JPS6318857B2 - - Google Patents
Info
- Publication number
- JPS6318857B2 JPS6318857B2 JP55109937A JP10993780A JPS6318857B2 JP S6318857 B2 JPS6318857 B2 JP S6318857B2 JP 55109937 A JP55109937 A JP 55109937A JP 10993780 A JP10993780 A JP 10993780A JP S6318857 B2 JPS6318857 B2 JP S6318857B2
- Authority
- JP
- Japan
- Prior art keywords
- growth
- melt
- chamber
- hole
- gaas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 8
- 229920006395 saturated elastomer Polymers 0.000 claims description 7
- 239000007791 liquid phase Substances 0.000 claims description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 31
- 239000000758 substrate Substances 0.000 description 29
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 10
- 239000000155 melt Substances 0.000 description 10
- 239000012535 impurity Substances 0.000 description 9
- 239000013078 crystal Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 239000012047 saturated solution Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000009738 saturating Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000289 melt material Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/10—Controlling or regulating
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【発明の詳細な説明】
この発明は、液相エピタキシヤル成長装置に使
用するボートの構成に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a boat used in a liquid phase epitaxial growth apparatus.
周知のとおり、液相エピタキシヤル成長法は、
化合物半導体結晶である−族半導体結晶や、
その混晶および−族化合物半導体結晶などに
一般に用いられている。ここでは、その一例とし
てGaAsをエピタキシヤル成長させる場合につい
て第1図により説明する。 As is well known, the liquid phase epitaxial growth method is
- group semiconductor crystals, which are compound semiconductor crystals,
It is generally used for its mixed crystals and - group compound semiconductor crystals. Here, as an example, a case where GaAs is epitaxially grown will be explained with reference to FIG.
第1図は従来のエピタキシヤル成長装置に使用
するボートの概略を示す側断面図である。この図
において、1はスライドボート、2はスライダー
板で、これにはGaAs基板3が設定されている。
10は容器で、成長用融液貯溜室4,5,6を有
し、それぞれ独立して成長用融液7,8,9を収
容する。この容器10とスライダー板2は相互に
移動することができるようになつている。今、n
形のGaAs基板3上にn形GaAsとp形GaAsを急
峻な不純物勾配をもたせて連続的に順次エピタキ
シヤル成長させる場合を具体的に説明する。 FIG. 1 is a side sectional view schematically showing a boat used in a conventional epitaxial growth apparatus. In this figure, 1 is a slide boat, 2 is a slider plate, and a GaAs substrate 3 is set on this.
A container 10 has growth melt storage chambers 4, 5, and 6, and stores growth melts 7, 8, and 9 independently. The container 10 and the slider plate 2 are movable relative to each other. Now, n
A case in which n-type GaAs and p-type GaAs are successively epitaxially grown on a shaped GaAs substrate 3 with a steep impurity gradient will be specifically described.
このとき、第1図のGaAs基板3はあらかじめ
前処理を行つたn形GaAs基板(以下n−GaAs
基板という)を用いる。成長用融液7としては高
純度Gaに高純度GaAsとn形不純物、例えばSn
やTeなどを添加して準備される。成長用融液8
と9としては高純度Gaに高純度GaAsとp形不純
物、例えばGeなどを添加して準備される。成長
層として急峻な不純物勾配をもたせるために、成
長用融液8と9は同様な組成のものを準備する。
Gaに添加するGaAsは成長開始温度のGa中への
Asの溶解度を考慮し、また不純物はそれぞれの
偏析係数を考慮して添加する量を定めることは当
然である。 At this time, the GaAs substrate 3 in FIG. 1 is an n-type GaAs substrate (hereinafter referred to as n-GaAs
(referred to as a substrate). The growth melt 7 contains high-purity Ga, high-purity GaAs, and n-type impurities, such as Sn.
It is prepared by adding elements such as or Te. Growth melt 8
and 9 are prepared by adding high purity GaAs and a p-type impurity such as Ge to high purity Ga. In order to provide the growth layer with a steep impurity gradient, the growth melts 8 and 9 are prepared with similar compositions.
GaAs added to Ga is added to Ga at the growth start temperature.
It goes without saying that the amount to be added should be determined by considering the solubility of As and the segregation coefficient of each impurity.
このように準備されたn−GaAs基板3と成長
用融液7〜9を第1図に示したように配置し、高
純度雰囲気ガス中にセツトし電気炉で加熱する。
所定温度に達したGa中にGaAsと不純物が溶解
し、飽和溶液になつたときに成長用融液7とn−
GaAs基板3を接触させる。温度を降下させるこ
とによつてn−GaAs基板3上にn−GaAsがエ
ピタキシヤル成長する。所望量のn−GaAs成長
層が得られたときに容器10とスライダー板2を
相対的にすばやく動かし、すなわちn−GaAs基
板3と成長用融液7を分離し、今の場合、成長用
融液8をn−GaAs基板3上を通過させ、n−
GaAs基板3上に次の成長用融液9を接触させ
る。温度が降下されているので、n−GaAs基板
3上にp−GaAsがエピタキシヤル成長する。所
定のp−GaAs成長層が得られたときに成長用融
液9を成長層上より分離する。スライドボート1
を室温まで冷却してn−GaAs基板3上にn−
GaAsとp−GaAsが順次成長したエピタキシヤ
ルウエハを取り出す。 The n-GaAs substrate 3 and the growth melts 7 to 9 prepared in this manner are arranged as shown in FIG. 1, placed in a high-purity atmospheric gas, and heated in an electric furnace.
When GaAs and impurities dissolve in Ga that has reached a predetermined temperature and become a saturated solution, the growth melt 7 and n-
GaAs substrate 3 is brought into contact. By lowering the temperature, n-GaAs is epitaxially grown on the n-GaAs substrate 3. When the desired amount of n-GaAs growth layer is obtained, the container 10 and the slider plate 2 are moved relatively quickly, that is, the n-GaAs substrate 3 and the growth melt 7 are separated, and in this case, the growth melt is The liquid 8 is passed over the n-GaAs substrate 3, and the n-
The next growth melt 9 is brought into contact with the GaAs substrate 3. Since the temperature is lowered, p-GaAs grows epitaxially on the n-GaAs substrate 3. When a predetermined p-GaAs growth layer is obtained, the growth melt 9 is separated from above the growth layer. slide boat 1
is cooled to room temperature and deposited on the n-GaAs substrate 3.
The epitaxial wafer on which GaAs and p-GaAs have been sequentially grown is taken out.
上述のスライドボート1を使用して液相エピタ
キシヤル成長を行つた場合に、容器10の底面と
n−GaAs基板3の結晶の上面を同一面とすると
容器10とn−GaAs基板3が接触し、n−
GaAs基板3が損傷をうけ、良質のエピタキシヤ
ル結晶層が得られない。また、その容器10の底
面とn−GaAs基板3の間にわずかの隙間をつけ
れば相互の成長用融液7〜9が混合することが避
けられない。このことを少しでも避けるために同
じ組成の融液を2つ使用して上述したように成長
を行うことが行われている。上記では飽和融液が
つくられたものとして説明したが、実際上は温度
の正確で精密な制御および成長用融液材料の正確
な秤量などに制限があり理想的な飽和融液は望め
ない。このことは成長層の厚みが再現性よく制御
されないことを意味している。さらに、成長用融
液7〜9とn−GaAs基板3の間にも温度差があ
り、また成長用融液7〜9間にも温度差があり、
成長層の厚み制御を困難にしている。 When performing liquid phase epitaxial growth using the slide boat 1 described above, if the bottom surface of the container 10 and the top surface of the crystal of the n-GaAs substrate 3 are made the same surface, the container 10 and the n-GaAs substrate 3 will come into contact. , n-
The GaAs substrate 3 is damaged and a good quality epitaxial crystal layer cannot be obtained. Further, if a slight gap is provided between the bottom of the container 10 and the n-GaAs substrate 3, it is inevitable that the growth melts 7 to 9 will mix with each other. In order to avoid this, two melts having the same composition are used to perform the growth as described above. Although the above explanation assumes that a saturated melt is produced, in reality, there are limitations in accurate and precise control of temperature, accurate weighing of the melt material for growth, etc., and an ideal saturated melt cannot be expected. This means that the thickness of the grown layer cannot be controlled reproducibly. Furthermore, there is a temperature difference between the growth melts 7 to 9 and the n-GaAs substrate 3, and there is also a temperature difference between the growth melts 7 to 9.
This makes it difficult to control the thickness of the growth layer.
この発明は、成長用融液として飽和融液をつく
ることができるようにし、しかも成長用融液と基
板の温度差を少なくして上記従来のものの欠点を
除去しようとしてなされたものである。以下、こ
の発明について説明する。 This invention was made in an attempt to eliminate the above-mentioned drawbacks of the conventional method by making it possible to produce a saturated melt as a growth melt and reducing the temperature difference between the growth melt and the substrate. This invention will be explained below.
第2図a〜cはこの発明の一実施例を示すもの
で、第2図aはボートの平面図、第2図bは第2
図aのA−A線による断面図、第2図cは第2図
aのB−B線による断面図である。これらの図
で、21は基板で、成長室22に設定される。成
長室22は第一の成長室導通孔23と第一の排液
室導通孔25を通じて第一の排液貯溜室26に連
なつている。29は第一の成長用融液貯溜室で、
31は成長用融液を飽和させるための基材33を
設定することができる第一のピストンである。3
5は前記第一の成長室導通孔23を閉開する第一
の導通孔止めである。同様に、24は前記成長室
22に通じる第二の成長室導通孔で、30は第二
の成長用融液貯溜室で、32は成長用融液を飽和
させるための基材34を有する第二のピストンで
あり、36は前記第二の成長室導通孔24を閉開
する第二の導通孔止めである。27,28はそれ
ぞれ前記成長室22から通じている第二の排液室
導通孔と第二の排液貯溜室である。 Figures 2 a to c show one embodiment of the present invention, with Figure 2 a being a plan view of the boat, and Figure 2 b being a plan view of the boat.
FIG. 2c is a sectional view taken along line AA in FIG. 2a, and FIG. 2c is a sectional view taken along line BB in FIG. 2a. In these figures, 21 is a substrate, which is set in a growth chamber 22. The growth chamber 22 is connected to a first drainage reservoir chamber 26 through a first growth chamber communication hole 23 and a first drainage chamber communication hole 25 . 29 is the first growth melt storage chamber;
31 is a first piston that can set a base material 33 for saturating the growth melt. 3
Reference numeral 5 designates a first through-hole stopper that closes and opens the first growth chamber through-hole 23. Similarly, 24 is a second growth chamber through hole communicating with the growth chamber 22, 30 is a second growth melt storage chamber, and 32 is a second growth chamber having a base material 34 for saturating the growth melt. 36 is a second through hole stopper that closes and opens the second growth chamber through hole 24. Reference numerals 27 and 28 are a second drainage chamber communication hole and a second drainage storage chamber communicating from the growth chamber 22, respectively.
第2図に示すこの発明の装置を使用して液相エ
ピタキシヤル成長を行う方法を説明する。説明を
簡単にするために、In融液を用いてp形InSbと
n形InSbを連続的にp形InSbの基板21上に成
長させる場合について説明する。まず、p形
InSbの基板21の前処理を行つて第2図の成長
室22に設定する。次に、第一の成長用融液貯溜
室29にp形不純物例えばGe、とInを入れ、高
純度InSbの基材33を第一のピストン31にセ
ツトし、第2図bに示すように設定する。このと
き、第一の成長用融液貯溜室29と第一の成長室
導通孔23は第一の導通孔止め35で分離されて
いる。次に第二の成長用融液貯溜室30にn形不
純物、例えばTe、とInを入れ、高純度InSbの基
材34を第二のピストン32にセツトし、第2図
cに示すように設定する。このとき第二の成長用
融液貯溜室30と第二の成長室導通孔24は第二
の導通孔止め36で分離されている。上述のよう
にして準備されたボートを、例えば280℃に昇温
して保持する。所定時間保持しておくと第一およ
び第二の成長用融液貯溜室29,30でそれぞれ
In中に不純物とInSbが溶解し飽和溶液がつくら
れる。飽和溶液がつくられたときに第一のピスト
ン31を動作させて、すなわち第一の成長用融液
貯溜室29内のIn融液に圧力をかけると第一の導
通孔止め35が移動し、そのIn融液は第一の導通
孔23を通つて成長室22に入り、p−InSbの
基板21と接触する。成長室22からあふれたIn
融液は第一の排液室導通孔25を通つて第一の排
液貯溜室26に溜められる。ボートの温度を下降
することによりp−InSbの基板21上にp形
InSbがエピタキシヤル成長する。所望の成長層
が得られたときに第二のピストン32を動作させ
て、すなわち第二の成長用融液貯溜室30内のIn
融液に圧力をかけると第二の導通孔止め36が移
動し、そのIn融液は第二の導通孔24を通つて成
長室22に入り、先に入つていたIn融液を第二の
排液室導通孔27を通して第二の排液貯溜室28
に排出し、成長室22内のIn融液が置換される。
この置換In融液はInSbの基材34があるので飽
和融液となつている。所定温度に冷却すると所望
のn−InSbエピタキシヤル成長層が得られる。
この方法によると基板21に飽和融液からの成長
層が得られる。 A method of performing liquid phase epitaxial growth using the apparatus of the present invention shown in FIG. 2 will be described. To simplify the explanation, a case will be described in which p-type InSb and n-type InSb are continuously grown on the p-type InSb substrate 21 using an In melt. First, p-type
The InSb substrate 21 is pretreated and placed in the growth chamber 22 shown in FIG. Next, p-type impurities such as Ge and In are put into the first growth melt storage chamber 29, and a high-purity InSb base material 33 is set on the first piston 31, as shown in FIG. 2b. Set. At this time, the first growth melt storage chamber 29 and the first growth chamber communication hole 23 are separated by a first communication hole stopper 35 . Next, n-type impurities such as Te and In are put into the second growth melt storage chamber 30, and a high-purity InSb base material 34 is set on the second piston 32, as shown in FIG. 2c. Set. At this time, the second growth melt storage chamber 30 and the second growth chamber through hole 24 are separated by a second through hole stopper 36 . The boat prepared as described above is heated to, for example, 280°C and maintained. When kept for a predetermined period of time, the first and second growth melt storage chambers 29 and 30, respectively.
Impurities and InSb are dissolved in In to create a saturated solution. When the saturated solution is created, the first piston 31 is operated, that is, when pressure is applied to the In melt in the first growth melt storage chamber 29, the first conduction hole stopper 35 moves, The In melt enters the growth chamber 22 through the first conduction hole 23 and comes into contact with the p-InSb substrate 21. In overflowing from growth chamber 22
The melt passes through the first drain chamber communication hole 25 and is stored in the first drain reservoir chamber 26 . By lowering the temperature of the boat, the p-type is formed on the p-InSb substrate 21.
InSb grows epitaxially. When the desired growth layer is obtained, the second piston 32 is operated, that is, the In in the second growth melt storage chamber 30 is
When pressure is applied to the melt, the second through hole stopper 36 moves, and the In melt enters the growth chamber 22 through the second through hole 24, displacing the In melt that had previously entered into the second through hole. The second drainage storage chamber 28 is passed through the drainage chamber communication hole 27.
The In melt inside the growth chamber 22 is replaced.
This substituted In melt is a saturated melt because of the InSb base material 34. When cooled to a predetermined temperature, a desired n-InSb epitaxial growth layer is obtained.
According to this method, a layer grown from a saturated melt can be obtained on the substrate 21.
なお、この発明の実施例ではInSbを例にとつ
て280℃という低温でエピタキシヤル成長を行う
場合について説明したが、他の類似した液相エピ
タキシヤル成長に応用できることは自明の理であ
る。 In the embodiments of the present invention, a case where epitaxial growth is performed at a low temperature of 280° C. using InSb as an example has been described, but it is obvious that the invention can be applied to other similar liquid phase epitaxial growth.
なお、第一、第二の導通孔止め35,36はエ
ピタキシヤル成長を行う前に再セツトする。これ
にはばね力等でもとに戻すようにしてもよい。ま
た、第一、第二の排液貯溜室26,28は両者を
合せた容積のもの1個としてもよい。 Note that the first and second conductive hole stoppers 35 and 36 are reset before performing epitaxial growth. This may be done by using a spring force or the like to return it to its original state. Further, the first and second drain fluid storage chambers 26 and 28 may have a combined volume of one chamber.
以上詳細に説明したようにこの発明は、成長室
と各成長用融液貯溜室とを連通する各導通孔に、
常時はそれぞれの導通孔を閉止し、ピストンの押
圧により移動して前記閉止を解除しそれぞれの成
長用融液貯溜室と成長室とを連通させる導通孔止
めを設けたので、ピストンの操作で自動的に導通
孔止めを操作でき、複数の成長用融液が混合する
ことがなく、また、成長室内で基板と成長用融液
の高さを数mmにすることも容易にできる。このこ
とは、成長室内で基板上以外に結晶が析出するこ
となくエピタキシヤル成長が進むことを意味して
おり、均一なエピタキシヤル成長層が得られるこ
とになる。さらに、成長室と成長用融液貯溜室を
接近させることができるので、基板と成長用融液
の温度差も極めて少なくなり、成長層の厚み制御
が再現よく実施される。また、成長用飽和融液を
つくるために飽和用基材を正確に秤量添加する手
間も省かれる等の利点を有する。 As explained in detail above, the present invention provides for each conduction hole that communicates the growth chamber with each growth melt storage chamber.
Each through hole is normally closed, and a through hole stopper is provided that moves by the pressure of the piston to release the closure and communicate the respective growth melt storage chambers with the growth chamber. The conductive hole stopper can be controlled precisely, multiple growth melts will not mix, and the height of the substrate and growth melt can be easily set to several mm in the growth chamber. This means that epitaxial growth proceeds without crystals precipitating anywhere other than on the substrate in the growth chamber, resulting in a uniform epitaxial growth layer. Furthermore, since the growth chamber and the growth melt storage chamber can be brought close to each other, the temperature difference between the substrate and the growth melt becomes extremely small, and the thickness of the growth layer can be controlled with good reproducibility. Further, it has the advantage that it does not require the trouble of accurately weighing and adding a saturation base material in order to prepare a saturated melt for growth.
第1図は従来のエピタキシヤル成長装置に使用
するボートの概略を示す側断面図、第2図a〜c
はこの発明の一実施例を示すもので、第2図aは
ボートの平面図、第2図bは第2図aのA−A線
による断面図、第2図cは第2図aのB−B線に
よる断面図である。
図中、21は基板、22は成長室、23は第一
の成長室導通孔、24は第二の成長室導通孔、2
5は第一の排液室導通孔、26は第一の排液貯溜
室、27は第二の排液室導通孔、28は第二の排
液貯溜室、29は第一の成長用融液貯溜室、30
は第二の成長用融液貯溜室、31は第一のピスト
ン、32は第二のピストン、33,34は基材、
35は第一の導通孔止め、36は第2の導通孔止
めである。なお、図中の同一符号は同一または相
当部分を示す。
Figure 1 is a side sectional view schematically showing a boat used in a conventional epitaxial growth apparatus, Figures 2 a to c
Figure 2a shows a plan view of the boat, Figure 2b is a sectional view taken along line A-A in Figure 2a, and Figure 2c is a cross-sectional view of the boat in Figure 2a. It is a sectional view taken along the line BB. In the figure, 21 is a substrate, 22 is a growth chamber, 23 is a first growth chamber through hole, 24 is a second growth chamber through hole, 2
5 is a first drainage chamber communication hole, 26 is a first drainage storage chamber, 27 is a second drainage chamber communication hole, 28 is a second drainage storage chamber, and 29 is a first growth solution. Liquid storage chamber, 30
31 is a first piston, 32 is a second piston, 33 and 34 are base materials,
35 is a first conduction hole stopper, and 36 is a second conduction hole stopper. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
各成長用融液貯溜室のそれぞれに成長用融液飽和
基材を取り付け成長用融液に接触可能で、かつ前
記成長用融液を押し出すピストンを備え、かつ前
記成長用融液貯溜室にそれぞれ近接した導通孔で
連通した成長室を備え、それぞれの成長用融液貯
溜室とそれに対応した導通孔の間に常時はそれぞ
れの導通孔を閉止し前記ピストンの押圧により移
動して前記閉止を解徐しそれぞれの成長用融液貯
溜室と前記成長室とを連通させる導通孔止めを具
備せしめたことを特徴とする液相エピタキシヤル
成長装置。1. It has two or more growth melt storage chambers, and a growth melt saturated base material is attached to each of these growth melt storage chambers so that it can come into contact with the growth melt, and the growth melt can be brought into contact with the growth melt. A growth chamber is provided with a piston for pushing out the growth melt, and is connected to the growth melt storage chamber through a through hole adjacent to each growth chamber. A liquid phase epitaxial device comprising a through hole stopper which closes the hole and is moved by the pressure of the piston to release the closure and communicate between each of the growth melt storage chambers and the growth chamber. growth equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10993780A JPS5734330A (en) | 1980-08-08 | 1980-08-08 | Liquid epitaxial growth device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10993780A JPS5734330A (en) | 1980-08-08 | 1980-08-08 | Liquid epitaxial growth device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5734330A JPS5734330A (en) | 1982-02-24 |
JPS6318857B2 true JPS6318857B2 (en) | 1988-04-20 |
Family
ID=14522883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10993780A Granted JPS5734330A (en) | 1980-08-08 | 1980-08-08 | Liquid epitaxial growth device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5734330A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5364466A (en) * | 1976-11-22 | 1978-06-08 | Mitsubishi Electric Corp | Semiconductor crystal growth apparatus |
-
1980
- 1980-08-08 JP JP10993780A patent/JPS5734330A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5364466A (en) * | 1976-11-22 | 1978-06-08 | Mitsubishi Electric Corp | Semiconductor crystal growth apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS5734330A (en) | 1982-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3933538A (en) | Method and apparatus for production of liquid phase epitaxial layers of semiconductors | |
US4315796A (en) | Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure | |
CA1072220A (en) | Method for epitaxial growth of thin semiconductor layer from solution | |
US4317689A (en) | Mercury containment for liquid phase growth of mercury cadmium telluride from tellurium-rich solution | |
US4642142A (en) | Process for making mercury cadmium telluride | |
US3767481A (en) | Method for epitaxially growing layers of a semiconductor material from the liquid phase | |
US4149914A (en) | Method for depositing epitaxial monocrystalline semiconductive layers via sliding liquid phase epitaxy | |
US4357897A (en) | Device for epitaxially providing a layer of semiconductor material | |
JPS6318857B2 (en) | ||
US4366771A (en) | Mercury containment for liquid phase growth of mercury cadmium telluride from tellurium-rich solution | |
US3990392A (en) | Epitaxial growth apparatus | |
US4468258A (en) | Method of controlling the partial pressure of at least one substance mixture or mixture of substances | |
US4427464A (en) | Liquid phase epitaxy | |
JPS621358B2 (en) | ||
US6902619B2 (en) | Liquid phase epitaxy | |
JPS6311596A (en) | Liquid phase epitaxy for multiple element compound semiconductor by two-phase melt method | |
van Oirschot et al. | LPE growth of DH laser structures with the double source method | |
JPS554947A (en) | Method of growing liquid phase epitaxial | |
JPH01208393A (en) | Slider boat for liquid-phase epitaxial growth | |
JPS589794B2 (en) | Semiconductor liquid phase multilayer thin film growth method and growth equipment | |
Dutt et al. | A novel multi-slice LPE boat: I. Preliminary results on InGaAs alloys | |
JPH029444B2 (en) | ||
JPS58168219A (en) | Liquid phase epitaxial growth | |
JPH043101B2 (en) | ||
IE35057B1 (en) | Methods of growing multilayer semiconductor crystals |