JP3121587U - Ultra high viscosity measuring device - Google Patents

Ultra high viscosity measuring device Download PDF

Info

Publication number
JP3121587U
JP3121587U JP2006001473U JP2006001473U JP3121587U JP 3121587 U JP3121587 U JP 3121587U JP 2006001473 U JP2006001473 U JP 2006001473U JP 2006001473 U JP2006001473 U JP 2006001473U JP 3121587 U JP3121587 U JP 3121587U
Authority
JP
Japan
Prior art keywords
capacitance
sample
measured
conductor portion
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006001473U
Other languages
Japanese (ja)
Inventor
比呂志 小林
Original Assignee
日本テクノプラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本テクノプラス株式会社 filed Critical 日本テクノプラス株式会社
Priority to JP2006001473U priority Critical patent/JP3121587U/en
Application granted granted Critical
Publication of JP3121587U publication Critical patent/JP3121587U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

【課題】小規模で簡単かつ低コストな構成と、簡単かつ効率的な測定作業でもって、超高粘度を安定かつ精密に測定することができる超高粘度測定装置を提供する。
【解決手段】互いに平行な2つの面11,12を有するブロック状被測定試料10の一方の面11に、他方の面12に対して平行かつ一定方向に一定の外力Gを与える外力印加手段と、上記被測定試料10の一方の面11の変位に従動する可動部材21と、この可動部材21に近接設置された容量電極31と、この容量電極31に現れる静電容量変化に基づいて試料10の一方の面11の変位量を測定する静電容量式変位計30とを備え、この静電容量式変位計30による測定に基づいて上記被測定試料10の粘度を測定する。
【選択図】 図1
An ultra-high viscosity measuring apparatus capable of measuring ultra-high viscosity stably and accurately with a small-scale, simple and low-cost configuration and simple and efficient measurement work.
External force application means for applying a constant external force G in one direction parallel to the other surface 12 to one surface 11 of a block-shaped sample 10 having two surfaces 11 and 12 parallel to each other. The movable member 21 that follows the displacement of the one surface 11 of the sample 10 to be measured, the capacitive electrode 31 that is installed in the vicinity of the movable member 21, and the capacitance 10 that appears on the capacitive electrode 31 And a capacitance type displacement meter 30 that measures the amount of displacement of the one surface 11, and the viscosity of the sample 10 to be measured is measured based on the measurement by the capacitance type displacement meter 30.
[Selection] Figure 1

Description

本考案は超高粘度測定装置に関し、たとえば108Pa・s以上の粘度を有する超高粘度物質の粘度測定に利用して特に有効である。 The present invention relates to an ultra-high viscosity measuring apparatus, and is particularly effective when used for measuring a viscosity of an ultra-high viscosity substance having a viscosity of 10 8 Pa · s or more, for example.

従来、たとえば108Pa・s以上の超高粘度を測定する装置としては、図4に示すような超高粘度測定装置が提供されている。同図に示す装置は、特許文献1に開示されたものであって、互いに平行な下面12と上面11を有する矩形ブロック状被測定試料10を使用し、この試料10の下面12を固定面として台状の固定部材22に固着・固定する一方、その上面11を変位面として板状可動部材21に固着・固定する。 Conventionally, as an apparatus for measuring an ultrahigh viscosity of, for example, 10 8 Pa · s or more, an ultrahigh viscosity measuring apparatus as shown in FIG. 4 has been provided. The apparatus shown in the figure is disclosed in Patent Document 1, and uses a rectangular block-shaped sample 10 having a lower surface 12 and an upper surface 11 parallel to each other, and the lower surface 12 of the sample 10 is used as a fixed surface. The plate-like fixing member 22 is fixed and fixed, while the upper surface 11 thereof is fixed and fixed to the plate-like movable member 21 as a displacement surface.

可動部材21は、ワイヤー24、プーリ25、および錘26等で構成される外力印加手段により、試料10の下面12に対して平行かつ一定方向に一定の外力Gが印加されるようになっている。   The movable member 21 is adapted to apply a constant external force G in parallel and in a fixed direction to the lower surface 12 of the sample 10 by an external force applying means including a wire 24, a pulley 25, a weight 26, and the like. .

試料10を所定の測定温度環境下においた状態で、その試料10の変位面に可動部材21を介して所定の外力Gを印加すると、試料10の上面(変位面)11は、その外力Gと試料10の粘度に応じて平行に変位する。   When a predetermined external force G is applied to the displacement surface of the sample 10 via the movable member 21 in a state where the sample 10 is in a predetermined measurement temperature environment, the upper surface (displacement surface) 11 of the sample 10 The sample 10 is displaced in parallel according to the viscosity of the sample 10.

この変位は可動部材21の移動距離として測定することができるが、その変位は非常に微小である。そこで、従来の技術では、その微小変位を光波干渉計57によって精密測定するようにしている。   This displacement can be measured as the moving distance of the movable member 21, but the displacement is very small. Therefore, in the conventional technology, the minute displacement is precisely measured by the light wave interferometer 57.

この光波干渉計57による変位測定を行うため、固定部材22と可動部材21にそれぞれ回帰反射体221,222が取り付けられている。また、光波干渉計57の入出力光軸L1をいったん2分岐L11,L12して再合流させるためのウォラストン偏光プリズム58およびバイプリズム59が設けられている。   In order to perform displacement measurement by the light wave interferometer 57, the return reflectors 221 and 222 are attached to the fixed member 22 and the movable member 21, respectively. In addition, a Wollaston polarizing prism 58 and a biprism 59 are provided for temporarily rejoining the input / output optical axis L1 of the light wave interferometer 57 by bifurcating L11 and L12.

粘度測定は、試料10を真空イメージ炉60内に入れた外気遮断状態で行う。これは、試料10を所定の測定温度条件に加熱(あるいは冷却)したときに、温度変動による空気ゆらぎ(密度変化)の影響を受けて光干渉距離が変わるのを防ぐためである。   The viscosity measurement is performed in a state where the sample 10 is placed in the vacuum image furnace 60 and the outside air is shut off. This is to prevent the light interference distance from changing due to the influence of air fluctuation (density change) due to temperature fluctuation when the sample 10 is heated (or cooled) to a predetermined measurement temperature condition.

特公平7−1042517-104251

上述した装置では、外力Gによる試料10の微小変位を光波干渉計57で測定することにより超高粘度を測定するものであるが、この測定に際しては次のような問題が生じる。   In the above-described apparatus, the ultrahigh viscosity is measured by measuring the minute displacement of the sample 10 due to the external force G by the light wave interferometer 57. However, the following problems occur in this measurement.

(1)複雑かつ微妙な光路調整を行わねばならず、測定に高度の熟練を必要とする。
(2)光路の分岐と再合流を行わせる必要上、光路L1,L12,L12は必然的に長くなるが、光路L1,L11、L12が長い分、振動等の影響を受けやすく、超高粘度を安定かつ精密に測定することは困難であった。
(3)また、空気ゆらぎの影響を受けて干渉距離が変わりやすい。この空気ゆらぎ(密度変化)の影響を小さくするため、真空イメージ炉60などによる真空環境が必要であった。しかし、真空環境の使用は、装置の大規模化によるコスト高と、測定作業の煩雑化および効率低下を招く。
(1) A complicated and delicate optical path adjustment must be performed, and a high degree of skill is required for measurement.
(2) Although the optical paths L1, L12, and L12 are inevitably longer due to the necessity of branching and re-merging of the optical paths, the optical paths L1, L11, and L12 are long, and thus are easily affected by vibrations and are extremely high in viscosity. It was difficult to measure the temperature stably and accurately.
(3) Further, the interference distance is easily changed due to the influence of air fluctuation. In order to reduce the influence of the air fluctuation (density change), a vacuum environment using a vacuum image furnace 60 or the like is necessary. However, the use of a vacuum environment causes high costs due to the large scale of the apparatus, complicating measurement work, and reducing efficiency.

本考案は、以上のような問題を鑑みてなされたもので、その目的は、小規模で簡単かつ低コストな構成と、簡単かつ効率的な測定作業でもって、超高粘度を安定かつ精密に測定することができる超高粘度測定装置を提供することにある。
本考案の上記以外の目的および構成については、本明細書の記述および添付図面からあきらかになるであろう。
The present invention has been made in view of the above problems, and its purpose is to stably and accurately achieve ultra-high viscosity with a small, simple and low-cost configuration and simple and efficient measurement work. An object of the present invention is to provide an ultra-high viscosity measuring apparatus capable of measuring.
Other objects and configurations of the present invention will become apparent from the description of the present specification and the accompanying drawings.

本考案は次のような解決手段を提供する。
(1)互いに平行な2つの面を有するブロック状被測定試料の一方の面に、その他方の面に対して平行かつ一定方向に一定の外力を与える外力印加手段と、上記被測定試料の一方面の変位に従動する可動導体部と、この可動導体部に近接設置された容量電極と、この容量電極に現れる静電容量変化に基づいて上記可動導体部の移動量を測定する静電容量式変位計とを備え、この静電容量式変位計で測定された上記移動量から上記被測定試料の粘度を測定するようにしたことを特徴とする超高粘度測定装置。
The present invention provides the following solutions.
(1) an external force applying means for applying a constant external force parallel to the other surface and in a fixed direction on one surface of a block-shaped sample having two surfaces parallel to each other; Capacitive type that measures the amount of movement of the movable conductor portion based on a change in capacitance appearing on the movable conductor portion, a capacitive electrode that is installed close to the movable conductor portion, and a capacitance change that appears on the capacitive electrode An ultra-high viscosity measuring apparatus comprising: a displacement meter, wherein the viscosity of the sample to be measured is measured from the amount of movement measured by the capacitance displacement meter.

(2)上記手段(1)において、上記外力印加手段は、上記被測定試料の一方の面に固着させた可動部材を一定方向に一定力で牽引する装置であることを特徴とする超高粘度測定装置。   (2) In the above means (1), the external force applying means is an apparatus that pulls a movable member fixed to one surface of the sample to be measured with a constant force in a fixed direction. measuring device.

(3)上記手段(1)または(2)において、上記可動導体部は、上記被測定試料の一方の面に固着させた可動部材の全体または一部に形成されていることを特徴とする超高粘度測定装置。   (3) In the above means (1) or (2), the movable conductor portion is formed on the whole or a part of a movable member fixed to one surface of the sample to be measured. High viscosity measuring device.

(4)上記手段(1)〜(3)のいずれかにおいて、上記可動導体部に近接設置された第1の容量電極と、上記被測定試料が固定される固定部材に、上記静電容量式変位計に対して上記可動導体部と同一距離となるような位置に設けられた固定導体部と、この固定導体部に近接設置された第2の容量電極と、第1と第2の容量電極にそれぞれ現れる静電容量の変化差分に基づいて上記可動導体部の固定導体部に対する移動量を測定する静電容量式変位計とを備え、これらの静電容量式変位計で測定された上記移動量から上記被測定試料の粘度を測定するようにしたことを特徴とする超高粘度測定装置。   (4) In any one of the above means (1) to (3), the capacitance type is attached to the first capacitive electrode installed in the vicinity of the movable conductor and the fixed member to which the sample to be measured is fixed. A fixed conductor portion provided at a position that is the same distance as the movable conductor portion with respect to the displacement meter, a second capacitor electrode disposed in proximity to the fixed conductor portion, and first and second capacitor electrodes Capacitance displacement gauges that measure the amount of movement of the movable conductor portion relative to the fixed conductor portion based on the difference in capacitance change appearing in each of the above, and the movement measured by these capacitance displacement meters An ultra-high viscosity measuring apparatus characterized in that the viscosity of the sample to be measured is measured from the amount.

(5)上記手段(1)〜(4)のいずれかにおいて、上記容量電極は2つの独立した容量電極からなり、上記静電容量式変位計は、上記2つの容量電極の間に生じる静電容量の変化を検出するように構成されていることを特徴とする超高粘度測定装置。   (5) In any one of the above means (1) to (4), the capacitive electrode is composed of two independent capacitive electrodes, and the capacitive displacement meter is an electrostatic capacitance generated between the two capacitive electrodes. An ultra-high viscosity measuring apparatus configured to detect a change in capacity.

小規模で簡単かつ低コストな構成と、簡単かつ効率的な測定作業でもって、超高粘度を安定かつ精密に測定することができる超高粘度測定装置を提供できる。
上記以外の作用/効果については、本明細書の記述および添付図面からあきらかになるであろう。
It is possible to provide an ultra-high viscosity measuring apparatus capable of measuring ultra-high viscosity stably and accurately with a small-scale, simple and low-cost configuration and simple and efficient measurement work.
Operations / effects other than those described above will be apparent from the description of the present specification and the accompanying drawings.

図1は、本考案による超高粘度測定装置の一実施形態を示す概略側面図である。同図に示す装置は、下面12と上面11が互いに平行な平坦面に形成されたブロック状の被測定試料10を使用して超高粘度の測定を行うものであって、加熱/冷却器15、温度制御装置16、固定部材22、可動部材21、ワイヤー24、プーリ25、錘26等、静電容量式変位計30等を備える。   FIG. 1 is a schematic side view showing an embodiment of an ultra-high viscosity measuring apparatus according to the present invention. The apparatus shown in FIG. 1 performs ultra-high viscosity measurement using a block-like sample 10 having a lower surface 12 and an upper surface 11 formed on flat surfaces parallel to each other, and includes a heating / cooling device 15. , A temperature control device 16, a fixed member 22, a movable member 21, a wire 24, a pulley 25, a weight 26, and the like, a capacitance displacement meter 30, and the like.

同図に示すように、被測定試料10は立体体に形成され、その下面12が固定面として固定部材22に固着・固定される一方、その上面11が変位面として板状可動部材21に固着・固定される。
加熱/冷却器15は電熱ヒータあるいはペルチェ素子などを用いて構成され、被測定試料10を所定の測定温度条件にまで加熱または冷却する。この加熱/冷却器15は、マイクロコンピュータを用いた温度制御装置16と共に使用される。
As shown in the figure, the sample 10 to be measured is formed in a three-dimensional body, and its lower surface 12 is fixed and fixed to the fixed member 22 as a fixed surface, while its upper surface 11 is fixed to the plate-shaped movable member 21 as a displacement surface.・ Fixed.
The heating / cooling device 15 is configured using an electric heater or a Peltier element, and heats or cools the sample 10 to be measured to a predetermined measurement temperature condition. The heating / cooling device 15 is used together with a temperature control device 16 using a microcomputer.

可動部材21は、ワイヤー24、プーリ25、および錘26等で構成される外力印加手段により、試料10の下面12に対して平行かつ一定方向に一定の力Gで牽引されるようになっている。これにともない、試料10の上面11には、下面12に対して平行かつ一定方向に一定の外力Gが印加されるようになっている。   The movable member 21 is pulled by a constant force G in a constant direction parallel to the lower surface 12 of the sample 10 by an external force applying means including a wire 24, a pulley 25, a weight 26, and the like. . Accordingly, a constant external force G is applied to the upper surface 11 of the sample 10 in parallel to the lower surface 12 and in a certain direction.

静電容量式変位計30は位置調整可能なセンサ支軸35を有し、この支軸35の先端部に第1および第2のセンサヘッド33,34が設けられている。第1のセンサヘッド33の先端面には第1の容量電極31が、第2のセンサヘッド34の先端面には第2の容量電極32がそれぞれ取り付けられている。   The electrostatic capacitance type displacement meter 30 has a sensor support shaft 35 whose position can be adjusted, and first and second sensor heads 33 and 34 are provided at the tip of the support shaft 35. A first capacitive electrode 31 is attached to the distal end surface of the first sensor head 33, and a second capacitive electrode 32 is attached to the distal end surface of the second sensor head 34.

容量電極31,32はそれぞれ、静電遮蔽された導線(シールド線)を介して静電容量式変位計30に接続されている。   The capacitive electrodes 31 and 32 are connected to the capacitive displacement meter 30 via electrostatically shielded conductive wires (shield wires), respectively.

第1と第2の容量電極31,32はペアをなし、互いに同一条件で容量による変位測定を行うように構成および設置されている。第1の容量電極31は、可動部材21の端面に所定の間隙距離dを置いて対面するよう、あらかじめ位置させられる。同様に、第2の容量電極32は、固定部材22の端面に上記間隙距離dを置いて対面するよう、あらかじめ位置させられる。   The first and second capacitive electrodes 31 and 32 form a pair and are configured and installed so as to perform displacement measurement by capacitance under the same conditions. The first capacitor electrode 31 is positioned in advance so as to face the end surface of the movable member 21 with a predetermined gap distance d. Similarly, the second capacitor electrode 32 is positioned in advance so as to face the end surface of the fixing member 22 with the gap distance d therebetween.

可動部材21および固定部材22はそれぞれ、少なくとも上記容量電極31,32に対面する部分またはその全体が導体部となっている。この導体部に容量電極31,32が近接設置されることにより、その容量電極31と導体部の間に静電容量が形成されるようになっている。   Each of the movable member 21 and the fixed member 22 has at least a portion facing the capacitor electrodes 31 and 32 or the entirety thereof as a conductor portion. Capacitance electrodes 31 and 32 are placed close to the conductor portion, so that a capacitance is formed between the capacitance electrode 31 and the conductor portion.

また、可動部材21と固定部材22は、容量電極31,32に対面する面がそれぞれ、静電容量式変位計30に対して互いに同一距離Lsとなるような位置に設けられている。   Further, the movable member 21 and the fixed member 22 are provided at positions where the surfaces facing the capacitive electrodes 31 and 32 are the same distance Ls from the capacitive displacement meter 30, respectively.

静電容量式変位計30は、第1の容量電極31と可動部材(可動導体部)21の間隙距離dの変化量と、第2の容量電極32と固定部材(固定導体部)22の間隙距離dの変化量をそれぞれ、静電容量変化量として検出する。   The capacitance type displacement meter 30 includes an amount of change in the gap distance d between the first capacitor electrode 31 and the movable member (movable conductor portion) 21 and a gap between the second capacitor electrode 32 and the fixed member (fixed conductor portion) 22. The amount of change in the distance d is detected as the amount of change in capacitance.

この場合、第2の容量電極32と固定部材22の間隙距離dは不変のはずであるが、実際は、温度による測定ベンチの熱膨張等によってわずかに変動する。この変動は可動部材21の変位測定結果に大きく影響する。   In this case, the gap distance d between the second capacitor electrode 32 and the fixing member 22 should not be changed, but actually varies slightly due to the thermal expansion of the measurement bench due to temperature. This variation greatly affects the displacement measurement result of the movable member 21.

しかし、この変動は、第1の容量電極31と可動部材21の間隙距離dにも同じように生じる。したがって、第1の容量電極31と可動部材21の間隙距離dの変化量から、第2の容量電極32と固定部材22の間隙距離dの変化量を減算補正することにより、上記変動が可動部材21の変位測定結果に与える影響を相殺させることができる。   However, this variation similarly occurs in the gap distance d between the first capacitor electrode 31 and the movable member 21. Therefore, by subtracting and correcting the amount of change in the gap distance d between the second capacitor electrode 32 and the fixed member 22 from the amount of change in the gap distance d between the first capacitor electrode 31 and the movable member 21, the above fluctuations can be corrected. The influence on the displacement measurement result of 21 can be offset.

このため、静電容量式変位計30は、第1の容量電極31と第2の容量電極32にそれぞれ現れる2つの静電容量の差分に基づいて、可動部材21の位置変位量だけを抽出して測定するように構成されている。   For this reason, the capacitance displacement meter 30 extracts only the positional displacement amount of the movable member 21 based on the difference between the two capacitances respectively appearing on the first capacitance electrode 31 and the second capacitance electrode 32. Configured to measure.

このようにして測定された変位量に基づいて、被測定試料の粘度を、温度変化等の外乱要因に影響されることなく、正確に測定することができる。可動部材21の位置変位量は、要すれば、粘度の単位に換算処理されて表示器等へ出力される。   Based on the displacement measured in this way, the viscosity of the sample to be measured can be accurately measured without being affected by disturbance factors such as temperature changes. If necessary, the displacement amount of the movable member 21 is converted into a unit of viscosity and output to a display or the like.

容量電極31と可動部材21間の静電容量は、両者間の間隙距離の二乗にほぼ反比例する。容量電極32と固定部材22間の静電容量も同様である。したがって、両者間の間隙距離dをあらかじめ十分に短くプリセットしておけば、試料10の上面(変位面)11の微小変位を高感度かつ高精度に検出・測定することができる。   The capacitance between the capacitive electrode 31 and the movable member 21 is almost inversely proportional to the square of the gap distance between them. The electrostatic capacitance between the capacitive electrode 32 and the fixing member 22 is the same. Therefore, if the gap distance d between the two is preset sufficiently short, a minute displacement of the upper surface (displacement surface) 11 of the sample 10 can be detected and measured with high sensitivity and high accuracy.

超高粘度の試料10では、その上面(変位面)11に一定の外力Gを一定方向にかけたときに生じる変位量はきわめてわずかであるが、この微小な変位量は静電容量の変化量として高精度に測定される。この測定に基づいて、超高粘度を正確に測定することができる。   In the ultra-high viscosity sample 10, the amount of displacement that occurs when a constant external force G is applied to the upper surface (displacement surface) 11 in a certain direction is very small. Measured with high accuracy. Based on this measurement, the ultrahigh viscosity can be accurately measured.

また、ここで示す実施形態の超高粘度測定装置では、加熱/冷却器15による試料10の加熱または冷却が、外気遮断された真空環境ではなく、外気に対する開放環境で行われるようになっている。   Further, in the ultrahigh viscosity measuring apparatus of the embodiment shown here, heating or cooling of the sample 10 by the heating / cooling device 15 is performed in an open environment with respect to the outside air, not in a vacuum environment where the outside air is blocked. .

このため、所定の測定温度条件を設定するために被測定試料10の加熱あるいは冷却を行った場合、空気ゆらぎ(密度変化)による影響が考えられる。しかし、互いに近接設置された2つの電極間に生じる静電容量は、両電極間の間隙距離には大きく依存するが、両電極間に存在する空気ゆらぎ(密度変化)に対しては鈍感である。   For this reason, when the sample 10 to be measured is heated or cooled in order to set a predetermined measurement temperature condition, an influence due to air fluctuation (density change) can be considered. However, the capacitance generated between two electrodes placed close to each other greatly depends on the gap distance between both electrodes, but is insensitive to air fluctuation (density change) existing between both electrodes. .

空気あるいは気体の比誘電率は真空中の1に近く、仮に、電極間の空気密度が大きく変化したとしても、これによる比誘電率の変化は小さく、ほぼ1に近い状態にある。少なくとも電極間の間隙距離をあらかじめ十分に短く近接させておけば、その間隙距離による容量変化分対して、ほとんど無視できるほど小さい。つまり、空気ゆらぎ(密度変化)による影響は実質的に無いと考えてよい。   The relative permittivity of air or gas is close to 1 in a vacuum, and even if the air density between the electrodes changes greatly, the change in relative permittivity due to this is small and is almost close to 1. If at least the gap distance between the electrodes is close enough in advance, the change in capacitance due to the gap distance is almost negligible. That is, it may be considered that there is substantially no influence due to air fluctuation (density change).

したがって、前述した従来の装置に対し、本考案の装置は次のような利点が得られる。
(1)複雑な光路の調整が不要であり、測定に高度の熟練を必要としない。
(2)振動等の影響を受けやすい長距離光路がない。
(3)温度変動による空気ゆらぎの影響が小さいので真空環境が不要になる。
Therefore, the apparatus of the present invention has the following advantages over the conventional apparatus described above.
(1) Complex adjustment of the optical path is unnecessary, and highly skilled measurement is not required.
(2) There is no long-distance optical path that is susceptible to vibration and the like.
(3) Since the influence of air fluctuation due to temperature fluctuation is small, a vacuum environment becomes unnecessary.

これにより、小規模で簡単かつ低コストな構成と、簡単かつ効率的な測定作業でもって、超高粘度を安定かつ精密に測定することができる。   Thereby, ultra-high viscosity can be measured stably and precisely with a small-scale, simple and low-cost configuration and simple and efficient measurement work.

図2は、上記静電容量式変位計30のセンサ部をなす容量電極31の好ましい実施形態を示す。同図に実施形態では、上記容量電極31が2つの独立した容量電極311,312からなっている。各容量電極311,312はそれぞれ、静電遮蔽された導線(シールド線)313,314を介して静電容量式変位計30に接続されている。   FIG. 2 shows a preferred embodiment of the capacitive electrode 31 that forms the sensor part of the capacitance displacement meter 30. In the embodiment shown in the figure, the capacitor electrode 31 is composed of two independent capacitor electrodes 311 and 312. The capacitive electrodes 311 and 312 are connected to the capacitive displacement meter 30 via electrostatically shielded conductive wires (shield wires) 313 and 314, respectively.

2つの容量電極311,312にはそれぞれ、電極311,312と可動導体部(22)の間隙距離dの二乗にほぼ反比例して変化する容量C11,C12が現れる。そして、この2つの容量電極311,312の間には、その容量C11,C12の直列合成容量Cxが現れる。   Capacitances C11 and C12 that change approximately inversely proportional to the square of the gap distance d between the electrodes 311 and 312 and the movable conductor portion (22) appear in the two capacitance electrodes 311 and 312 respectively. A series combined capacitance Cx of the capacitances C11 and C12 appears between the two capacitance electrodes 311 and 312.

この直列合成容量Cxの変化量を検出することにより、浮動容量の影響を確実に排除して、電極311,312と可動導体部(22)間の変位量を一層安定かつ高精度に測定することができる。   By detecting the amount of change in the series composite capacitance Cx, the influence of the floating capacitance is surely eliminated, and the amount of displacement between the electrodes 311 and 312 and the movable conductor portion (22) can be measured more stably and with high accuracy. Can do.

図示を省略するが、第2の容量電極32も、上記容量電極31と同一に構成されている。   Although not shown, the second capacitor electrode 32 is configured in the same manner as the capacitor electrode 31.

図3は、上記静電容量式変位計30の構成例を示す。同図に示すように、本考案での使用に適した静電容量式変位計30は、スイッチド・キャパシタ方式の容量負帰還回路による第1および第2の容量−電圧変換回路41,42、この容量−電圧変換回路41,42の出力を周期的に更新しながら保持するサンプル・ホールド回路43,44、アナログ減算回路45、AD変換器46、データ処理ユニット47、および表示器48などを用いて構成することができる。   FIG. 3 shows a configuration example of the capacitance displacement meter 30. As shown in the figure, a capacitance displacement meter 30 suitable for use in the present invention includes first and second capacitance-voltage conversion circuits 41, 42 by a switched capacitor type capacitive negative feedback circuit. Using sample-and-hold circuits 43 and 44, an analog subtracting circuit 45, an AD converter 46, a data processing unit 47, a display 48 and the like that hold the outputs of the capacitance-voltage conversion circuits 41 and 42 while periodically updating them. Can be configured.

第1の容量−電圧変換回路41は、上記第1の容量電極31に現れる静電容量Cxを電圧に変換する。同様に、第2の容量−電圧変換回路42は、上記第2の容量電極32に現れる静電容量Crを電圧に変換する。   The first capacitance-voltage conversion circuit 41 converts the capacitance Cx appearing on the first capacitance electrode 31 into a voltage. Similarly, the second capacitance-voltage conversion circuit 42 converts the capacitance Cr appearing on the second capacitance electrode 32 into a voltage.

両変換出力電圧はそれぞれ、サンプル・ホールド回路43,44でいったん保持された後、減算回路45で差分を取られる(減算処理)。これにより、静電容量式変位計30と被測定試料10間の距離変動等が相殺される。   Both converted output voltages are once held by the sample-and-hold circuits 43 and 44 and then subtracted by the subtracting circuit 45 (subtraction processing). Thereby, the variation in the distance between the capacitance type displacement meter 30 and the sample 10 to be measured is offset.

減算回路45の差分出力はAD変換器46でデジタルデータ化され、データ処理回路47にて粘度に換算処理される。この処理結果は、外部へ送信出力されるとともに、表示器48に数値表示される。   The difference output of the subtracting circuit 45 is converted into digital data by the AD converter 46 and converted into viscosity by the data processing circuit 47. This processing result is transmitted and output to the outside, and displayed numerically on the display 48.

上記静電容量式変位計30は、たとえば、米国MTI社製の静電容量式変位計(型番:AS−9000−2)などの既製品をそののまま用いてもよい。   As the capacitance displacement meter 30, for example, an off-the-shelf product such as a capacitance displacement meter (model number: AS-9000-2) manufactured by MTI, USA may be used as it is.

以上、本考案をその代表的な実施例に基づいて説明したが、本考案は上述した以外にも種々の態様が可能である。たとえば、容量電極31は、上述した2極式以外のもの、たとえば単極式あるいは3極以上のものであってもよい。また、静電容量式変位計30はアナログ出力形式であってもよい。   As mentioned above, although this invention was demonstrated based on the typical Example, this invention has a various aspect besides the above-mentioned. For example, the capacitor electrode 31 may be other than the above-described two-pole type, for example, a single-pole type or a three-pole type or more. Further, the capacitance type displacement meter 30 may be an analog output type.

小規模で簡単かつ低コストな構成と、簡単かつ効率的な測定作業でもって、超高粘度を安定かつ精密に測定することができる超高粘度測定装置を提供できる。   It is possible to provide an ultra-high viscosity measuring apparatus capable of measuring ultra-high viscosity stably and accurately with a small-scale, simple and low-cost configuration and simple and efficient measurement work.

本考案による超高粘度測定装置の一実施形態を示す省略側面図である。It is an abbreviated side view showing an embodiment of an ultra-high viscosity measuring device according to the present invention. 静電容量式変位計のセンサ部をなす容量電極の好ましい実施形態を示す省略断面図と等価回路図である。It is an abbreviated sectional view and an equivalent circuit diagram showing a preferred embodiment of a capacitive electrode forming a sensor part of a capacitance displacement meter. 静電容量式変位計の高精励を示す回路図である。It is a circuit diagram which shows the high excitation of an electrostatic capacitance type displacement meter. 従来の超高粘度測定装置の構成を示す省略側面図である。It is an abbreviated side view showing the configuration of a conventional ultra-high viscosity measuring device.

符号の説明Explanation of symbols

10 被測定試料、
11 上面(変位面)、
12 下面(固定面)、
21 可動部材(可動導電部)、
22 固定部材(固定導電部)、
24 ワイヤー、
25 プーリ、
26 錘、
30 静電容量計、
31,32 容量電極、
311,312 容量電極、
33,34 センサヘッド、
35 センサ支軸、
G 外力、
d 間隙距離、
C11,C12 容量、
Cr 参照容量、
Cx 合成容量、
41,42 容量−電圧変換回路、
43,44 サンプル・ホールド回路、
45 アナログ減算回路、
46 AD変換器、
47 データ処理ユニット、
48 表示器。
10 Sample to be measured,
11 Upper surface (displacement surface),
12 Lower surface (fixed surface),
21 movable member (movable conductive part),
22 fixing member (fixed conductive part),
24 wires,
25 pulley,
26 weights,
30 capacitance meter,
31, 32 capacitive electrodes,
311, 312 capacitive electrode,
33, 34 sensor head,
35 Sensor spindle,
G external force,
d gap distance,
C11, C12 capacity,
Cr reference capacity,
Cx composite capacity,
41, 42 capacitance-voltage conversion circuit,
43,44 Sample and hold circuit,
45 Analog subtraction circuit,
46 AD converter,
47 data processing unit,
48 Display.

Claims (5)

互いに平行な2つの面を有するブロック状被測定試料の一方の面に、その他方の面に対して平行かつ一定方向に一定の外力を与える外力印加手段と、上記被測定試料の一方面の変位に従動する可動導体部と、この可動導体部に近接設置された容量電極と、この容量電極に現れる静電容量変化に基づいて上記可動導体部の移動量を測定する静電容量式変位計とを備え、この静電容量式変位計で測定された上記移動量から上記被測定試料の粘度を測定するようにしたことを特徴とする超高粘度測定装置。   External force applying means for applying a constant external force parallel to the other surface and in a fixed direction on one surface of a block-shaped sample having two surfaces parallel to each other, and displacement of one surface of the sample to be measured A movable conductor portion that is driven, a capacitive electrode that is installed in proximity to the movable conductor portion, and a capacitance displacement meter that measures the amount of movement of the movable conductor portion based on a capacitance change that appears on the capacitive electrode; And measuring the viscosity of the sample to be measured from the amount of movement measured by the capacitance displacement meter. 請求項1において、上記外力印加手段は、上記被測定試料の一方の面に固着させた可動部材を一定方向に一定力で牽引する装置であることを特徴とする超高粘度測定装置。   2. The ultrahigh viscosity measuring apparatus according to claim 1, wherein the external force applying means is an apparatus that pulls a movable member fixed to one surface of the sample to be measured with a constant force in a predetermined direction. 請求項1または2において、上記可動導体部は、上記被測定試料の一方の面に固着させた可動部材の全体または一部に形成されていることを特徴とする超高粘度測定装置。   3. The ultrahigh viscosity measuring apparatus according to claim 1, wherein the movable conductor portion is formed on the whole or a part of a movable member fixed to one surface of the sample to be measured. 請求項1〜3のいずれかにおいて、上記可動導体部に近接設置された第1の容量電極と、上記被測定試料が固定される固定部材に、上記静電容量式変位計に対して上記可動導体部と同一距離となるような位置に設けられた固定導体部と、この固定導体部に近接設置された第2の容量電極と、第1と第2の容量電極にそれぞれ現れる静電容量の変化差分に基づいて上記可動導体部の固定導体部に対する移動量を測定する静電容量式変位計とを備え、この静電容量式変位計で測定された上記移動量から上記被測定試料の粘度を測定するようにしたことを特徴とする超高粘度測定装置。   The movable electrode according to any one of claims 1 to 3, wherein the movable electrode portion is movable relative to the capacitive displacement meter on a first capacitive electrode installed in proximity to the movable conductor portion and a fixed member to which the measured sample is fixed. A fixed conductor portion provided at a position that is the same distance as the conductor portion, a second capacitance electrode that is installed in proximity to the fixed conductor portion, and capacitances that appear on the first and second capacitance electrodes, respectively. A capacitance-type displacement meter that measures the amount of movement of the movable conductor portion relative to the fixed conductor portion based on a change difference, and the viscosity of the sample to be measured from the amount of movement measured by the capacitance-type displacement meter. An ultra-high viscosity measuring apparatus characterized in that 請求項1〜4のいずれかにおいて、上記容量電極は2つの独立した容量電極からなり、上記静電容量式変位計は、上記2つの容量電極の間に生じる静電容量の変化を検出するように構成されていることを特徴とする超高粘度測定装置。     5. The capacitive electrode according to claim 1, wherein the capacitive electrode is composed of two independent capacitive electrodes, and the capacitive displacement meter detects a change in electrostatic capacitance generated between the two capacitive electrodes. An ultra-high viscosity measuring device characterized in that it is configured as described above.
JP2006001473U 2006-03-02 2006-03-02 Ultra high viscosity measuring device Expired - Lifetime JP3121587U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006001473U JP3121587U (en) 2006-03-02 2006-03-02 Ultra high viscosity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001473U JP3121587U (en) 2006-03-02 2006-03-02 Ultra high viscosity measuring device

Publications (1)

Publication Number Publication Date
JP3121587U true JP3121587U (en) 2006-05-18

Family

ID=43471685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001473U Expired - Lifetime JP3121587U (en) 2006-03-02 2006-03-02 Ultra high viscosity measuring device

Country Status (1)

Country Link
JP (1) JP3121587U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075430A (en) * 2013-10-10 2015-04-20 和枝 栗原 Heating method of minute sample, and heating unit of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075430A (en) * 2013-10-10 2015-04-20 和枝 栗原 Heating method of minute sample, and heating unit of the same

Similar Documents

Publication Publication Date Title
TWI531793B (en) Process to determine the sensitivity of a sensor and a sensor, in particular magnetic field sensor
WO2020253795A1 (en) Modal localization effect-based weak magnetic field measurement device and method
US8381570B2 (en) Method for adjusting an acceleration sensor
US11022481B2 (en) Load cell having compensation of temperature differences
US20090095080A1 (en) Capacitive detector
JP3121587U (en) Ultra high viscosity measuring device
Zhang et al. Leakage current characterization and compensation for piezoelectric actuator with charge drive
JPH08122362A (en) Capacitive acceleration sensor
CN112964242A (en) System and method for testing mechanical coupling error of quartz tuning fork gyroscope gauge head
CN105182002A (en) Micromechanical acceleration sensor
JPH0245731A (en) Viscoelasticity measuring instrument
Zhang et al. Development and application of planar piezoresistive vibration sensor
JP2008215934A (en) Force sensor, load detector and profile measuring apparatus
JP3652346B2 (en) Flow sensor
JP6054100B2 (en) Power measuring apparatus and power measuring method
Iervolino et al. Resonance frequency of locally heated cantilever beams
CN107024190B (en) A kind of non-contact displacement transducer calibration facility under hot environment
KR101790262B1 (en) Magnetic field measurement sensor and apparatus for measuring magnetic field
JP2001280946A (en) Non-contact type thickness measuring method and measuring instrument
JPH04110628A (en) Detecting apparatus for position of leaking liquid
JP5009560B2 (en) Apparatus for measuring the shape of a thin object to be measured
CN104654995A (en) Non-contact composite capacitance electrode-type displacement transducer and measurer
KR101469462B1 (en) Capacitance inertial sensor widely and minutely compensating capacitance offset
JP2005265432A (en) Measurement apparatus and method
JPS58155302A (en) Electrostatic capacity type displacement gage

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140419

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term