即ち水分率とアームの挟持間
隔lとの間に第6図Aに示すような関係が得られ
る。これは、ホツト電極14a,14bをその幅
tだけx軸方向にずらせ(P=t)て20KHzの高
周波電圧を印加させた場合のもので、この特性曲
線から、挟持間隔lが0.4〜1.8mmの範囲内におい
て指示値が略一定となり、挟持間隔が測定値に影
響を及ぼさないことが分る。一方、第6図Bは、
2つのアーム12a,12b間に毛髪を任意に挟
持した場合の挟持間隔の分布を示すもので、ほと
んどの場合が上記0.4〜1.8mmの範囲内に収まつて
いる。従つて、これらのデータから、通常の測定
においては、アーム12a,12b間に挟持され
る毛髪の量に応じて挟持間隔に若干のばらつきが
あつても、該挟持間隔とは無関係に正確な測定を
行い得ることが理解される。
When the position of the hot electrode is shifted as described above, a relationship as shown in FIG. 6A is obtained between the high frequency current i, that is, the moisture content, and the clamping distance l between the arms. This is the case when the hot electrodes 14a and 14b are shifted by the width t in the x-axis direction (P=t) and a high frequency voltage of 20 KHz is applied. From this characteristic curve, the clamping interval l is 0.4 to 1.8 mm. It can be seen that the indicated value is approximately constant within the range of , and the clamping interval has no effect on the measured value. On the other hand, in Figure 6B,
This figure shows the distribution of the clamping distance when hair is arbitrarily clamped between the two arms 12a and 12b, and most cases fall within the range of 0.4 to 1.8 mm. Therefore, from these data, in normal measurements, even if there is slight variation in the pinching interval depending on the amount of hair sandwiched between the arms 12a and 12b, accurate measurements can be made regardless of the pinching interval. It is understood that this can be done.

また、第6図Aに示す特性曲線は、位置ずれ量
Pに応じて左右にシフトし、変曲点m,nの間隔
も変わることが実験的に確められている。即ち、
第6図Cは、ホツト電極14a,14bのx軸方
向の位置ずれ量PをP=2tとした場合の特性曲線
を示しており、この場合には、挟持間隔lが0.8
〜2.0mmの範囲内において指示値が略一定となつ
ている。従つて、挟持間隔がその範囲内に収まる
ような測定を行うことにより、測定精度を維持す
ることができる。
Furthermore, it has been experimentally confirmed that the characteristic curve shown in FIG. 6A shifts left and right depending on the amount of positional deviation P, and the interval between the inflection points m and n also changes. That is,
FIG. 6C shows a characteristic curve when the displacement amount P of the hot electrodes 14a and 14b in the x-axis direction is P=2t, and in this case, the clamping interval l is 0.8
The indicated value is approximately constant within the range of ~2.0 mm. Therefore, measurement accuracy can be maintained by performing measurements such that the clamping interval falls within this range.

上記ホツト電極14a,14bの位置ずれ量及
びその方向は、被験体、プローブの構造、印加電
圧の周波数等に応じて最適なものに設定される。
The displacement amount and direction of the hot electrodes 14a and 14b are optimally set depending on the subject, the structure of the probe, the frequency of the applied voltage, and the like.

第7図及び第8図はアーム12a,12bにお
ける挾持面の異なる構成例を示すもので、第7図
は、1つのホツト電極17と1つの棒状アース電
極18とを取付けた場合であり、第8図は、リン
グ状のアース電極19の内側にホツト電極20を
取付けたものである。
7 and 8 show different configuration examples of the clamping surfaces of the arms 12a and 12b. FIG. 7 shows a case where one hot electrode 17 and one rod-shaped ground electrode 18 are attached, and FIG. In FIG. 8, a hot electrode 20 is attached to the inside of a ring-shaped earth electrode 19.

これらの電極は、図示した構造に限定されるも
のではなく、任意の形状及び大きさに形成するこ
とができ、これらを同じアームに少なくとも1つ
づつ適当な配置により取付ければよい。この場
合、一対のアームの挾持面は特に同一構造とする
必要はない。
These electrodes are not limited to the structure shown, but can be formed in any shape and size, and at least one of these electrodes may be attached to the same arm in an appropriate arrangement. In this case, the clamping surfaces of the pair of arms do not need to have the same structure.

また、上記各実施例は、いずれも絶縁アーム上
に独立するアース電極を設けた場合であるが、ア
ーム自身をアース電極として兼用させることもで
きる。第9図はこのようなプローブの構造例を示
すもので、アーム12a,12bをアルミニウ
ム、鉄、しんちゆう等の導電体により形成し、そ
の挾持面に設けた凹所21a,21b内に絶縁部
材22a,22b及び23a,23bを介してホ
ツト電極24a,24bを取付けると共に、アー
ム12a,12b上に該ホツト電極を取巻くリン
グ状のアース電極25a,25bを直接形成させ
ている。この場合、ホツト電線26a,26bも
第10図及び第11図に示すように絶縁部材27
a,27bを介して配線する。なお、上記ホツト
電極上の絶縁部材23a,23bは特に設ける必
要はない。
Furthermore, although each of the above embodiments is a case in which an independent ground electrode is provided on the insulating arm, the arm itself can also be used as the ground electrode. FIG. 9 shows an example of the structure of such a probe, in which the arms 12a, 12b are made of a conductive material such as aluminum, iron, or steel, and insulating parts are placed in recesses 21a, 21b provided on the clamping surface. Hot electrodes 24a, 24b are attached via members 22a, 22b and 23a, 23b, and ring-shaped ground electrodes 25a, 25b surrounding the hot electrodes are directly formed on arms 12a, 12b. In this case, the hot electric wires 26a and 26b are also connected to the insulating member 27 as shown in FIGS. 10 and 11.
Wiring is done via a and 27b. Note that there is no particular need to provide the insulating members 23a and 23b on the hot electrodes.

上記プローブにおいては、ホツト電極24a,
24bからの電気力線は周囲のアース電極25
a,25bに捕捉されて外側に飛出すことがほと
んどなく、従つてシールド効果が向上し、水分率
の測定に際して挟持面からはみ出した被験体やそ
の他の物の影響を受けることがない。
In the above probe, the hot electrode 24a,
Electric lines of force from 24b connect to the surrounding earth electrode 25
a, 25b and hardly fly out to the outside, therefore the shielding effect is improved, and the measurement of moisture content is not affected by the test object or other objects protruding from the clamping surface.

また、第1図において、プローブ10に接続さ
れた制御回路は、ホツト電極を高周波発振回路に
接続すると共に、電極間を流れる高周波電流を検
出し、それを必要なレベルに増幅して後段の演算
回路に入力させるものである。
In addition, in FIG. 1, the control circuit connected to the probe 10 connects the hot electrode to a high-frequency oscillation circuit, detects the high-frequency current flowing between the electrodes, amplifies it to a necessary level, and performs subsequent calculations. It is input to the circuit.

さらに演算回路は、上記制御回路からの出力信
号を被験体の水分率に対応した信号に変換するも
ので、この演算回路からの出力信号が表示部に入
力されて水分率として表示される。
Further, the arithmetic circuit converts the output signal from the control circuit into a signal corresponding to the moisture content of the subject, and the output signal from this arithmetic circuit is input to the display unit and displayed as the moisture content.

上述した測定装置によつて水分率を測定する場
合には、被験体をアーム12a,12b間に挾持
させてホツト電極に高周波電圧を印加させる。す
ると、ホツト電極とアース電極との間には被験体
の誘電率に比例する高周波電流が流れ、これが制
御回路で検出されて一定レベルに増幅されたあと
演算回路に入力され、ここで水分率に比例する信
号に変換されて表示部において水分率として表示
される。
When measuring the moisture content using the above-mentioned measuring device, the subject is held between the arms 12a and 12b, and a high frequency voltage is applied to the hot electrode. Then, a high-frequency current proportional to the dielectric constant of the test object flows between the hot electrode and the ground electrode, and this is detected by the control circuit, amplified to a certain level, and then input to the calculation circuit, where the moisture content is determined. It is converted into a proportional signal and displayed as moisture percentage on the display.

以上に詳述した本発明の水分測定装置によれば
次のような効果を期待することができる。
According to the moisture measuring device of the present invention described in detail above, the following effects can be expected.

(1) 挾持方式の採用により測定を非常に簡単に行
うことができる。
(1) Measurement can be performed very easily by using the clamping method.

(2) 一対の挟持アーム上にそれぞれ取付けたホツ
ト電極を互いに非対向な位置に配置したので、
挾持間隔の変化に伴う測定水分率のばらつきを
なくすことができ、これによつて挾持間隔とは
無関係に高精度の測定を行うことができる。
(2) Since the hot electrodes attached to the pair of clamping arms are placed at positions not facing each other,
It is possible to eliminate variations in the measured moisture content due to changes in the clamping interval, thereby allowing highly accurate measurements to be made regardless of the clamping interval.

(3) 挾持間隔に関係なく水分率を測定できるの
で、挾持によつて密度や厚さが略一定になり易
い毛髪や繊維状物だけでなく、紙や布、プラス
チツク等をも測定対象とすることができる。
(3) Moisture content can be measured regardless of the clamping interval, so it can be measured not only for hair and fibrous materials whose density and thickness tend to be approximately constant depending on clamping, but also for paper, cloth, plastic, etc. be able to.

(4) 挟持アーム自身をアース電極として構成した
ので、別途にアース電極を取付ける必要がな
く、その構造が簡単で製造が容易であるばかり
でなく、ホツト電極からの電気力線の捕捉を確
実にしてシール効果を高め、挟持面からはみ出
した被験体やその他の物の影響を受けにくくす
ることができる。
(4) Since the holding arm itself is configured as a ground electrode, there is no need to attach a separate ground electrode, and not only is the structure simple and easy to manufacture, but it also ensures the capture of electric lines of force from the hot electrode. This can enhance the sealing effect and make it less susceptible to the effects of the subject or other objects protruding from the clamping surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは本発明を適用すべきプローブの部分
断面図、第1図Bはその特性図、第2図は本発明
の一実施例を示す構成図、第3図はプローブの要
部拡大断面図、第4図は電気力線の作用説明図、
第5図A,Bは一対のアームについてホツト電極
の位置のずらせ方を説明する挟持面の正面図、第
6図A,Cはホツト電極の位置をずらせた場合の
特性図、第6図Bは挟持アーム間に毛髪を任意に
挟持した場合の挟持間隔の分布図、第7図及び第
8図はプローブの異なる実施例を示す正面図、第
9図はプローブのさらに異なる実施例を示す要部
断面図、第10図及び第11図は第9図における
A―A断面図であつて実施例の異なるものであ
る。 10……プローブ、12a,12b……挾持ア
ーム、14a,14b,17,20,24a,2
4b……ホツト電極、15a,15b,18,1
9,25a,25b……アース電極。
Fig. 1A is a partial sectional view of a probe to which the present invention is applied, Fig. 1B is a characteristic diagram thereof, Fig. 2 is a configuration diagram showing an embodiment of the present invention, and Fig. 3 is an enlarged view of the main parts of the probe. A cross-sectional view, Figure 4 is an explanatory diagram of the action of electric lines of force,
Figures 5A and B are front views of the clamping surfaces for explaining how to shift the positions of the hot electrodes for a pair of arms, Figures 6A and C are characteristic diagrams when the positions of the hot electrodes are shifted, and Figure 6B 7 and 8 are front views showing different embodiments of the probe, and FIG. 9 is a schematic diagram showing still another embodiment of the probe. The partial sectional views, FIGS. 10 and 11, are sectional views taken along the line AA in FIG. 9, and show different embodiments. 10... Probe, 12a, 12b... Clamping arm, 14a, 14b, 17, 20, 24a, 2
4b...Hot electrode, 15a, 15b, 18, 1
9, 25a, 25b... Earth electrode.

Claims (1)

【特許請求の範囲】 1 プローブに取付けた電極に高周波電流を印加
し、被験体の誘電率に応じて流れる高周波電流か
ら被験体中の水分率を測定するようにしたものに
おいて、上記プローブを開閉自在な一対の挟持ア
ーム間に被験体を挟持する挟持方式とし、上記挟
持アームのそれぞれに高周波電圧が印加されるホ
ツト電極とアース電極とを設けると共に、両アー
ムにおける2つのホツト電極を互いに非対向位置
に配置したことを特徴とする水分測定装置。 2 プローブに取付けた電極に高周波電流を印加
し、被験体の誘電率に応じて流れる高周波電流か
ら被験体中の水分率を測定するようにしたものに
おいて、上記プローブを開閉自在な一対の挟持ア
ーム間に被験体を挟持する挟持方式とし、導電体
により形成した上記挟持アームのそれぞれに高周
波電圧が印加されるホツト電極を互いに非対向状
態に設けると共に、各挟持アーム自身をアース電
極として構成したことを特徴とする水分測定装
置。
[Claims] 1. A high-frequency current is applied to an electrode attached to a probe, and the moisture content in the subject is measured from the high-frequency current flowing according to the dielectric constant of the subject, in which the probe is opened and closed. A clamping method is adopted in which the subject is clamped between a pair of flexible clamping arms, and each of the clamping arms is provided with a hot electrode to which a high-frequency voltage is applied and a ground electrode, and the two hot electrodes in both arms are arranged so as not to face each other. A moisture measuring device characterized by being placed at a certain position. 2. In a device that applies a high frequency current to an electrode attached to the probe and measures the moisture content in the subject from the high frequency current that flows according to the dielectric constant of the subject, a pair of clamping arms that can freely open and close the probe. A clamping method is adopted in which the subject is clamped between them, and hot electrodes to which a high-frequency voltage is applied are provided to each of the clamping arms formed of a conductive material in a non-opposed state, and each clamping arm itself is configured as a ground electrode. A moisture measuring device featuring:
JP4987381A 1981-04-02 1981-04-02 Measuring apparatus of moisture Granted JPS57163860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4987381A JPS57163860A (en) 1981-04-02 1981-04-02 Measuring apparatus of moisture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4987381A JPS57163860A (en) 1981-04-02 1981-04-02 Measuring apparatus of moisture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13651381A Division JPS57165754A (en) 1981-08-31 1981-08-31 Measuring device for moisture rate of fibrous body

Publications (2)

Publication Number Publication Date
JPS57163860A JPS57163860A (en) 1982-10-08
JPS6319021B2 true JPS6319021B2 (en) 1988-04-21

Family

ID=12843161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4987381A Granted JPS57163860A (en) 1981-04-02 1981-04-02 Measuring apparatus of moisture

Country Status (1)

Country Link
JP (1) JPS57163860A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173142A (en) * 2019-04-09 2020-10-22 東芝情報システム株式会社 Dryness and humidity degree measurement device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165754A (en) * 1981-08-31 1982-10-12 Lion Corp Measuring device for moisture rate of fibrous body
JPS58127354U (en) * 1982-02-23 1983-08-29 小暮 弘 hair moisture meter
JPS5990852U (en) * 1982-12-10 1984-06-20 リアル化学株式会社 Moisture rate measuring device for hair, etc.
US6854322B2 (en) 2002-06-10 2005-02-15 The Procter & Gamble Company Directional coupler sensor
AU2005238960B2 (en) 2004-04-26 2009-05-28 The Procter & Gamble Company Methods of assessing characteristics of fibrous substrates and treating fibrous substrates
CA2655176C (en) 2006-06-30 2012-05-22 The Procter & Gamble Company Device for measuring moisture in substrate and health of hair

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112947U (en) * 1980-12-29 1982-07-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173142A (en) * 2019-04-09 2020-10-22 東芝情報システム株式会社 Dryness and humidity degree measurement device

Also Published As

Publication number Publication date
JPS57163860A (en) 1982-10-08

Similar Documents

Publication Publication Date Title
KR100423677B1 (en) Apparatus for measuring the bioelectrical impedance of a living body
US7084643B2 (en) Capacitive sensor for non-contacting gap and dielectric medium measurement
US6479990B2 (en) Eddy current sensor for analyzing a test object and method of operating same
US3928796A (en) Capacitive displacement transducer
JPS6319021B2 (en)
Yang et al. A non-intrusive voltage measurement scheme based on MEMS electric field sensors: Theoretical analysis and experimental verification of AC power lines
US4603980A (en) Methods of measuring temperature and electrical resistivity in a molten glass stream
JPH0448166B2 (en)
JP6070063B2 (en) Snow cover measuring device
Wang The principle of micro thermal analysis using atomic force microscope
JPS645244Y2 (en)
Esselle et al. Capacitive sensors for in-vivo measurements of the dielectric properties of biological materials
JP2019105604A (en) Electrostatic capacity type sensor
JP3121587U (en) Ultra high viscosity measuring device
SU1165967A1 (en) Method of measuring moisture content
JPH0136902B2 (en)
JPH0654458B2 (en) Touch panel input device
Konarde et al. Design and development of Capacitance based Moisture Sensor for smart irrigation
JPH0511444Y2 (en)
JPH0648254B2 (en) Capacitance measurement method
CN112557241A (en) Humidity detection device
JPS5841341A (en) Detection of crack
JPS61195341A (en) Water content measurement device
JPS55144557A (en) Surface potentiometer
JPS63172902A (en) Thickness measuring instrument for metallic foil