JPS63188401A - Cooling method for billet manufactured by continuous casting method - Google Patents

Cooling method for billet manufactured by continuous casting method

Info

Publication number
JPS63188401A
JPS63188401A JP1720187A JP1720187A JPS63188401A JP S63188401 A JPS63188401 A JP S63188401A JP 1720187 A JP1720187 A JP 1720187A JP 1720187 A JP1720187 A JP 1720187A JP S63188401 A JPS63188401 A JP S63188401A
Authority
JP
Japan
Prior art keywords
temp
cooling
slab
billet
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1720187A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Hamura
羽村 信義
Mitsuaki Sugata
充陽 菅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1720187A priority Critical patent/JPS63188401A/en
Publication of JPS63188401A publication Critical patent/JPS63188401A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To prevent generation of surface flaws and to reduce a truck time by quickly cooling only the surface layer when a surface layer temp. of a hot billet exactly drops down to the A3 transformation temp. and reheating and rolling the billet after once bringing the surface temp. to be lower than the A1 transformation temp. CONSTITUTION:The surface layer of a hot billet 3 manufactured by a continuous casting method is quickly cooled from a surface temp. equal to the A3 transformation temp. by many upper nozzles 7, lower nozzles 8, and horizontal nozzles connected with a cooling water pipe 5. After the surface temp. is once brought to be a temp. lower than the A1 transformation temp., the billet 3 is reheated and rolled in the conventional method. In that case, the surface temp. means the temp. of a position of 30 mm inside from the billet surface.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は連続鋳造法による鋳片の冷却方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for cooling slabs using a continuous casting method.

[従来の技術及び問題点コ 連続鋳造法により製造された鋳片を圧延するに当たって
は、その前工程で鋳片を再加熱する必要があり、その為
には、熱経済の観点から、鋳片を可能な限り高温の状態
で再加熱するのが好ましく、鋳片の表層温度が鋼の状態
図で言うA3変態点以下になったならば直ちに再加熱す
るのが経済的方法とされ、これを理論的最短トラック・
タイムとしていた。ここで言うトラック・タイムとは、
連lti造された鋳片の凝固完了から加熱炉で再加熱を
開始するまでの時間である。
[Conventional techniques and problems] When rolling slabs produced by continuous casting, it is necessary to reheat the slabs in the previous process. It is preferable to reheat the slab at the highest possible temperature, and it is considered an economical method to immediately reheat it when the surface temperature of the slab falls below the A3 transformation point in the steel phase diagram. Theoretical shortest track
It was time. What is track time here?
This is the time from the completion of solidification of the continuous cast slab to the start of reheating in the heating furnace.

従来、極く一般的な材質の連続鋳造鋳片の場合はこれで
充分目的を達成していたが、アルミ・キルド鋼や更に微
量の特殊元素を加えたもの等を製造する頻度の増加と共
に、製造者は新たな問題として、圧延中間製品の表面に
多発する微細な表面疵、いわゆる松葉疵に悩まされてい
た。これは前記理論的最短トラック・タイムに於いては
鋳片の表1Im度が鋼の状態図で言うA3変態点とA1
変態点の中間にあり、α及びγの二相iimの為、結晶
粒界に初析フェライト及び′粒界析出物が析出し粒界脆
化を起こし、再加熱による熱歪との相乗効果によって表
層下割れが発生し、これが圧延により開口し表面疵とな
るのである。従って、従来、製造者はこの様な場合は、
鋳片をA1点以下にまで表層温度が下がるのを待ち、再
加熱を行ない疵の防止に努めて来た。
In the past, this was sufficient to achieve the purpose in the case of continuously cast slabs made of extremely common materials, but as the frequency of manufacturing aluminum killed steel and products with trace amounts of special elements increased, Manufacturers have been faced with a new problem: minute surface flaws, so-called pine needle flaws, which frequently occur on the surface of rolled intermediate products. This means that at the above-mentioned theoretical shortest track time, the Table 1Im degree of the slab is the A3 transformation point and A1 in the steel phase diagram.
Since it is in the middle of the transformation point and has two phases of α and γ, pro-eutectoid ferrite and grain boundary precipitates precipitate at grain boundaries, causing grain boundary embrittlement, and due to the synergistic effect with thermal strain caused by reheating. Subsurface cracks occur, which open during rolling and become surface flaws. Therefore, traditionally, in such cases, manufacturers would
Efforts have been made to prevent flaws by waiting for the surface temperature of the slab to drop below the A1 point and then reheating it.

これは熱経済的には明らかに不利な方法であり、本発明
の目的もここにあり、熱経済的に有利で、しかも疵の発
生を防止出来る連続鋳造法による鋳片の冷却方法を提供
せんとするものである。
This is clearly a disadvantageous method from a thermoeconomic point of view, and the purpose of the present invention is to provide a method for cooling slabs using a continuous casting method that is thermoeconomically advantageous and prevents the occurrence of defects. That is.

[問題を解決するための手段] 上記の如き問題点を解決する為に、本発明により提供さ
れる方法は次の如くである。
[Means for solving the problem] In order to solve the above problems, the method provided by the present invention is as follows.

連続鋳造法により製造された高温の鋳片を、その鋼のA
3変態点直下の表1!1m度から、冷却水により表層の
みを急速に冷却し、一旦、鋳片の表層温度をA1変態点
以下にまで下げた後、従来と同様の方法により、再加熱
し圧延することを特徴とする、連続鋳造法による鋳片の
冷却方法である。
A high-temperature slab produced by continuous casting is
Table 1: From 1m degrees just below the 3 transformation point, only the surface layer is rapidly cooled with cooling water, and once the surface layer temperature of the slab is lowered to below the A1 transformation point, it is reheated using the same method as before. This is a method of cooling slabs using a continuous casting method, which is characterized by rolling.

但し、ここで言う表am度とは鋳片の表面下30層の位
置に於ける鋳片の温度とし、以下これを表層温度と言う
However, the surface temperature referred to here is the temperature of the slab at a position 30 layers below the surface of the slab, and hereinafter this is referred to as surface layer temperature.

[作用] 上記の如くに鋳片を急速冷却した場合の作用を説明する
と次の如くである。即ち、 上述の如くに、A3変態点直下では鋼はα及びγの二相
領域に在るが、ここより上記方法により表層を急冷する
と、その部分の温度が下がり、遂にへ1変態温度以下に
なり、そこの結晶構造はα組織即ちフェライトのみの金
属組織となる。このフェライトはその後の再加熱により
、粒弄を異にする新しいγ組織即ちオーステナイトとな
る為、もとのγの結晶粒界にあった初析フェライト及び
析出物は新しいγ組織即ちオーステナイトの結晶粒界に
集合すること無く、上述の如き疵の原因とはならなくな
る。この冷却は表層の僅かな深さまでしか行なわないの
で、その冷却時間は短時間で十分で、従って内部は余り
温度降下せず、鋳片全体としては従来法と比し多くの保
有熱を持った状態で、再加熱されるので、再加熱に要す
る熱量も少なく、しかも、その後の圧延を、表面疵の発
生を見ること無く行なうことが出来る。即ち、鋳片のト
ラックタイム及び再加熱時間は短縮され、しかも、従来
の如き疵は発生しなくなるのである。
[Operation] The operation when the slab is rapidly cooled as described above is as follows. That is, as mentioned above, just below the A3 transformation point, steel is in the two-phase region of α and γ, but when the surface layer is rapidly cooled from this point using the above method, the temperature of that part decreases and finally reaches below the A3 transformation temperature. The crystal structure there is an α structure, that is, a metal structure consisting only of ferrite. When this ferrite is subsequently reheated, it becomes a new γ structure with a different grain size, that is, austenite, so the pro-eutectoid ferrite and precipitates that were at the original γ grain boundaries are replaced by a new γ structure, that is, austenite crystal grains. It does not collect in a field and does not cause the above-mentioned flaws. Since this cooling is performed only to a small depth of the surface layer, a short cooling time is sufficient, and therefore the internal temperature does not drop much, and the slab as a whole retains more heat than in the conventional method. Since it is reheated in the same state, the amount of heat required for reheating is small, and furthermore, subsequent rolling can be carried out without the occurrence of surface flaws. That is, the track time and reheating time of the slab are shortened, and the defects that occur in the conventional method are no longer generated.

[実施例] 本発明の方法を実施する為に用いた装置の一例を図を用
いて説明する。
[Example] An example of an apparatus used to carry out the method of the present invention will be described with reference to the drawings.

第1図及び第2図は鋳片を急速冷却する為の冷却装置1
の正面図及び側面図を示し、装M1は加熱炉、(図示無
し)の直前の装入テーブル2上に設置され、鋳片3を覆
うフード、4と、鋳片3を急速冷却する為の冷却水配管
5と、εの配管5に連結され各ノズルに均一に水を分配
する為のヘッダー6と、このヘッダー6に繋がり、鋳片
3に水を噴射する多数の上ノズル1下ノズル8及び横ノ
ズル9と、噴射された冷却水の内、鋳片3から滴り落ち
る余剰な水を受ける集水タンク10と、からなっている
。フード4は、鋳片冷却により発生する大量の水蒸気を
受け、外部に排出するための、強制ファン11を備えた
排気ダクト12をその頂部に持っている。集水タンク1
0は、その中に溜った水の水位が一定の^さになったと
き、自動的に排水する揚水ポンプ13及び水面計14を
有し、水位が規定値を超えるとポンプ13が作動し、排
水は貯水池に送られる。冷却水配管5は、水源から水を
送る導管で、配管5には、オリフィス15と流量調整弁
16と及び流屋計17が設けられ、鋳片3を急速冷却す
るに必要且つ十分な水舟をヘッダー6に送る。ヘッダー
6は鋳片3に対して上下及び左右の四方向に分岐し、鋳
片3の進行方向に伸びている。ヘッダー6からは分岐す
る多数9ノズル7.8及び9が配備され、その噴霧が鋳
7片3の全面を覆い、鋳片3の表層を急速且つ一様に冷
却する如くになっている。
Figures 1 and 2 show a cooling device 1 for rapidly cooling slabs.
, which shows a front view and a side view of a heating furnace (not shown). A cooling water pipe 5, a header 6 that is connected to the ε pipe 5 and distributes water uniformly to each nozzle, and a number of upper nozzles 1 and lower nozzles 8 that are connected to the header 6 and spray water onto the slab 3. It consists of a horizontal nozzle 9, and a water collection tank 10 that receives excess water dripping from the slab 3 out of the injected cooling water. The hood 4 has at its top an exhaust duct 12 equipped with a forced fan 11 for receiving a large amount of water vapor generated by cooling the slab and discharging it to the outside. Water collection tank 1
0 has a water pump 13 and a water level gauge 14 that automatically drain water when the water level accumulated therein reaches a certain level, and when the water level exceeds a specified value, the pump 13 is activated. Drainage water is sent to a reservoir. The cooling water piping 5 is a conduit that sends water from a water source, and the piping 5 is provided with an orifice 15, a flow rate regulating valve 16, and a flow chamber meter 17, and has a water tank necessary and sufficient to quickly cool the slab 3. is sent to header 6. The header 6 branches in four directions, vertically and horizontally, with respect to the slab 3, and extends in the direction in which the slab 3 moves. A large number of nine nozzles 7.8 and 9 are provided that branch from the header 6, and the spray from these nozzles covers the entire surface of the cast slab 3, so that the surface layer of the cast slab 3 is rapidly and uniformly cooled.

この冷却装置1を使用した場合の実施例を説明すると次
のごとくである。
An example in which this cooling device 1 is used will be described as follows.

先ず、この水冷装置1は、前述の如く、加熱炉の直前に
ある装入テーブル2上に設けられ、使用されるプルーム
の寸法(400X520断面、単位層)を前提とし、冷
W水の噴射範囲を405Hx520Wx11,0OOL
 (1位置)とし、噴射水量は、調節可能範囲として0
〜250λ/分。
First, as mentioned above, this water cooling device 1 is installed on the charging table 2 immediately in front of the heating furnace, and is based on the dimensions of the plume to be used (400 x 520 cross section, unit layer), and the injection range of cold W water. 405Hx520Wx11,0OOL
(1 position), and the amount of water jetted is set to 0 as the adjustable range.
~250λ/min.

−の流量調整弁16を設置し、噴射時間は、設定可能範
囲を0〜70秒とした。実施に当たっては噴射水量は1
70ffi/分、尻に、噴射時間は40秒に設定された
。この様な冷却条件で上記ブルームを噴射急冷した場合
、水冷前の表層温度850℃に対し水冷後の表H’lf
A度は550℃で、表層温度は300℃降下した。
- A flow rate regulating valve 16 was installed, and the setting range of the injection time was 0 to 70 seconds. During implementation, the amount of water jetted is 1
The injection time was set to 40 seconds at 70ffi/min. When the above bloom is rapidly cooled by injection under such cooling conditions, the surface layer temperature before water cooling is 850°C, and the surface temperature after water cooling is H'lf.
The A degree was 550°C, and the surface temperature had dropped by 300°C.

この状況を第3図を用い、従来の方法と比較しつつ、概
念的に説明すると、鋳片3が凝固完了の高温(図の左上
)から、自然冷却により時間と共に徐々に温度が降下す
る状況が、図の右下に向う緩やかな曲線で描かれている
。水平の二本の直線はA3及びAs変態温度を模式的に
示したものである。鋳片3をA1変態点以下まで空冷す
る従来法■のトラックタイムに比し、本実施例■の場合
は非常に短時間で、へ1変態点以下となる為、そのトラ
ックタイムが著しく短縮されていることが明らかである
。なお、■は理論的トラックタイムから直ちに再加熱す
る場合の曲線である。
To explain this situation conceptually using Fig. 3 and comparing it with the conventional method, the temperature of the slab 3 gradually decreases over time due to natural cooling from the high temperature (top left of the figure) where the slab 3 has completely solidified. is drawn as a gentle curve toward the bottom right of the figure. The two horizontal straight lines schematically represent the A3 and As transformation temperatures. Compared to the track time of conventional method (2) in which the slab 3 is air-cooled to below the A1 transformation point, in the case of this embodiment (2), the temperature is reduced to below the A1 transformation point in a very short time, so the track time is significantly shortened. It is clear that Note that ■ is a curve when reheating is performed immediately from the theoretical track time.

この様にして水冷した場合(本発明法)と水冷しなかっ
た場合とを、その表面疵の発生状況で比較すると、第4
図の如くで、トラックタイムを減少して行くと、水冷し
ない場合は当然の結果として著しく疵が増加するのに反
し、本発明法により水冷を行なった場合はトラックタイ
ムと関係無く、疵の発生がほとんど認められない。
Comparing the case of water cooling in this way (method of the present invention) and the case of no water cooling, the fourth
As shown in the figure, as the track time decreases, the number of defects increases significantly when water cooling is not used, but when water cooling is performed using the method of the present invention, the number of defects increases regardless of the track time. is hardly recognized.

別の実施例として、アルミ・シリコン・キルド鋼の連続
鋳造鋳片を水冷した場合と従来法とで、同じ径の丸ビレ
ット(図中、長尺8丁とあるのは良さ10mのビレット
のことである)を製造したときの、ビレット表面の平均
疵個数を月間統計で比較すると第5図の如くで、本発明
法による散水処理材の方が通常法に比し、ビレット全サ
イズにnり疵の発生が少ないことがわかる。本方法でも
、ごレット径210m以上では疵の増加が認められるが
、これは上記疵とは別の原因により発生する表面疵が増
加した為である。
As another example, when continuous casting slabs of aluminum, silicon, and killed steel were water-cooled, round billets with the same diameter were produced using the conventional method (in the figure, 8 long pieces refer to billets with a length of 10 m). A monthly statistical comparison of the average number of flaws on the billet surface when manufacturing a material with water spraying of the present invention method compared to the conventional method shows that It can be seen that there are fewer scratches. Even with this method, an increase in the number of scratches is observed for pellet diameters of 210 m or more, but this is due to an increase in surface scratches caused by causes other than the above-mentioned scratches.

[発明の効果] 以上述べて来た本発明の効果を要約すると、連l!c鋳
造法による鋳片から製造される圧延製品の表面疵の防止
と、トラックタイムの短縮及びその結果としての燃料原
単位の低減とである。
[Effects of the Invention] To summarize the effects of the present invention described above, the effects of the present invention can be summarized as follows. These are prevention of surface flaws in rolled products manufactured from slabs produced by the c-casting method, shortening of track time, and resulting reduction in fuel consumption.

先ず、表面疵に就いては、α及びγの二相領域を有する
材質の鋳片を圧延する場合、本発明法は等しくその効果
を現わすが、特に表層下割れの発生しやすい高炭素又は
高マンガン鋼の場合、更に、これらにチタン及び又はボ
ロンが加えられた材質の場合、顕著な効果が認められる
First, regarding surface defects, the method of the present invention is equally effective when rolling slabs made of materials having two-phase regions of α and γ. In the case of high manganese steel, and also in the case of materials to which titanium and/or boron are added, remarkable effects are observed.

次にトラックタイムに関してであるが、本発明法により
鋳片の表層のみを急冷して後、再加熱し圧延すれば、製
品の表面疵が増加すること無く、トラックタイムを大幅
に短縮出来る。本発明法は鋳片の表層のみを急冷する為
、加熱炉に装入するときの鋳片の総保有熱用が従来法に
比し増加し。
Next, regarding the track time, if only the surface layer of the slab is rapidly cooled using the method of the present invention, then reheated and rolled, the track time can be significantly shortened without increasing the surface defects of the product. Since the method of the present invention rapidly cools only the surface layer of the slab, the total heat capacity of the slab when it is charged into the heating furnace increases compared to the conventional method.

実質的に加熱炉への装入温度が上昇し、そこでの燃料原
単位の低減及び加熱時間の短縮が可能で、本発明法によ
る、長期間の実施例に於いて、燃料原単位は従来法に比
し、約13%低減された。その実績を示せば次の如くで
ある。
The charging temperature to the heating furnace substantially increases, and the fuel consumption rate and heating time can be reduced, and in long-term implementation using the method of the present invention, the fuel consumption rate is lower than that of the conventional method. It was reduced by about 13% compared to . The results are as follows.

方 法 処理最下/月 燃料原単位、千kcal従来法
   47,034     245.6本発明法  
39,379     213.6差        
              32.0更に付は加える
ならば、この燃料費の節約と言う直接的効果の他に、本
発明法によれば、加熱炉への装入温度が平準化され、又
後工程での疵取り作業が大幅に緩和される為、製造工程
が安定した管理状態となることは、本発明法の隠れた大
きな効果と言いえる。
Method Lowest processing rate per month Fuel consumption, 1,000 kcal Conventional method 47,034 245.6 Method of the present invention
39,379 213.6 difference
32.0 Furthermore, in addition to the direct effect of saving fuel costs, the method of the present invention also equalizes the charging temperature to the heating furnace, and also reduces the possibility of removing defects in the subsequent process. It can be said that the great hidden effect of the method of the present invention is that the manufacturing process can be kept under stable control because the work is greatly eased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1因は本発明により急速冷却を行なう水冷装置のm要
を示す正面図、第2図はその側面図、第3図は鋳片の温
度と時間の関係を示す概念図、第4図はトラックタイム
と疵の相関関係を示す関係図、第5図はビレットの疵の
発生状況をビレットの寸法別に示す、本発明法と従来法
の比較図である。 出願人代理人 弁理士 鈴江武彦 明 倒 (′L  ′″− 郷岨並牢砂
The first factor is a front view showing the main features of the water cooling device that performs rapid cooling according to the present invention, FIG. 2 is a side view, FIG. 3 is a conceptual diagram showing the relationship between slab temperature and time, and FIG. FIG. 5 is a relational diagram showing the correlation between track time and flaws, and is a comparison diagram of the method of the present invention and the conventional method, showing the occurrence of flaws in billets according to billet size. Applicant's representative Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造法により製造された直後の、高温の鋳片を、上
記鋳片の表層温度がA_3変態温度直下になったとき、
冷却水によりその表層のみを急速に冷却し、一旦、上記
表層温度をA_1変態温度以下とした後、再加熱し圧延
することを特徴とする、連続鋳造法による鋳片の冷却方
法。
When the surface temperature of the hot slab immediately after being manufactured by the continuous casting method becomes just below the A_3 transformation temperature,
A method for cooling a slab using a continuous casting method, characterized by rapidly cooling only the surface layer of the slab with cooling water, once bringing the temperature of the surface layer below the A_1 transformation temperature, and then reheating and rolling.
JP1720187A 1987-01-29 1987-01-29 Cooling method for billet manufactured by continuous casting method Pending JPS63188401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1720187A JPS63188401A (en) 1987-01-29 1987-01-29 Cooling method for billet manufactured by continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1720187A JPS63188401A (en) 1987-01-29 1987-01-29 Cooling method for billet manufactured by continuous casting method

Publications (1)

Publication Number Publication Date
JPS63188401A true JPS63188401A (en) 1988-08-04

Family

ID=11937324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1720187A Pending JPS63188401A (en) 1987-01-29 1987-01-29 Cooling method for billet manufactured by continuous casting method

Country Status (1)

Country Link
JP (1) JPS63188401A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253505A (en) * 1991-01-31 1992-09-09 Nkk Corp Direct rolling method for continuous cast slab
JP2010007167A (en) * 2008-06-30 2010-01-14 Sanyo Special Steel Co Ltd Method for manufacturing cold tool steel
JP2011073062A (en) * 2010-10-22 2011-04-14 Jfe Steel Corp Method and equipment for manufacturing steel plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253505A (en) * 1991-01-31 1992-09-09 Nkk Corp Direct rolling method for continuous cast slab
JP2010007167A (en) * 2008-06-30 2010-01-14 Sanyo Special Steel Co Ltd Method for manufacturing cold tool steel
JP2011073062A (en) * 2010-10-22 2011-04-14 Jfe Steel Corp Method and equipment for manufacturing steel plate

Similar Documents

Publication Publication Date Title
US5634512A (en) Method and apparatus for casting and thermal surface treatment
US4168993A (en) Process and apparatus for sequentially forming and treating steel rod
US6374901B1 (en) Differential quench method and apparatus
CN102909333B (en) Method and device for deceasing transverse corner cracks of casting blanks
EP0960670B1 (en) Method for water-cooling slabs
CN110695328A (en) Quick cooling device for reducing generation rate of cracks on surface of hot-delivery casting blank
CN109202029B (en) Production method for preventing straightening and hot-feeding cracks of microalloy steel continuous casting billet
CA1265421A (en) Method and apparatus for cooling rolled steels
JPS63188401A (en) Cooling method for billet manufactured by continuous casting method
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
JP3463550B2 (en) Method of preventing surface cracks in continuous cast slab
JPS6167549A (en) Direct hot rolling method in continuous casting
JP4217847B2 (en) Continuous casting method
JP3453990B2 (en) Cooling method for continuous casting bloom
RU2224605C2 (en) Method for making hot rolled strips and sheets
JP3412418B2 (en) Slab secondary cooling device
CN110756756B (en) Method for reducing generation rate of cracks on surface of hot-delivery casting blank
CN113584278A (en) Process method for improving surface quality of medium carbon manganese boron steel
JP6149789B2 (en) Steel continuous casting method
JP2910180B2 (en) Direct rolling method of steel
JPH08187560A (en) Heat treatment method of continuously cast slab
JP5402790B2 (en) Method for cooling continuous cast bloom slab and method for manufacturing the slab
JPS63168260A (en) Hot working method for continuously cast billet
JPS5950903A (en) Continuous hot rolling device for steel plate
JPH0348250B2 (en)