JPS63190151A - Copper alloy material for lead frame - Google Patents

Copper alloy material for lead frame

Info

Publication number
JPS63190151A
JPS63190151A JP1979887A JP1979887A JPS63190151A JP S63190151 A JPS63190151 A JP S63190151A JP 1979887 A JP1979887 A JP 1979887A JP 1979887 A JP1979887 A JP 1979887A JP S63190151 A JPS63190151 A JP S63190151A
Authority
JP
Japan
Prior art keywords
ingot
mold
copper alloy
molten metal
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1979887A
Other languages
Japanese (ja)
Inventor
Kosaku Nakano
中野 耕作
Akira Yamazaki
明 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1979887A priority Critical patent/JPS63190151A/en
Publication of JPS63190151A publication Critical patent/JPS63190151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To inexpensively obtain a copper alloy material for lead frames excellent in strength and electric conductivity, by applying cold working to an ingot of single crystal or single-crystal state prepared by subjecting a molten metal to unidirectional solidification in a mold equipped with a heating device. CONSTITUTION:A molten metal 4 of a copper alloy of Cu-1% Sn, etc., is melted and held in a casting furnace 1. This molten metal 4 is introduced into a mold 2 and cooled by means of a cooling device 7 so as to be formed into an ingot 5, which is then drawn by means of pinch rolls 6. At this time, the mold 2 is heated by the heating device 3 so as not to form the nucleus of solidification, and the molten metal 4 is cooled via the ingot 5 by means of the cooling device 7 provided to the outlet of the mold 2, by which the ingot 5 is formed into a unidirectionally solidified structure. The resulting ingot 5 of single crystal or single-crystal state is cold-worked at a proper draft, so that inexpensive high strength- and high-conductivity-type copper alloy can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強度及び導電率に優れたリードフレーム用銅合
金材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a copper alloy material for lead frames that has excellent strength and electrical conductivity.

〔従来の技術及び問題点〕[Conventional technology and problems]

リードフレームはトランジスタやICなどの電子部品の
実装に用いられる枠構造体であり、このリードフレーム
材には強度ならびに導電率が高く、繰り返し曲げ性、め
っき密着性、打抜き加工性などに優れ且つ廉価であるこ
とが要求される。
A lead frame is a frame structure used for mounting electronic components such as transistors and ICs.This lead frame material has high strength and conductivity, excellent repeat bendability, plating adhesion, punching workability, etc., and is inexpensive. is required.

近年電子工業の技術革新は急、ピンチで進み特に半導体
技術分野では素子の高密度化はもとより小型化、高性能
化及び低9価格化の検討がなされ、リードフレーム用材
料においても従来から使用されできた高強度・低導電型
の42AIIoy  (F e −N i系)v4合金
材料で代替されつつある。
In recent years, technological innovation in the electronics industry has progressed rapidly and in a pinch, especially in the field of semiconductor technology, where studies are being conducted not only to increase the density of elements, but also to miniaturize, improve performance, and lower prices. It is being replaced by the high-strength, low-conductivity type 42AIIoy (Fe-Ni-based) v4 alloy material.

リードフレーム材料に銅系材料が使用される主な理由は
、銅系材料は高い熱伝導性即ち高導電性を有し、高密度
化により素子中に発生するジュール熱を拡散させるのに
適しているためで、今後銅系材料が42AIloyの代
替材として全面的に使用しされていくためには高強度・
高導電型の銅合金の開発が不可欠とされている。
The main reason why copper-based materials are used as lead frame materials is that copper-based materials have high thermal conductivity, that is, high electrical conductivity, and are suitable for diffusing Joule heat generated in devices due to high density. Therefore, in order for copper-based materials to be used extensively as a substitute for 42AIloy, high strength and
The development of highly conductive copper alloys is considered essential.

従来のリードフレーム用銅合金材料は第1図に示すよう
に高強度・低導電型、中強度・中扉電型、低強度・高導
電型が主体となっていて、前記の高強度・高導電型の銅
合金、特に引張強さ80kg/m+a”以上導電率70
%lAC3以上の合金は存在していない。
As shown in Figure 1, conventional copper alloy materials for lead frames are mainly of high strength/low conductivity type, medium strength/medium lead type, and low strength/high conductivity type. Conductive copper alloy, especially tensile strength of 80 kg/m+a” or more, conductivity of 70
There are no alloys greater than %lAC3.

従来リードフレーム用銅合金は加工硬化型と析出硬化型
が主体であり、前者は合金元素を銅マトリツクス中に固
溶させてのちこれを圧延などの加工を施して強化させる
もので、銅マトリツクス中に合金元素が固溶しているた
めに導電率の低下が著しい。また後者は固溶元素を時効
処理により洞マトリックス中に微細に析出させて強化す
るものであるが、固溶元素は銅マトリツクス中にある程
度残存するのであまり高い導電率は得られない。
Conventionally, copper alloys for lead frames are mainly work hardening type and precipitation hardening type.The former is made by dissolving the alloying elements in the copper matrix and then applying processing such as rolling to strengthen it. Because the alloying elements are dissolved in solid solution, the conductivity decreases significantly. In the latter method, solid solution elements are finely precipitated in the cavity matrix by aging treatment to strengthen the copper matrix, but since the solid solution elements remain to some extent in the copper matrix, very high conductivity cannot be obtained.

析出硬化した合金に冷間加工を施して、更に強化しよう
としても靭性に乏しいため圧延中に板切れをおこして十
分な強度が得られない。
Even if a precipitation-hardened alloy is subjected to cold working to further strengthen it, the alloy lacks toughness and breaks during rolling, making it impossible to obtain sufficient strength.

このように従来の銅合金材料において高強度・高導電の
材料を得ることは困難な状況にある。
As described above, it is difficult to obtain a material with high strength and high conductivity using conventional copper alloy materials.

またこれらの銅合金材料はいずれも厳密な温度管理を要
する熱処理工程をとるために製造コストが高くなる欠点
がある。
Furthermore, all of these copper alloy materials have the disadvantage of high manufacturing costs because they require a heat treatment process that requires strict temperature control.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は係る状況に鑑みなされたもので、高強度・高導
電型のリードフレーム用銅合金材料を廉価に提供するこ
とを目的とするものである。
The present invention was made in view of the above situation, and it is an object of the present invention to provide a high-strength, high-conductivity copper alloy material for lead frames at a low cost.

即ち、本発明は一方向凝固させ単結晶または単結晶状の
鋳塊を冷間加工して得られることを特徴とするリードフ
レーム用銅合金材料である。
That is, the present invention is a copper alloy material for a lead frame, which is obtained by unidirectional solidification and cold working of a single crystal or single crystal ingot.

〔作用〕[Effect]

本発明者らは一方向凝固法により長尺の銅及び銅合金鋳
塊を製造することに成功し、それらの特性を調査した結
果、一方向凝固材において特異な挙動を見出した。即ち
第2図には従来の水冷鋳型を用いて製造した15LX 
100’の無酸素銅鋳塊ならびに加熱鋳型連続鋳造法で
一方向凝固させたIs’ X 100”の無酸素銅鋳塊
の加工硬化特性を示したが、この図において従来の鋳造
法で得られた鋳塊は鋳塊の引張強さが25kg/+nn
+”であり加工初期において引張強さが急激に増加し約
45 kg / m1I11”程度で引張強さの増加は
緩慢となり約50kg/am”で加工限界に達し99.
9%以上の加工率はとれない。
The present inventors succeeded in producing long copper and copper alloy ingots by the unidirectional solidification method, and as a result of investigating their properties, they discovered a unique behavior in the unidirectional solidification material. In other words, Figure 2 shows 15LX manufactured using a conventional water-cooled mold.
This figure shows the work hardening properties of an oxygen-free copper ingot of 100' and an oxygen-free copper ingot of Is' The tensile strength of the ingot is 25kg/+nn
+", the tensile strength increases rapidly at the beginning of processing, and at about 45 kg/m1I11", the increase in tensile strength becomes slow, and reaches the processing limit at about 50 kg/am"99.
A processing rate of 9% or higher cannot be achieved.

また導電率は引張強さと全く逆の傾向を示し加工初期に
おいて急激に減少しその後はほぼ一定の割合で減少する
Further, the electrical conductivity shows a completely opposite tendency to the tensile strength, and decreases rapidly at the initial stage of processing, and thereafter decreases at an approximately constant rate.

一方、一方向凝固させた無酸素銅は、鋳塊での引張強さ
は従来材に比べて低いが導電率は高くなっている。更に
加工初期における引張強さの急激な上昇及び導電率のi
、taな減少はなくほぼ一様の割合で増加及び減少して
いる。またこの割合は従  4来村に比べて小さく特に
導電率の減少割合が小さい、更に一方向凝固材の加工限
界はなく 99.999%以上まで、加工可能であり引
張強さは単調に増加する。
On the other hand, unidirectionally solidified oxygen-free copper has lower tensile strength in the form of an ingot than conventional materials, but higher electrical conductivity. Furthermore, the rapid increase in tensile strength and the i in electrical conductivity at the initial stage of processing
, there is no drastic decrease, and they increase and decrease at an almost uniform rate. In addition, this ratio is smaller than that of the conventional 4Kimura, and the rate of decrease in electrical conductivity is particularly small.Furthermore, there is no processing limit for unidirectionally solidified material, and it is possible to process up to 99.999% or more, and the tensile strength increases monotonically. .

これらの差の生じる原因について調査した結果、従来使
用されてきたリードフレーム用の銅及び銅合金材料は、
大型鋳塊を熱間加工しその後冷間加工及び熱処理を繰返
して薄板に加工されるため、その内部には結晶粒界が多
数存在し、これを加工していくと加工による歪がこの結
晶粒界に蓄積されて破壊に到るため十分な強度が得られ
ず、これに対し一方向凝固材は、鋳塊を横断する結晶粒
界がほとんど存在せずに、少数の結晶粒が長手方向にの
びている単結晶または単結晶状の組織であり、従って歪
の集積する場所がほとんどなく歪線は長手方向に線もし
くは面状に存在するだけであり、従来材のように加工限
界における結晶粒界破断を生じないためであることが判
った。
As a result of investigating the causes of these differences, we found that the copper and copper alloy materials conventionally used for lead frames are
Because a large ingot is hot-worked and then cold-worked and heat-treated repeatedly to form a thin plate, there are many grain boundaries inside the ingot, and as these are worked, the strain caused by the working causes these grains to form. In contrast, in unidirectionally solidified materials, there are almost no grain boundaries that cross the ingot, and a small number of grains extend in the longitudinal direction. It has an elongated single-crystal or single-crystal-like structure, so there is almost no place for strain to accumulate, and strain lines only exist in the longitudinal direction as lines or planes, and unlike conventional materials, grain boundaries at the processing limit It turned out that this was to prevent breakage.

このようにして本発明者らは一方向凝固材を利用すれば
種々の特性を有する銅及び銅合金材料を冷間加工のみで
製造できることを見出したのである。
In this manner, the present inventors have discovered that copper and copper alloy materials having various properties can be produced by only cold working by using a directionally solidified material.

また本発明では冷間加工を施すことにより高強度を達成
できるので製造コストも廉価である。
Furthermore, in the present invention, high strength can be achieved by cold working, so the manufacturing cost is low.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

長尺の板状の一方向凝固鋳塊を製造する方法としては鋳
型を鋳造金属の融点以上に加熱する加熱鋳型連続鋳造法
(以下occ法と略記)及び水冷鋳型を用いた鋳型振動
型横型連続鋳造方式などがあるが、単結晶材を容易に製
造するにはocc法の方が有利である。そこでocc法
により仮鋳塊を鋳造した実施例について説明する。
Methods for manufacturing long plate-shaped unidirectionally solidified ingots include a heating mold continuous casting method (hereinafter abbreviated as OCC method) in which the mold is heated above the melting point of the cast metal, and a horizontal continuous mold vibrating mold using a water-cooled mold. Although there are casting methods, etc., the OCC method is more advantageous in easily manufacturing single crystal materials. Therefore, an example in which a temporary ingot was cast by the OCC method will be described.

第6図に加熱鋳型連続鋳造装置の概要を示す。Figure 6 shows an overview of the continuous heating mold casting apparatus.

この装置は鋳造炉1、鋳型2、鋳塊5を冷却する冷却装
置7及び鋳塊を引き出すピンチロール6から構成されて
いる。溶解炉で溶解された鋳造金属は樋を通って鋳造炉
1に導入される。鋳造炉1の炉壁部には発熱体が組み込
まれており鋳造金属は融点以上に加熱されて溶湯4とし
て保持される。
This apparatus is comprised of a casting furnace 1, a mold 2, a cooling device 7 for cooling the ingot 5, and pinch rolls 6 for drawing out the ingot. The cast metal melted in the melting furnace is introduced into the casting furnace 1 through the gutter. A heating element is built into the furnace wall of the casting furnace 1, and the cast metal is heated above its melting point and held as a molten metal 4.

この溶湯4はSR型型内内入った後冷却されて鋳塊とな
り、ピンチロール6によって引き出される。
This molten metal 4 enters the SR mold and is cooled to form an ingot, which is pulled out by pinch rolls 6.

この際鋳型2は鋳型周囲に設置された加熱装置3によっ
て融点以上に加熱されているため溶湯4は鋳型2の内面
では凝固核が生成せず、鋳型2出口部にセットされた冷
却装置7によって、鋳塊5を介して冷却されるため一方
向凝固組織となる。
At this time, the mold 2 is heated above its melting point by the heating device 3 installed around the mold, so no solidification nuclei are generated in the molten metal 4 on the inner surface of the mold 2, and the cooling device 7 installed at the outlet of the mold 2 , since it is cooled through the ingot 5, it becomes a unidirectionally solidified structure.

本装置によって無酸素銅、Cu−0,7%Sn、Cu−
1%Ag及びCu−0,5%B e−2,5%Co合金
を溶製し各々1150℃の溶湯温度で保持し、15tX
200’の板状鋳塊を鋳造した。この鋳塊の組織は鋳塊
を横断する結晶粒界がほとんど存在せずに、少数の結晶
粒が長手方向にのびている単結晶または単結晶状の組織
であった。比較材として従来の水冷鋳型を用いて鋳造し
た100’ X200’の鋳塊を850°Cで熱間圧延
した15tX200’の圧延材を用意した。
With this device, oxygen-free copper, Cu-0.7%Sn, Cu-
1%Ag and Cu-0,5%Be-2,5%Co alloys were melted and held at a melt temperature of 1150℃, and 15tX
A 200' plate-shaped ingot was cast. The structure of this ingot was a single-crystal or single-crystal-like structure in which a small number of crystal grains extended in the longitudinal direction, with almost no grain boundaries crossing the ingot. As a comparison material, a 15t x 200' rolled material was prepared by hot rolling a 100' x 200' ingot cast using a conventional water-cooled mold at 850°C.

これらの材料を冷間圧延により種々板厚に圧延し、各々
について引張強さと導電率を測定した。
These materials were cold-rolled to various thicknesses, and the tensile strength and electrical conductivity of each material were measured.

結果は第3〜5図に示した。尚無酸素銅については第2
図に示したものと全く同一の結果になったので割愛した
The results are shown in Figures 3-5. Regarding oxygen-free copper, please refer to the second
Since the results were exactly the same as those shown in the figure, they have been omitted.

第3図はCu−0,7%Sn合金の加工歪量と引張強さ
及び導電率との関係を示したものである。
FIG. 3 shows the relationship between the amount of processing strain, tensile strength, and electrical conductivity of the Cu-0.7% Sn alloy.

この図より明らかなように加工歪量の増加に従って引張
強さは上昇し導電率は減少するが、従来法で得られた板
材は15胴厚さから0.17mm厚さにまで圧延すると
0.17mmで板切れを多発しそれ以上の加工が出来な
かった。この時の歪量は!!、n(1510,17) 
=4.48”il’アリ、引張強サバ59.5kg/ 
mm”、導電率は66.8%lAC3(以下%と略記)
であった。
As is clear from this figure, as the amount of processing strain increases, the tensile strength increases and the electrical conductivity decreases, but when the plate material obtained by the conventional method is rolled from 15mm thick to 0.17mm thick, 0. At 17mm, the plate broke frequently and no further processing was possible. The amount of distortion at this time! ! , n(1510,17)
=4.48"il' ant, tensile strength mackerel 59.5kg/
mm”, conductivity is 66.8%lAC3 (hereinafter abbreviated as %)
Met.

一方、一方向凝固材ではいくらでも冷間加工が可能であ
り、20μmまで十分に圧延できた。この時の歪量はi
 n (1510,02) =6.62、引張強さは7
5kg/m” 、導電率は64.5%であった。
On the other hand, the unidirectionally solidified material could be cold-worked to any extent, and could be sufficiently rolled to a thickness of 20 μm. The amount of distortion at this time is i
n (1510,02) = 6.62, tensile strength is 7
5 kg/m'', and the conductivity was 64.5%.

Cu−1%Ag−合金の結果は第4図に示した。The results for the Cu-1%Ag alloy are shown in FIG.

この合金はCu−0,7%Sn材に比べやや難加工材で
あり、従来材では歪量が3.5即ち板厚0.45mmで
仮切れを生じたが、一方向凝固材はCu−0,7%Sn
材と同様に20〃2までに圧延できた。
This alloy is somewhat difficult to process compared to the Cu-0.7%Sn material, and the conventional material suffered temporary breakage at a strain of 3.5, or 0.45 mm in thickness, but the unidirectionally solidified material produced a Cu-0.7% Sn alloy. 0.7%Sn
As with the material, it was possible to roll it to 20〃2.

Cu−0,5%Be−2,5%Co合金の結果は第5図
に示した。この−合金は加工硬化し易(従来材では歪f
ft1.5即ち3 、3 am ’で板切れを生じたが
、一方向凝固材は0.10mmLまで加工することがで
きた。
The results for the Cu-0.5% Be-2.5% Co alloy are shown in FIG. This -alloy is easy to work harden (conventional material has strain f
Although plate breakage occurred at 1.5 ft, that is, 3.3 am', the unidirectionally solidified material could be processed to 0.10 mmL.

以上述べたように一方向凝固材を用いると加工性が従来
材に比べてはるかに良く特に従来材では得られなかった
高強度を同一組成の合金で得ることができる。
As described above, when a unidirectionally solidified material is used, the workability is much better than that of conventional materials, and in particular, high strength, which cannot be obtained with conventional materials, can be obtained with an alloy of the same composition.

従来、銅及び銅合金のリードフレーム用材料は、信鎖性
の上から加工限界の40%以下の加工率(t/loX 
100%:t〇−焼鈍上り材板厚、を−加工W、)で使
用されているので、第3〜5図の結果をもとに加工限界
の40%の加工率における引張強さ、導電率を求め本発
明の合金と従来の合金とを比較した。結果は、第1表に
示した。
Conventionally, copper and copper alloy lead frame materials have a processing rate (t/loX) of 40% or less of the processing limit for reliability.
100%: t〇 - Annealed material plate thickness, - Processing W, ), so based on the results in Figures 3 to 5, the tensile strength and conductivity at a processing rate of 40% of the processing limit are calculated. The alloy of the present invention was compared with a conventional alloy. The results are shown in Table 1.

第1表より明らかなように、本発明の合金は従来の合金
に比べて導電率の低下が僅少で、引張強さが大巾に向上
している。
As is clear from Table 1, the alloy of the present invention shows a slight decrease in electrical conductivity and a large improvement in tensile strength compared to conventional alloys.

〔発明の効果〕〔Effect of the invention〕

本発明のリードフレーム用銅合金材料は従来使用されて
いた銅合金材料を強加工して得られるもので、導電率を
ほとんど低下させずに引張強さが大巾に向上されており
、且つ製造コストが廉価なため工業上顕著な効果を奏す
るものである。
The copper alloy material for lead frames of the present invention is obtained by strongly processing conventionally used copper alloy materials, and has greatly improved tensile strength without substantially reducing electrical conductivity. Since the cost is low, it has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はリードフレーム用銅合金の引張強さと導電率を
示す説明図、第2〜5図は歪量と引張強さ及び導電率と
の関係を示す説明図で、第2図は無酸素銅、第3図はC
u−0,7%Sn合金、第4図はCu−1%Ag合金、
第5図はCu−0,5%Be−2,5%Co合金の場合
の説明図、第6図は本実施例に用いた加熱鋳型連続鋳造
装置の説明図である。 l・・・鋳造炉  2・・・鋳型  3・・・加熱装置
4・・・ン容ン易  5・・・鋳塊  “6・・・ピン
チロール7・・・冷却装置
Figure 1 is an explanatory diagram showing the tensile strength and electrical conductivity of copper alloys for lead frames, Figures 2 to 5 are explanatory diagrams showing the relationship between the amount of strain, tensile strength, and electrical conductivity, and Figure 2 is an oxygen-free Copper, Figure 3 is C
u-0.7%Sn alloy, Figure 4 shows Cu-1%Ag alloy,
FIG. 5 is an explanatory diagram of the Cu-0,5% Be-2,5% Co alloy, and FIG. 6 is an explanatory diagram of the hot mold continuous casting apparatus used in this example. l...Casting furnace 2...Mold 3...Heating device 4...Easing device 5...Ingot 6...Pinch roll 7...Cooling device

Claims (1)

【特許請求の範囲】[Claims] 一方向凝固させた単結晶又は単結晶状の鋳塊を冷間加工
して得られることを特徴とするリードフレーム用銅合金
材料。
A copper alloy material for lead frames, characterized in that it is obtained by cold working a unidirectionally solidified single crystal or single crystal ingot.
JP1979887A 1987-01-30 1987-01-30 Copper alloy material for lead frame Pending JPS63190151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979887A JPS63190151A (en) 1987-01-30 1987-01-30 Copper alloy material for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979887A JPS63190151A (en) 1987-01-30 1987-01-30 Copper alloy material for lead frame

Publications (1)

Publication Number Publication Date
JPS63190151A true JPS63190151A (en) 1988-08-05

Family

ID=12009365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979887A Pending JPS63190151A (en) 1987-01-30 1987-01-30 Copper alloy material for lead frame

Country Status (1)

Country Link
JP (1) JPS63190151A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367401A (en) * 1989-08-04 1991-03-22 Furukawa Electric Co Ltd:The Wire for trolley line
CN105458629A (en) * 2015-12-15 2016-04-06 铜陵铜官府文化创意股份公司 Copper walnut and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367401A (en) * 1989-08-04 1991-03-22 Furukawa Electric Co Ltd:The Wire for trolley line
CN105458629A (en) * 2015-12-15 2016-04-06 铜陵铜官府文化创意股份公司 Copper walnut and production method thereof

Similar Documents

Publication Publication Date Title
TWI649437B (en) Copper alloy plate and manufacturing method of copper alloy plate
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP4193171B2 (en) Method for producing Ti-containing copper alloy sheet or ingot for producing strip with excellent workability
CN110863120B (en) Copper alloy for lead frame and preparation method thereof
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
CN110885937B (en) Cu-Ti-Ge-Ni-X copper alloy material and preparation method thereof
JPS6358907B2 (en)
JPH1136055A (en) Production of copper alloy material for electronic equipment
JP2007136467A (en) Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP3490853B2 (en) High-strength, high-conductivity, high-chromium-containing copper alloy material and method for producing the same
JPS63190151A (en) Copper alloy material for lead frame
JP3222550B2 (en) Manufacturing method of high strength and high conductivity copper alloy
JP3942505B2 (en) Titanium copper alloy material and manufacturing method thereof
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
JPH0356295B2 (en)
JP3407527B2 (en) Copper alloy materials for electronic equipment
KR100573781B1 (en) Flux for the Melting Treatment Method of Copper and Copper Alloy
JP2869859B2 (en) High strength conductive Cr-containing copper alloy and method for producing the same
JP2991319B2 (en) High strength and high conductivity copper alloy and manufacturing method (2)
KR920006826B1 (en) Cupper alloy & its making process
JPH0375346A (en) Production of high strength and high conductivity type metallic sheet for lead frame