JPS6318940B2 - - Google Patents

Info

Publication number
JPS6318940B2
JPS6318940B2 JP18085280A JP18085280A JPS6318940B2 JP S6318940 B2 JPS6318940 B2 JP S6318940B2 JP 18085280 A JP18085280 A JP 18085280A JP 18085280 A JP18085280 A JP 18085280A JP S6318940 B2 JPS6318940 B2 JP S6318940B2
Authority
JP
Japan
Prior art keywords
group
compound
reaction
substituent
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18085280A
Other languages
Japanese (ja)
Other versions
JPS57102858A (en
Inventor
Setsuo Fujii
Toshihiro Hamakawa
Kazuo Ogawa
Yoshuki Muranaka
Sadao Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Pharmaceutical Co Ltd
Original Assignee
Taiho Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Pharmaceutical Co Ltd filed Critical Taiho Pharmaceutical Co Ltd
Priority to JP55180852A priority Critical patent/JPS57102858A/en
Priority to US06/225,979 priority patent/US4411911A/en
Priority to GB8101888A priority patent/GB2068371B/en
Priority to AU66677/81A priority patent/AU527933B2/en
Priority to CA000369549A priority patent/CA1167046A/en
Priority to IT8167106A priority patent/IT1210604B/en
Priority to KR1019810000273A priority patent/KR840000419B1/en
Priority to FR8101712A priority patent/FR2475041A1/en
Priority to CH599/81A priority patent/CH655098A5/en
Priority to DE19813103144 priority patent/DE3103144A1/en
Priority to ES499527A priority patent/ES8201964A1/en
Priority to NLAANVRAGE8100494,A priority patent/NL185343C/en
Publication of JPS57102858A publication Critical patent/JPS57102858A/en
Priority to US06/492,873 priority patent/US4489091A/en
Priority to KR1019830005681A priority patent/KR840001439B1/en
Priority to KR1019830005680A priority patent/KR840001438B1/en
Publication of JPS6318940B2 publication Critical patent/JPS6318940B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規なスルホネート誘導体及びその製
造方法に関する。本発明に係るスルホネート誘導
体は一般式 R1SO3CH2CO(CH2nR2 () 〔式中、R1は置換基を有し若しくは有しない
フエニル基(置換基としては低級アルキル基、又
は低級アルコキシ基)、R2はハロゲン原子、ヒド
ロキシ基、低級アルコキシ基、低級アルコキシカ
ルボニル基、アシルオキシ基又はカルボベンゾキ
シアミノ基、mは3〜5の整数を示す〕で表わさ
れる。 上記一般式()で表わされる化合物のR1
R2におけるフエニル基の置換基である低級アル
キル基としては、炭素数1〜5のアルキル基、例
えばメチル、エチル、プロピル、ブチル、ペンチ
ル等を、R1の置換基の低級アルコキシ基として
は、炭素数1〜5のアルコキシ基、例えば、メト
キシ、エトキシ、プロポキシ、ブトキシ、ペント
キシ等を、ハロゲン原子としては弗素、塩素、臭
素、沃素を挙げることができる。R2における低
級アルコキシカルボニル基としては炭素数2〜6
のアルコキシカルボニル基、例えばメトキシカル
ボニル、エトキシカルボニル、ブトキシカルボニ
ル、ペンチルオキシカルボニル等を、アシルオキ
シ基としては、炭素数2〜6の低級アシルオキシ
基、例えばアセチルオキシ、プロパノイルオキ
シ、ブチリルオキシ、バレリルオキシ等を挙げる
ことができる。 本発明の上記化合物は新規化合物であつて、エ
ステラーゼ阻害作用およびキモトリプシン阻害作
用を有しており、抗脂血症剤、抗炎症剤および免
疫調節剤として有用な化合物である。 本発明の一般式()で示される化合物は例え
ば次に示す方法、即ち一般式 N2CHCO(CH2nR2 () 〔式中、m及びR2は前記に同じ〕で示される
化合物と一般式 R1SO3H・YH2O () 〔式中、R1は前記と同一、Yは0〜2の整数
を示す〕で表わされるスルホン酸化合物を反応さ
せ、所望により、酸触媒の存在下加水分解するこ
とにより製造される。 本発明における上記の反応は通常溶媒中で行わ
れ、溶媒としては反応に関与しないものである限
り特に限定されず、一般にジメチルエーテル、ジ
エチルエーテル、テトラハイドロフラン、ジオキ
サン等のエーテル類、アセトニトリル、クロロホ
ルム、ジクロルメタン等の非プロトン性溶媒、石
油エーテル、リグロイン等が好適に用いられる。
化合物()とスルホン酸化合物()の使用割
合は適宜選択すれば良いが、一般に化合物()
に対しスルホン酸化合物()を等モル以上使用
するのが有利である。又反応温度は一般に約−10
〜60℃で、好ましくは約0℃〜室温程度において
有利に進行する。原料として用いられる化合物
()は公知化合物又は一部新規化合物であるが
酸塩化物()と、ジアゾメタンから次のような
公知の反応を経て製造することができる。 〔式中、R2及びmは前記と同一〕 酸塩化物()とジアゾメタンとの反応は通常
溶媒中において行われる。溶媒としては化合物
()と化合物()の反応に使用できる前記溶
媒を用いることができる。酸塩化物()とジア
ゾメタンとの使用割合は一般に酸塩化物()に
対してジアゾメタンを約2倍モル以上使用するの
が有利である。又反応温度は約−10℃〜室温程度
において有利に進行する。以上の反応により化合
物()が生成し、これはクロマトグラフイー、
再結晶等の通常の分離手段により単離可能である
が、多くの場合は単離せずに次の反応に用いる事
ができる。 このようにして製造した、スルホネート誘導体
のうちR2がアシルオキシ基の場合、必要に応じ
さらに酸触媒等の存在下に加水分解することによ
り、R2がヒドロキシ基の化合物を合成すること
ができる。上記反応は通常溶媒中で行われ、溶媒
としては反応に関与しないものである限り特に限
定されないが、一般に、メタノール、エタノール
等の含水アルコール類が好適に用いられる。加水
分解に用いる酸としては、塩酸、硫酸、硝酸、酢
酸、臭化水素酸又は一般的な脱アシル化剤となる
ような酸であれば使用できる。反応温度は一般に
−10〜50℃、好ましくは約0℃〜室温程度におい
て有利に進行する。 又一般式()で示される本発明化合物は下記
に示すような方法においても製造が可能である。 (式中、R1、R2、mは前記に同じ、但し、R2
がヒドロキシル基は除く) 上記反応におけるケトアルコール()とスル
ホニルクロライド()との反応は通常溶媒中脱
塩化水素剤を用いて行われる。溶媒としては反応
に関与しないものである限り特に限定されない
が、クロロホルム、ジクロルメタン、ジクロルエ
タン等が用いられる。脱塩化水素剤としては例え
ば、ピリジン、トリエチルアミン、金属アルコラ
ート、DBU〔1,8−ジアザビシクロ(5,4,
0)−7−ウンデセン〕等の塩基を使用すること
ができる。ケトアルコール()とスルホニルク
ロライド()の使用割合は等モル量が好まし
く、反応温度は−10〜50℃、好ましくは約0℃〜
室温で行われる。 上記の方法により新規化合物()が生成し、
これは通常の分離手段、例えばカラムクロマトグ
ラフイー、再結晶、減圧蒸留等により単離可能で
ある。 次に本発明を具体的に説明する為、参考例及び
実施例を、又ジアゾメチルケトンの代表的なもの
を表1に、本発明化合物の物理的性質を表2にそ
れぞれ示す。 参考例 N−メチル−N−ニトロソウレア10gより常法
により100mlのジアゾメタンエーテル溶液(ジア
ゾメタンとして2.8g含有)を調製する。氷冷下、
ジアゾメタンエーテル溶液にγ−クロル−n−ブ
チロイルクロライド1.5gを滴下し、滴下後30分
間撹拌の後、反応液中の過剰なジアゾメタンを室
温下、窒素気流を通じて除く。エーテル溶液を減
圧下蒸留し、淡黄色油状のγ−クロル−n−プロ
ピル−ジアゾメチルケトン(化合物A)を定量的
に得た。 MS(M+)146 H−NMR(CDCl3)δ(ppm) 5.25s(1H)、3.56t(2H)、2.50t(2H)、2.28〜
1.95m(2H) また同様の操作により表1中の化合物B〜Fを
合成した。 実施例 1 1−ジアゾー5−クロル−2−n−ペンタノン
1.5gをエーテル50mlに溶解し、室温下ベンゼン
スルホン酸モノハイドレート2.1gを徐々に加え
窒素の発生がなくなるまで撹拌する。反応後、エ
ーテル層は水洗し、無水硫酸ナトリウムで乾燥し
たのち、減圧下で蒸留し、得られた油状物を氷中
で撹拌し結晶化し、結晶を取してエタノール−
水より再結晶し、mp:39〜40℃の2−オキソ−
5−クロル−n−ペンチル−ベンゼンスルホネー
ト(化合物1)を2.3g得た(収率81.0%)。 MS(M+)276 H−NMR(CDCl3)δ(ppm) 8.00〜7.40m(5H)、4.49s(2H)、3.47t(2H)、
2.62t(2H)、2.15〜1.80m(2H) 元素分析(C11H13ClSO4として) C N 計算値(%) 47.74 4.74 実測値(%) 47.68 5.03 実施例 2 実施例1と同様の操作により化合物2〜8を含
成した。 実施例 3 1−ジアゾ−5−メトキシカルボニル−2−n
−ペンタノン1.7gをテトラハイドロフラン50c.c.
に溶解し、室温下、p−エトキシベンゼンスルホ
ン酸2.5gを徐々に加え、以下実施例1と同様に
して得られた油状物をエタノール−水で再結晶
し、mp67〜68℃の2−オキソ−5−メトキシカ
ルボニル−n−ペンチル−p−エトキシベンゼン
スルホネート(化合物9)を2.2g得た(収率
64.0%)。 MS(M+)344 H−NMR(CDCl3)δ(ppm) 7.85d(2H)、7.00d(2H)、4.45s(2H)、4.08q
(2H)、3.64s(3H)、2.55t(2H)、2.30t(2H)、
2.05〜1.65m(2H)、1.44t(3H) 元素分析(C15H20SO7として) C H 計算値(%) 52.33 5.86 実測値(%) 52.35 5.85 実施例 4 実施例3と同様の操作により化合物10,11,13
〜15を合成した。 実施例 5 2−オキソ−5−アセトキシ−2−n−ペンチ
ル−2,4,6−トリメチルベンゼンスルホネー
ト(化合物15)3.4gをエタノール20mlに溶解し
氷冷下2N−HCl30mlを加え、室温下3時間撹拌
した。反応後減圧下でエタノールを留去し、得ら
れた残液はエーテル50mlで抽出し、エーテル層は
無水硫酸ナトリウムで乾燥したのち、減圧下で蒸
留し、得られた油状物はシリカゲルカラムクロマ
トグラフイー(展開溶媒はクロロホルム)にて分
離精製を行い無色透明の油状物2−オキソ−5−
ハイドロキシ−2−n−ペンチル−2,4,6−
トリメチルベンゼンスルホネート(化合物12)を
0.9g得た(収率30.2%)。 MS(M+)300 H−NMR(CDCl3)δ(ppm) 6.98s(2H)、4.05〜3.70m(2H)、3.90s(2H)、
2.76s(1H)、2.56s(6H)、2.53t(2H)、2.05〜
1.70m(2H) 表1及び表2中MSはマススペクトルを示し、
H−NMRは重水素置換クロロホルム中で測定し
たδ(ppm)値を示す。
The present invention relates to a novel sulfonate derivative and a method for producing the same. The sulfonate derivative according to the present invention has the general formula R 1 SO 3 CH 2 CO (CH 2 ) n R 2 () [wherein R 1 is a phenyl group with or without a substituent (the substituent is a lower alkyl group) , or a lower alkoxy group), R 2 is a halogen atom, a hydroxy group, a lower alkoxy group, a lower alkoxycarbonyl group, an acyloxy group, or a carbobenzoxyamino group, and m is an integer of 3 to 5. R 1 of the compound represented by the above general formula (),
The lower alkyl group as a substituent for the phenyl group in R 2 is an alkyl group having 1 to 5 carbon atoms, such as methyl, ethyl, propyl, butyl, pentyl, etc., and the lower alkoxy group as a substituent for R 1 is, Examples of the alkoxy group having 1 to 5 carbon atoms include methoxy, ethoxy, propoxy, butoxy, and pentoxy, and examples of the halogen atom include fluorine, chlorine, bromine, and iodine. The lower alkoxycarbonyl group in R 2 has 2 to 6 carbon atoms.
Examples of the acyloxy group include lower acyloxy groups having 2 to 6 carbon atoms, such as acetyloxy, propanoyloxy, butyryloxy, valeryloxy, etc. be able to. The above-mentioned compound of the present invention is a new compound, which has esterase inhibitory activity and chymotrypsin inhibitory activity, and is a compound useful as an antilipidemic agent, an antiinflammatory agent, and an immunomodulator. The compound represented by the general formula () of the present invention can be prepared, for example, by the following method, that is, the compound represented by the general formula N 2 CHCO (CH 2 ) n R 2 () [wherein m and R 2 are the same as above] and a sulfonic acid compound represented by the general formula R 1 SO 3 H・YH 2 O () [wherein R 1 is the same as above and Y represents an integer of 0 to 2], and if desired, an acid catalyst is added. It is produced by hydrolysis in the presence of. The above reaction in the present invention is usually carried out in a solvent, and the solvent is not particularly limited as long as it does not participate in the reaction, and generally ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, dioxane, acetonitrile, chloroform, Aprotic solvents such as dichloromethane, petroleum ether, ligroin, etc. are preferably used.
The ratio of compound () and sulfonic acid compound () to be used can be selected appropriately, but in general, compound ()
It is advantageous to use the sulfonic acid compound (2) in an amount equal to or more than the same molar amount. Also, the reaction temperature is generally about -10
The process advantageously proceeds at a temperature of 60°C to 60°C, preferably about 0°C to room temperature. The compound () used as a raw material is a known compound or a partially new compound, and can be produced from an acid chloride () and diazomethane through the following known reaction. [In the formula, R 2 and m are the same as above] The reaction between the acid chloride () and diazomethane is usually carried out in a solvent. As the solvent, the above-mentioned solvents that can be used in the reaction of compound () and compound () can be used. Regarding the ratio of the acid chloride (2) to diazomethane, it is generally advantageous to use at least about twice the molar amount of diazomethane to the acid chloride (2). Further, the reaction proceeds advantageously at a temperature of about -10°C to room temperature. The above reaction produces the compound (), which can be used for chromatography,
Although it can be isolated by conventional separation means such as recrystallization, in many cases it can be used in the next reaction without isolation. When R 2 is an acyloxy group among the sulfonate derivatives produced in this way, a compound in which R 2 is a hydroxy group can be synthesized by further hydrolysis in the presence of an acid catalyst or the like, if necessary. The above reaction is usually carried out in a solvent, and the solvent is not particularly limited as long as it does not participate in the reaction, but hydrous alcohols such as methanol and ethanol are generally preferably used. The acid used for hydrolysis may be hydrochloric acid, sulfuric acid, nitric acid, acetic acid, hydrobromic acid, or any acid that serves as a general deacylating agent. The reaction temperature is generally -10 to 50°C, preferably about 0°C to room temperature. The compound of the present invention represented by the general formula () can also be produced by the method shown below. (In the formula, R 1 , R 2 , m are the same as above, but R 2
(excluding hydroxyl groups) The reaction between the keto alcohol () and the sulfonyl chloride () in the above reaction is usually carried out in a solvent using a dehydrochlorination agent. The solvent is not particularly limited as long as it does not participate in the reaction, but chloroform, dichloromethane, dichloroethane, etc. can be used. Examples of dehydrochlorination agents include pyridine, triethylamine, metal alcoholates, DBU [1,8-diazabicyclo(5,4,
0)-7-undecene] and the like can be used. The ratio of keto alcohol () and sulfonyl chloride () to be used is preferably equimolar, and the reaction temperature is -10 to 50°C, preferably about 0°C to
Performed at room temperature. A new compound () is generated by the above method,
It can be isolated by conventional separation means such as column chromatography, recrystallization, vacuum distillation, etc. Next, in order to specifically explain the present invention, Reference Examples and Examples are shown, representative diazomethyl ketones are shown in Table 1, and physical properties of the compounds of the present invention are shown in Table 2. Reference Example 100 ml of a diazomethane ether solution (containing 2.8 g of diazomethane) is prepared from 10 g of N-methyl-N-nitrosourea by a conventional method. below freezing,
1.5 g of γ-chloro-n-butyroyl chloride was added dropwise to the diazomethane ether solution, and after stirring for 30 minutes, excess diazomethane in the reaction solution was removed at room temperature through a nitrogen stream. The ether solution was distilled under reduced pressure to quantitatively obtain pale yellow oily γ-chloro-n-propyl-diazomethylketone (Compound A). MS (M + ) 146 H-NMR (CDCl 3 ) δ (ppm) 5.25s (1H), 3.56t (2H), 2.50t (2H), 2.28~
1.95m (2H) Compounds B to F in Table 1 were also synthesized by the same operation. Example 1 1-diazo5-chloro-2-n-pentanone
Dissolve 1.5 g in 50 ml of ether, gradually add 2.1 g of benzenesulfonic acid monohydrate at room temperature, and stir until no nitrogen is generated. After the reaction, the ether layer was washed with water, dried over anhydrous sodium sulfate, and then distilled under reduced pressure. The resulting oil was stirred in ice to crystallize, and the crystals were collected and dissolved in ethanol.
Recrystallized from water, mp: 39-40℃ 2-oxo-
2.3g of 5-chloro-n-pentyl-benzenesulfonate (compound 1) was obtained (yield 81.0%). MS (M + ) 276 H-NMR (CDCl 3 ) δ (ppm) 8.00-7.40m (5H), 4.49s (2H), 3.47t (2H),
2.62t (2H), 2.15-1.80m (2H) Elemental analysis (as C 11 H 13 ClSO 4 ) CN Calculated value (%) 47.74 4.74 Actual value (%) 47.68 5.03 Example 2 Same operation as Example 1 Compounds 2 to 8 were contained. Example 3 1-diazo-5-methoxycarbonyl-2-n
- 1.7 g of pentanone in 50 c.c. of tetrahydrofuran.
2.5 g of p-ethoxybenzenesulfonic acid was gradually added at room temperature, and the obtained oil was recrystallized from ethanol-water in the same manner as in Example 1. 2.2g of -5-methoxycarbonyl-n-pentyl-p-ethoxybenzenesulfonate (Compound 9) was obtained (yield
64.0%). MS (M + ) 344 H-NMR (CDCl 3 ) δ (ppm) 7.85d (2H), 7.00d (2H), 4.45s (2H), 4.08q
(2H), 3.64s (3H), 2.55t (2H), 2.30t (2H),
2.05-1.65m (2H), 1.44t (3H) Elemental analysis (as C 15 H 20 SO 7 ) C H Calculated value (%) 52.33 5.86 Actual value (%) 52.35 5.85 Example 4 Same operation as Example 3 Compounds 10, 11, 13
~15 were synthesized. Example 5 3.4 g of 2-oxo-5-acetoxy-2-n-pentyl-2,4,6-trimethylbenzenesulfonate (compound 15) was dissolved in 20 ml of ethanol, 30 ml of 2N-HCl was added under ice cooling, and the solution was dissolved at room temperature for 3.4 g. Stir for hours. After the reaction, ethanol was distilled off under reduced pressure, the resulting residual liquid was extracted with 50 ml of ether, the ether layer was dried over anhydrous sodium sulfate, and then distilled under reduced pressure, and the resulting oil was subjected to silica gel column chromatography. Separation and purification using E (developing solvent: chloroform) yielded a colorless and transparent oil, 2-oxo-5-
Hydroxy-2-n-pentyl-2,4,6-
Trimethylbenzenesulfonate (compound 12)
0.9g was obtained (yield 30.2%). MS (M + ) 300 H-NMR (CDCl 3 ) δ (ppm) 6.98s (2H), 4.05-3.70m (2H), 3.90s (2H),
2.76s (1H), 2.56s (6H), 2.53t (2H), 2.05~
1.70m (2H) MS in Tables 1 and 2 indicates mass spectra,
H-NMR indicates the δ (ppm) value measured in deuterium-substituted chloroform.

【表】【table】

【表】【table】

【表】 次に本発明化合物()のエステラーゼ阻害作
用、キモトリプシン阻害作用及び抗高脂血症効果
の試験結果について説明する。 1 エステラーゼ阻害作用 0.1モルのトリス塩酸緩衝液(PH8.0)の一定量
に基質としてメチルブチレート10μモル50%エタ
ノール溶液を加え、さらにこれに表2の本発明化
合物の50%エタノール溶液を加えた後、ただちに
酸素液として、精製したラツト肝臓マイクロゾー
ム画分エステラーゼ溶液(37℃、1時間にて9μ
モルのメチルブチレートを水解するように調整す
る)を加え、37℃にて60分間反応を行つた。 反応終了後メチルブチレートのアルカリ性ヒド
ロキシルアミンによるヒドロキサム酸誘導体に第
二鉄塩を加えて、生ずる赤色を比色(波長
540nm)し、残存するメチルブチレート含量を定
量した。本発明化合物の各種濃度(3点以上)に
おけるエステラーゼ阻害率を縦軸にプロツトし、
その濃度の対数を横軸にプロツトして得られた直
線より50%阻害濃度(IC50)を求めた。 2 キモトリプシン阻害作用 0.1モルのトリス塩酸緩衝液(PH8.0)の一定量
に酵素液としてキモトリプシンの0.1ユニツトを
加え、さらに表2の本発明化合物の50%エタノー
ル溶液を本発明化合物が1×10-4モルの濃度とな
るように加えた後37℃にて20分間反応を行つた。 反応終了後直ちに基質としてN−アセチル−L
−チロシンエチルエステル(ATEE)を10μモル
を加えて、37℃にて30分間反応を行つた。 反応終了後ATEEの残存量をエステラーゼ阻害
活性測定法と同様のヒドロキサム酸法にて定量し
た。キモトリプシン阻害率(%)は下式により算
出した。 阻害率(%)=A−B/A×100 A:本発明化合物の無添加反応系のエステル水
解量 B:本発明化合物の添加反応系のエステル水解
量 3 抗高脂血症効果試験 7週令、体重200〜220gのウイスター系の雄性
ラツトを一群5匹として試験に用いた。 本発明化合物100mgを10mlのオリーブ油に溶解
して試験に用いた。本発明化合物を含むオリーブ
油を10ml/Kg相当にてラツトにゾンデを用いて経
口投与し、2時間又は8時間経過後、エーテル麻
酔下にて下行大静脈よりヘパリンを含む注射筒に
て全血6mlを採取する。得られた血液を5℃、
3000r.p.mで遠心分離し、血漿を得る。2時間経
過後の血漿はトリグリセライド含量を、和光純薬
製のトリグリセライド測定キツト(トリグリセラ
イド−Bテストワコー)を用いて測定した。対照
群にはオリーブ油のみを同様に投与し、正常群に
は何らの処置も行わず、両群とも本発明化合物処
置群と同様、血漿中のトリグリセライド含量を測
定した。 本発明化合物の高脂血症抑制率は次式により算
出した。 抑制率(%)=A−C/A−B×100 A:対照群トリグリセライド含量 B:正常群トリグリセライド含量 C:本発明化合物処置群トリグリセライド含量 以上の薬理試験結果を表3に示す。 表3より明らかなように本発明化合物は優れた
エステラーゼ阻害作用、キモトリプシン阻害作用
および抗高脂血症作用を有し、抗高脂血症剤、抗
炎症剤、免疫調節剤として有用である。
[Table] Next, the test results of the esterase inhibitory effect, chymotrypsin inhibitory effect, and antihyperlipidemic effect of the compound () of the present invention will be explained. 1. Esterase inhibitory effect Add 10 μmol of 50% ethanol solution of methylbutyrate as a substrate to a fixed amount of 0.1M Tris-HCl buffer (PH8.0), and then add a 50% ethanol solution of the compounds of the present invention shown in Table 2 to this. After that, immediately add purified rat liver microsomal fraction esterase solution (9 μl at 37°C for 1 hour) as an oxygen solution.
(adjusted to hydrolyze mol of methyl butyrate) was added, and the reaction was carried out at 37°C for 60 minutes. After the reaction is complete, ferric salt is added to the hydroxamic acid derivative of methylbutyrate using alkaline hydroxylamine, and the resulting red color is measured by colorimetry (wavelength
540 nm) and the remaining methylbutyrate content was quantified. The esterase inhibition rate at various concentrations (3 or more points) of the compound of the present invention is plotted on the vertical axis,
The 50% inhibitory concentration (IC 50 ) was determined from a straight line obtained by plotting the logarithm of the concentration on the horizontal axis. 2 Chymotrypsin inhibitory effect Add 0.1 unit of chymotrypsin as an enzyme solution to a fixed amount of 0.1M Tris-HCl buffer (PH8.0), and add 50% ethanol solution of the present compound shown in Table 2 to a fixed amount of 0.1M Tris-HCl buffer (PH8.0). After adding it to a concentration of -4 mol, the reaction was carried out at 37°C for 20 minutes. Immediately after the reaction, N-acetyl-L was added as a substrate.
-10 μmol of tyrosine ethyl ester (ATEE) was added, and the reaction was carried out at 37° C. for 30 minutes. After the reaction was completed, the amount of ATEE remaining was determined by the hydroxamic acid method, which is the same method used to measure esterase inhibitory activity. Chymotrypsin inhibition rate (%) was calculated using the following formula. Inhibition rate (%) = AB/A x 100 A: Amount of ester hydrolysis in reaction system without addition of the compound of the present invention B: Amount of ester hydrolysis in reaction system with addition of the compound of the present invention 3 Antihyperlipidemic effect test 7 weeks Male Wistar rats, aged 200 to 220 g and weighing 200 to 220 g, were used in the test in groups of five. 100 mg of the compound of the present invention was dissolved in 10 ml of olive oil and used in the test. Olive oil containing the compound of the present invention was orally administered to rats at the equivalent of 10 ml/kg using a sonde, and after 2 or 8 hours, 6 ml of whole blood was injected into the descending vena cava under ether anesthesia using a syringe containing heparin. Collect. The obtained blood was heated to 5°C.
Centrifuge at 3000 rpm to obtain plasma. After 2 hours, the triglyceride content of the plasma was measured using a triglyceride measurement kit (Triglyceride-B Test Wako) manufactured by Wako Pure Chemical Industries. Olive oil alone was similarly administered to the control group, and no treatment was administered to the normal group, and the triglyceride content in plasma of both groups was measured in the same manner as the group treated with the compound of the present invention. The hyperlipidemia suppression rate of the compound of the present invention was calculated using the following formula. Inhibition rate (%) = AC/A-B x 100 A: Control group triglyceride content B: Normal group triglyceride content C: Triglyceride content of the compound-treated group of the present invention The above pharmacological test results are shown in Table 3. As is clear from Table 3, the compounds of the present invention have excellent esterase inhibitory effects, chymotrypsin inhibitory effects, and antihyperlipidemic effects, and are useful as antihyperlipidemic agents, anti-inflammatory agents, and immunomodulators.

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式 R1SO3CH2CO(CH2nR2 〔式中、R1は置換基を有し若しくは有しない
フエニル基(置換基としては低級アルキル基又は
低級アルコキシ基)、R2はハロゲン原子、ヒドロ
キシ基、低級アルコキシ基、低級アルコキシカル
ボニル基、アシルオキシ基又はカルボベンゾキシ
アミノ基、mは3〜5の整数を示す〕で表わされ
るスルホネート誘導体。 2 一般式 N2CHCO(CH2nR2′ (式中、R2′はハロゲン原子、低級アルコキシ
基、低級アルコキシカルボニル基、アシルオキシ
基又はカルボベンゾキシアミノ基、mは3〜5の
整数を示す)で表わされる化合物と一般式 R1SO3H・YH2O 〔式中、R1は置換基を有し若しくは有しない
フエニル基(置換基としては、低級アルキル基又
は低級アルコキシ基)、Yは0〜2の整数を示す〕
で表わされる化合物とを反応させ、所望により、
酸触媒の存在下加水分解することを特徴とする一
般式 R1SO3CH2CO(CH2nR2 〔式中、R1、mは前記と同一の意味を有し、
R2はハロゲン原子、ヒドロキシ基、低級アルコ
キシ基、低級アルコキシカルボニル基、アシルオ
キシ基又はカルボベンゾキシアミノ基を示す〕で
表わされるスルホネート誘導体の製造方法。 3 一般式 R1SO3CH2CO(CH2nR2″ 〔式中、R1は置換基を有し若しくは有しない
フエニル基(置換基としては、低級アルキル基又
は低級アルコキシ基)、R2″はアシルオキシ基、
mは3〜5の整数を示す〕で表わされる化合物を
酸触媒の存在下加水分解することを特徴とする一
般式 R1SO3CH2CO(CH2nOH 〔式中、R1、mは前記と同一の意味を有する〕
で表わされるスルホネート誘導体の製造方法。
[Claims] 1 General formula R 1 SO 3 CH 2 CO(CH 2 ) n R 2 [In the formula, R 1 is a phenyl group with or without a substituent (the substituent is a lower alkyl group or a lower alkoxy group), R2 is a halogen atom, a hydroxy group, a lower alkoxy group, a lower alkoxycarbonyl group, an acyloxy group, or a carbobenzoxyamino group, and m is an integer of 3 to 5. 2 General formula N 2 CHCO (CH 2 ) n R 2 ′ (wherein, R 2 ′ is a halogen atom, a lower alkoxy group, a lower alkoxycarbonyl group, an acyloxy group, or a carbobenzoxyamino group, and m is an integer of 3 to 5. ) and the compound represented by the general formula R 1 SO 3 H・YH 2 O [wherein R 1 is a phenyl group with or without a substituent (the substituent is a lower alkyl group or a lower alkoxy group) , Y represents an integer from 0 to 2]
If desired, react with a compound represented by
General formula R 1 SO 3 CH 2 CO(CH 2 ) n R 2 [wherein R 1 and m have the same meanings as above,
R2 represents a halogen atom, a hydroxy group, a lower alkoxy group, a lower alkoxycarbonyl group, an acyloxy group, or a carbobenzoxyamino group. 3 General formula R 1 SO 3 CH 2 CO(CH 2 ) n R 2 ″ [In the formula, R 1 is a phenyl group with or without a substituent (as a substituent, a lower alkyl group or a lower alkoxy group), R 2 ″ is an acyloxy group,
m is an integer of 3 to 5 ] is hydrolyzed in the presence of an acid catalyst . m has the same meaning as above]
A method for producing a sulfonate derivative represented by
JP55180852A 1980-01-31 1980-12-19 Sulfonate derivative Granted JPS57102858A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP55180852A JPS57102858A (en) 1980-12-19 1980-12-19 Sulfonate derivative
US06/225,979 US4411911A (en) 1980-01-31 1981-01-19 Method of treating hyperlipidemia and inflammation with sulfonate derivatives
GB8101888A GB2068371B (en) 1980-01-31 1981-01-22 Sulphonate derivatives
AU66677/81A AU527933B2 (en) 1980-01-31 1981-01-28 Sulphonate derivatives
CA000369549A CA1167046A (en) 1980-01-31 1981-01-28 Sulfonate derivatives
IT8167106A IT1210604B (en) 1980-01-31 1981-01-28 2-Oxo-alkyl sulphonate ester(s)
FR8101712A FR2475041A1 (en) 1980-01-31 1981-01-29 SULFONIC ESTERS OF KETO-ALCOHOLS, THEIR PREPARATION AND DRUG CONTAINING THESE SUBSTANCES
KR1019810000273A KR840000419B1 (en) 1980-07-11 1981-01-29 Process for the preparation of sulfonate derivatives
CH599/81A CH655098A5 (en) 1980-01-31 1981-01-29 SULPHONATE DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND PHARMACEUTICAL AGENTS CONTAINING THE SAME.
DE19813103144 DE3103144A1 (en) 1980-01-31 1981-01-30 NEW SULPHONATES, METHOD FOR THE PRODUCTION THEREOF AND THE MEDICINAL PRODUCTS CONTAINING THEM
ES499527A ES8201964A1 (en) 1980-01-31 1981-01-30 Method of treating hyperlipidemia and inflammation with sulfonate derivatives
NLAANVRAGE8100494,A NL185343C (en) 1980-01-31 1981-02-02 FORMED PHARMACEUTICAL PREPARATIONS WITH ANTILIPEMIC ANTI-INFLAMMATORY AND IMMUNITY-CONTROLLING EFFECTS AND SUITABLE SULFONATE COMPOUNDS AND A METHOD OF PREPARATION.
US06/492,873 US4489091A (en) 1980-01-31 1983-05-09 Antilipemic and anti-inflammatory compositions containing sulfonate derivatives
KR1019830005681A KR840001439B1 (en) 1980-07-11 1983-11-30 Process for the preparation of sulfonate
KR1019830005680A KR840001438B1 (en) 1980-07-11 1983-11-30 Process for the preparation of sulfonate derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55180852A JPS57102858A (en) 1980-12-19 1980-12-19 Sulfonate derivative

Publications (2)

Publication Number Publication Date
JPS57102858A JPS57102858A (en) 1982-06-26
JPS6318940B2 true JPS6318940B2 (en) 1988-04-20

Family

ID=16090481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55180852A Granted JPS57102858A (en) 1980-01-31 1980-12-19 Sulfonate derivative

Country Status (1)

Country Link
JP (1) JPS57102858A (en)

Also Published As

Publication number Publication date
JPS57102858A (en) 1982-06-26

Similar Documents

Publication Publication Date Title
JP2001518459A (en) Methods and intermediates useful for making antifolates
JP2009256327A (en) Method for producing cycloalkanedicarboxylic acid monoester
JPS6318940B2 (en)
JPS6253511B2 (en)
JP3193597B2 (en) Method for producing glycine derivative
JPH0336831B2 (en)
JPS6412269B2 (en)
JPH0113706B2 (en)
JP3212104B2 (en) Novel thioacetal compound and method for producing the same
JPS6412268B2 (en)
JPH0113466B2 (en)
JPS6059905B2 (en) Method for producing 2-alkoxyiminobutyric acid derivatives
JPH0733769A (en) Pyrazolopyridine derivative and its production
JP3324126B2 (en) Method for producing α-bromoesters
JPS6346749B2 (en)
JPS5995260A (en) Sulfonic acid ester derivative and preparation thereof
JPH0588693B2 (en)
SU348000A1 (en) METHOD FOR OBTAINING COMPLEX ETHERS OF HETEROCYCLIC CARBONIC ACIDS
JPH0113465B2 (en)
JPS6059904B2 (en) Sulfonate derivative and method for producing the same
JPWO2006054549A1 (en) Production method of fluorine-containing 2-chloroacrylate
JPH0139422B2 (en)
JPS6054307B2 (en) Imidazole derivative
JPS61158962A (en) Production of 1,4-dihydropyridine derivative
JPH0220616B2 (en)