JPH0113466B2 - - Google Patents

Info

Publication number
JPH0113466B2
JPH0113466B2 JP12097681A JP12097681A JPH0113466B2 JP H0113466 B2 JPH0113466 B2 JP H0113466B2 JP 12097681 A JP12097681 A JP 12097681A JP 12097681 A JP12097681 A JP 12097681A JP H0113466 B2 JPH0113466 B2 JP H0113466B2
Authority
JP
Japan
Prior art keywords
reaction
compound
present
cyclohexyl
chymotrypsin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12097681A
Other languages
Japanese (ja)
Other versions
JPS5821660A (en
Inventor
Setsuo Fujii
Toshihiro Hamakawa
Kazuo Ogawa
Tadashi Terada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Pharmaceutical Co Ltd
Original Assignee
Taiho Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Pharmaceutical Co Ltd filed Critical Taiho Pharmaceutical Co Ltd
Priority to JP12097681A priority Critical patent/JPS5821660A/en
Publication of JPS5821660A publication Critical patent/JPS5821660A/en
Publication of JPH0113466B2 publication Critical patent/JPH0113466B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規なナフタレンスルホネート誘導体
及びその塩に関する。 本発明のナフタレンスルホネート誘導体は一般
(式中Rはアルキル基、シクロヘキシル基又はシ
クロヘキシルアルキル基を示す。) で表わされる。 上記一般式()中Rで示されるアルキル基と
しては、炭素数1〜6の直鎖状もしくは分枝状ア
ルキル基、例えばメチル、エチル、プロピル、ペ
ンチル、ヘキシル、イソプロピル、イソブチル基
等を、シクロヘキシルアルキル基としては、シク
ロヘキシル基を置換基として有する炭素数1〜6
の直鎖状もしくは分枝状アルキル基例えば2−シ
クロヘキシルエチル、1−エチル−2−シクロヘ
キシルエチル基等を夫々例示できる。 本発明はまた上記一般式()で表わされるナ
フタレンスルホネート誘導体の薬理的に許容され
る酸付加塩をも包含するものである。該塩を形成
する酸は、上記誘導体のジメチルアミノ基と塩を
形成するものであれば特に限定されないが、例え
ば塩酸、硫酸等の鉱酸、メタンスルホン酸、トル
エンスルホン酸等の有機酸等を挙げることができ
る。之等酸を用いる塩形成反応は常法に従い行な
い得る。 本発明の上記一般式()で表わされる誘導体
及びその塩は、エステラーゼ阻害作用およびキモ
トリプシン阻害作用を有し、抗脂血症剤、抗炎症
剤、および免疫調節剤として有用である。 本発明の一般式()で示される化合物は、例
えば下記に示す方法により製造される。即ち式 で表わされるスルホニルクロライドと一般式 RCOCH2OH () (式中Rは前記に同じ。) で表わされるα−ヒドロキシケトンとを反応させ
ることにより製造される。 本発明における上記の反応は、通常溶媒中、脱
塩化水素剤である塩基の存在下で行なわれる。溶
媒としては反応に関与しない各種のものを用いる
ことができ、一般にクロロホルム、ジクロルメタ
ン、ジクロルエタン等のハロゲン化炭化水素類が
好適に用いられる。塩基としては、一般の脱塩化
水素剤、例えばピリジン、トリエチルアミン、金
属アルコラート、DBU〔1,8−ジアザビシクロ
(5,4,0)−7−ウンデセン〕等が用いられ
る。 スルホニルクロライド()とα−ヒドロキシ
ケトン()の使用割合は適宜選択すれば良い
が、一般に夫々等モル量用いるのが好ましい。
又、反応温度は一般に−10゜〜50℃、好ましくは
約0゜〜10℃の範囲とするのがよく、この温度にお
いて反応は有利に進行する。 原料として用いられるα−ヒドロキシケトン
()は、公知の方法、例えば次のような反応に
従い製造することができる。 RCOCH2X () CH3COOK ――――――→ RCOCH2OCOCH3 () NaOH ――――→ RCOCH2OH () (式中、Rは前記に同じ。XはF、Cl、I等のハ
ロゲン原子を示す。) 上記において化合物()と酢酸カリウムとの
反応は通常、溶媒中で行なわれる。溶媒として
は、反応に関与しないものである限り、特に限定
されないが、一般にメタノール、エタノール、プ
ロパノール等の低級アルコール、ジメチルホルム
アミド等が用いられる。化合物()に対する酢
酸カリウムの使用割合は、適宜に選択されるが、
通常等モルから1.2倍モル程度用いられるのが有
利である。また反応温度は約50℃〜溶媒の沸点程
度とするのが好適である。 上記の反応で得られる化合物()は単離して
もよいが、通常単離せずに次の反応に用いること
ができる。この反応は化合物()を水酸化ナト
リウム水溶液を用いて加水分解反応させるもので
あり、この加水分解反応により、目的とするα−
ヒドロキシケトン()が得られる。該反応にお
ける溶媒としては一般に含水エタノール、含水メ
タノール等の含水アルコール系溶媒が好適に用い
られる。反応温度は通常室温から溶媒の沸点程度
とされる。上記の反応により得られる化合物
()は、通常の分離手段により単離して本発明
原料として用いることができる。 前記方法により得られる本発明化合物は通常の
分離手段例えば、カラムクロマトグラフイー、再
結晶等により単離精製可能である。 次に本発明を具体的に説明する為参考例及び実
施例を挙げる。また原料化合物()の代表例を
表1に、本発明化合物の代表例を表2に示す。尚
表中MSはマススペクトル分析結果(M+)を、
H−NMRは重クロロホルム中で測定した核磁気
共鳴スペクトル分析結果(δ、ppm)を夫々示す
ものである。 参考例 1 シクロヘキシル−クロルメチルケトン(124゜〜
126℃/25mmHg)18gと酢酸カリウム14gとをエ
タノール100mlに溶解して6時間加熱撹拌した。
反応後不溶物を別し、液を減圧下で蒸留し、
得られた油状物をメタノール60ml及び1N−
NaOH水溶液40mlの混液に溶解して、室温下6
時間撹拌した。その後減圧下でメタノールを留去
し、水層をエーテル30mlで3回抽出後無水硫酸ナ
トリウムで乾燥した。乾燥後減圧下で溶媒を留去
し、得られた油状物を減圧蒸留して、沸点115゜〜
116℃/15mmHgのシクロヘキシル−ヒドロキシメ
チルケトン(化合物B)13gを得た(収率81.8
%)。 得られた化合物の物性を表1に示す。 参考例 2〜4 参考例1と同様の操作により下記表1に示す化
合物A、C及びDを夫々合成した。
The present invention relates to novel naphthalene sulfonate derivatives and salts thereof. The naphthalene sulfonate derivatives of the present invention have the general formula (In the formula, R represents an alkyl group, a cyclohexyl group, or a cyclohexylalkyl group.) The alkyl group represented by R in the above general formula () includes a linear or branched alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, pentyl, hexyl, isopropyl, isobutyl group, etc. The alkyl group has 1 to 6 carbon atoms and has a cyclohexyl group as a substituent.
Examples of linear or branched alkyl groups include 2-cyclohexylethyl, 1-ethyl-2-cyclohexylethyl, and the like. The present invention also includes pharmacologically acceptable acid addition salts of the naphthalene sulfonate derivatives represented by the above general formula (). The acid that forms the salt is not particularly limited as long as it forms a salt with the dimethylamino group of the above derivative, but examples include mineral acids such as hydrochloric acid and sulfuric acid, and organic acids such as methanesulfonic acid and toluenesulfonic acid. can be mentioned. Salt forming reactions using these acids can be carried out according to conventional methods. The derivatives represented by the above general formula () and salts thereof of the present invention have esterase inhibitory activity and chymotrypsin inhibitory activity, and are useful as antilipidemic agents, antiinflammatory agents, and immunomodulators. The compound represented by the general formula () of the present invention is produced, for example, by the method shown below. That is, the expression It is produced by reacting a sulfonyl chloride represented by the following formula with an α-hydroxyketone represented by the general formula RCOCH 2 OH (in which R is the same as above). The above reaction in the present invention is usually carried out in a solvent in the presence of a base, which is a dehydrochlorination agent. Various solvents that do not participate in the reaction can be used, and halogenated hydrocarbons such as chloroform, dichloromethane, and dichloroethane are generally preferably used. As the base, common dehydrochlorination agents such as pyridine, triethylamine, metal alcoholate, DBU [1,8-diazabicyclo(5,4,0)-7-undecene], etc. are used. The ratio of sulfonyl chloride () and α-hydroxyketone () to be used may be selected as appropriate, but it is generally preferable to use equimolar amounts of each.
The reaction temperature is generally -10° to 50°C, preferably about 0° to 10°C, and the reaction proceeds advantageously at this temperature. α-Hydroxyketone () used as a raw material can be produced according to a known method, for example, the following reaction. RCOCH 2 _ _ _ represents a halogen atom.) In the above, the reaction between compound () and potassium acetate is usually carried out in a solvent. The solvent is not particularly limited as long as it does not participate in the reaction, but lower alcohols such as methanol, ethanol, propanol, dimethylformamide, etc. are generally used. The ratio of potassium acetate to compound () is selected appropriately, but
It is usually advantageous to use equimolar to 1.2 times the molar amount. Further, the reaction temperature is preferably about 50° C. to the boiling point of the solvent. Although the compound () obtained in the above reaction may be isolated, it can usually be used in the next reaction without being isolated. In this reaction, the compound () is hydrolyzed using an aqueous sodium hydroxide solution, and this hydrolysis reaction produces the desired α-
Hydroxyketone () is obtained. As the solvent in this reaction, hydroalcoholic solvents such as hydrous ethanol and hydrous methanol are generally suitably used. The reaction temperature is usually from room temperature to about the boiling point of the solvent. The compound () obtained by the above reaction can be isolated by conventional separation means and used as a raw material of the present invention. The compound of the present invention obtained by the above method can be isolated and purified by conventional separation means such as column chromatography, recrystallization, etc. Next, reference examples and examples will be given to specifically explain the present invention. Further, representative examples of the raw material compounds () are shown in Table 1, and representative examples of the compounds of the present invention are shown in Table 2. In addition, MS in the table indicates the mass spectrum analysis results (M + ),
H-NMR indicates the results of nuclear magnetic resonance spectroscopy (δ, ppm) measured in deuterated chloroform. Reference example 1 Cyclohexyl-chloromethylketone (124°~
126° C./25 mmHg) and 14 g of potassium acetate were dissolved in 100 ml of ethanol and heated and stirred for 6 hours.
After the reaction, insoluble matter was separated and the liquid was distilled under reduced pressure.
The obtained oil was mixed with 60 ml of methanol and 1N-
Dissolve in a mixture of 40 ml of NaOH aqueous solution and
Stir for hours. Thereafter, methanol was distilled off under reduced pressure, and the aqueous layer was extracted three times with 30 ml of ether and dried over anhydrous sodium sulfate. After drying, the solvent was distilled off under reduced pressure, and the resulting oil was distilled under reduced pressure to obtain a boiling point of 115°~
13 g of cyclohexyl-hydroxymethyl ketone (compound B) was obtained at 116°C/15 mmHg (yield: 81.8
%). Table 1 shows the physical properties of the obtained compound. Reference Examples 2 to 4 Compounds A, C, and D shown in Table 1 below were synthesized by the same operations as in Reference Example 1, respectively.

【表】 実施例 1 シクロヘキシル−ヒドロキシメチルケトン(化
合物B)1.0gと5−ジメチルアミノ−1−ナフ
タレンスルホニルクロライド2.1gとを無水ジク
ロルメタン30mlに溶解し、氷冷下トリエチルアミ
ン1.1mlを滴下し、室温下で7時間撹拌した。そ
の後水洗を行い、有機層を無水硫酸ナトリウムで
乾燥した。乾燥後、減圧下で蒸留し、得られた油
状物をシリカゲルカラムクロマトグラフイー(展
開溶媒はクロロホルム:エタノール=8:1)に
て分離精製して、m.p.58゜〜59℃の1−(5−ジメ
チルアミノ−1−ナフタレンスルホニルオキシ)
−2−シクロヘキシル−2−エタン(化合物2)
2.0gを得た(収率68.4%)。 得られた化合物2の物性を表2に示す。 実施例 2〜4 化合物Bに代え、化合物A、C及びDを夫々用
い、実施例1と同様の操作により、下記表2に示
す化合物1、3及び4を夫々合成した。
[Table] Example 1 1.0 g of cyclohexyl-hydroxymethyl ketone (compound B) and 2.1 g of 5-dimethylamino-1-naphthalenesulfonyl chloride were dissolved in 30 ml of anhydrous dichloromethane, 1.1 ml of triethylamine was added dropwise under ice cooling, and the mixture was heated to room temperature. The mixture was stirred at a lower temperature for 7 hours. Thereafter, it was washed with water, and the organic layer was dried over anhydrous sodium sulfate. After drying, distillation was performed under reduced pressure, and the resulting oil was separated and purified using silica gel column chromatography (developing solvent: chloroform:ethanol = 8:1). dimethylamino-1-naphthalenesulfonyloxy)
-2-cyclohexyl-2-ethane (compound 2)
2.0 g was obtained (yield 68.4%). Table 2 shows the physical properties of the obtained Compound 2. Examples 2 to 4 Compounds 1, 3, and 4 shown in Table 2 below were synthesized in the same manner as in Example 1, using Compounds A, C, and D instead of Compound B, respectively.

【表】 次に本発明化合物()のエステラーゼ阻害作
用およびキモトリプシン阻害作用の試験結果につ
いて説明する。 1 エステラーゼ阻害作用 0.1モルのトリス塩酸緩衝液(PH8.0)の一定
量に基質としてメチルブチレート10μモル50%
エタノール溶液を加え、さらにこれに上記表2
に示す本発明化合物の50%エタノール溶液を加
えた後、ただちに酵素液として、精製したラツ
ト肝臓マイクロゾーム画分エステラーゼ溶液
(37℃、1時間にて9μモルのメチルブチレート
を水解するように調整する)を加え、37℃にて
60分間反応を行つた。 反応終了後メチルブチレートのアルカリ性ヒ
ドロキシルアミンによるヒドロキサム酸誘導体
に第二鉄塩を加えて、生ずる赤色を比色(波長
540nm)し、残存するメチルブチレート含量
を定量した。本発明化合物の各種濃度(3点以
上)におけるエステラーゼ阻害率を縦軸にプロ
ツトし、その濃度の対数を横軸にプロツトして
得られた直線より50%阻害濃度(IC50)を求め
た。 2 キモトリプシン阻害作用 0.1モルのトリス塩酸緩衝液(PH8.0)の一定
量に酵素液としてキモトリプシンの0.1ユニツ
トを加え、さらに表2に示す本発明化合物の50
%エタノール溶液を加えた後37℃にて20分間反
応を行つた。 反応終了後直ちに基質としてN−アセチル−
L−チロシンエチルエステル(ATEE)を10μ
モル加えて、37℃にて30分間反応を行つた。 反応終了後ATEEの残存量をエステラーゼ阻
害活性測定法と同様のヒドロキサム酸法にて定
量した。キモトリプシン阻害率(%)は下式に
より算出した。 阻害率(%)=A−B/A×100 A:本発明化合物の無添加反応系のエステル
水解量 B:本発明化合物の添加反応系のエステル水
解量 以上の方法による本発明化合物のエステラーゼ
に対する50%阻害濃度(IC50)およびキモトリプ
シン阻害率(1×10-4モルにおける)を表3に示
す。 表3より明らかなように本発明化合物はエステ
ラーゼ阻害作用およびキモトリプシン阻害作用を
有し、抗高脂血症剤、抗炎症剤、免疫調節剤とし
て有用である。
[Table] Next, the test results of the esterase inhibitory effect and the chymotrypsin inhibitory effect of the compound () of the present invention will be explained. 1. Esterase inhibitory effect: Add 10μmol 50% of methylbutyrate as a substrate to a fixed amount of 0.1M Tris-HCl buffer (PH8.0).
Add the ethanol solution and add the above Table 2.
Immediately after adding the 50% ethanol solution of the compound of the present invention shown in , the purified rat liver microsome fraction esterase solution (adjusted to hydrolyze 9 μmol of methylbutyrate in 1 hour at 37°C) was added as an enzyme solution. ) and at 37°C.
The reaction was carried out for 60 minutes. After the reaction is complete, ferric salt is added to the hydroxamic acid derivative of methylbutyrate using alkaline hydroxylamine, and the resulting red color is measured by colorimetry (wavelength
540 nm) and the remaining methylbutyrate content was quantified. The esterase inhibition rate at various concentrations (3 points or more) of the compound of the present invention was plotted on the vertical axis, and the logarithm of the concentration was plotted on the horizontal axis, and the 50% inhibitory concentration (IC 50 ) was determined from the straight line obtained. 2 Chymotrypsin inhibitory effect 0.1 unit of chymotrypsin was added as an enzyme solution to a fixed amount of 0.1 molar Tris-HCl buffer (PH8.0), and then 50 units of chymotrypsin as shown in Table 2 was added.
After adding the % ethanol solution, the reaction was carried out at 37°C for 20 minutes. Immediately after the reaction, N-acetyl-
10μ of L-tyrosine ethyl ester (ATEE)
mol was added and the reaction was carried out at 37°C for 30 minutes. After the reaction was completed, the amount of ATEE remaining was determined by the hydroxamic acid method, which is the same method used to measure esterase inhibitory activity. Chymotrypsin inhibition rate (%) was calculated using the following formula. Inhibition rate (%) = AB/A x 100 A: Amount of ester hydrolysis in the reaction system without the addition of the compound of the present invention B: Amount of ester hydrolysis in the reaction system with the addition of the compound of the present invention The 50% inhibitory concentration (IC 50 ) and percentage inhibition of chymotrypsin (in 1×10 −4 mol) are shown in Table 3. As is clear from Table 3, the compounds of the present invention have esterase inhibitory activity and chymotrypsin inhibitory activity, and are useful as antihyperlipidemic agents, antiinflammatory agents, and immunomodulators.

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式 (式中Rはアルキル基、シクロヘキシル基又はシ
クロヘキシルアルキル基を示す。) で表わされるナフタレンスルホネート誘導体及び
その塩。
[Claims] 1. General formula (In the formula, R represents an alkyl group, a cyclohexyl group, or a cyclohexyl alkyl group.) A naphthalene sulfonate derivative and a salt thereof.
JP12097681A 1981-07-31 1981-07-31 Naphthalenesulfonate derivative and its preparation Granted JPS5821660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12097681A JPS5821660A (en) 1981-07-31 1981-07-31 Naphthalenesulfonate derivative and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12097681A JPS5821660A (en) 1981-07-31 1981-07-31 Naphthalenesulfonate derivative and its preparation

Publications (2)

Publication Number Publication Date
JPS5821660A JPS5821660A (en) 1983-02-08
JPH0113466B2 true JPH0113466B2 (en) 1989-03-06

Family

ID=14799693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12097681A Granted JPS5821660A (en) 1981-07-31 1981-07-31 Naphthalenesulfonate derivative and its preparation

Country Status (1)

Country Link
JP (1) JPS5821660A (en)

Also Published As

Publication number Publication date
JPS5821660A (en) 1983-02-08

Similar Documents

Publication Publication Date Title
JP2001518459A (en) Methods and intermediates useful for making antifolates
EP0098713B1 (en) Benzoylpiperazine esters and a process for their production
JPH0113466B2 (en)
JPH082821B2 (en) 1,4,5,8-Tetrakis (hydroxymethyl) naphthalene derivative and method for producing the same
CZ282906B6 (en) Process for preparing 2,2-dimethyl-5-(2,5-dimethyl-phenoxy) pentanoic acid
JP2743198B2 (en) Cyclopentanes
JP3199295B2 (en) Method for producing 5-acyl-2-amidohydroquinones
JPS6412268B2 (en)
JPH0336831B2 (en)
US7091327B2 (en) Process for the preparation of aromatic azo-compounds
JPH0113707B2 (en)
JPH0113467B2 (en)
JP2804654B2 (en) Method for producing (S)-(-)-dehydro-α-damaschol
JP2832090B2 (en) Fluorinated metacyclophane
JPS6346749B2 (en)
JPH0588693B2 (en)
JPH0761979A (en) Bisphenol derivative and its production
JPS6318940B2 (en)
JP2569732B2 (en) Ester derivative and method for producing the same
JP2853929B2 (en) Method for producing 2-chloro-4,5-difluoro-3-methoxybenzoic acid
JPS6253511B2 (en)
JPH0113708B2 (en)
JPS6412269B2 (en)
JPH01238548A (en) 1,4,5,8-tetrakis(hydroxymethyl)naphthalene, its derivative and production thereof
JPS63154656A (en) Production of aminothiophenol and its derivative