JPH08187560A - Heat treatment method of continuously cast slab - Google Patents

Heat treatment method of continuously cast slab

Info

Publication number
JPH08187560A
JPH08187560A JP6340602A JP34060294A JPH08187560A JP H08187560 A JPH08187560 A JP H08187560A JP 6340602 A JP6340602 A JP 6340602A JP 34060294 A JP34060294 A JP 34060294A JP H08187560 A JPH08187560 A JP H08187560A
Authority
JP
Japan
Prior art keywords
slab
cooling
heat treatment
water
cast slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6340602A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kinoshita
勝弘 木下
Yuichi Maeda
祐一 前田
Hiroaki Tsuneto
弘昭 常藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6340602A priority Critical patent/JPH08187560A/en
Publication of JPH08187560A publication Critical patent/JPH08187560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE: To provide a heat treatment method of a continuously cast slab which can be applied in on-line and does not give the effect to casting velocity of the cast slab and further, can accurately execute the heat treatment. CONSTITUTION: On the way of carrying the cast slab 10 produced by continuous casting and cut off into a prescribed length by laying on a carrying table D, water of >=0.3m<3> /min.m<2> flow rate is sprayed from sprays 13-16 arranged vertically and horizontally to the carried cast slab 10 to execute the rapid cooling treatment on the surface of the cast slab 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続鋳造によって製造
された鋳造鋼片(以下、単に鋳片という)の表層部の組
織を改善するために行う熱処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for improving the structure of the surface layer portion of a cast steel slab produced by continuous casting (hereinafter referred to simply as a slab).

【0002】[0002]

【従来の技術】連続鋳造方法によって製造された鋳片
は、その後加熱炉に搬送されて所定の温度に加熱され、
圧延機によって圧延されるが、鋳造後直ちに加熱炉に搬
送すると、鋳片の成分、組織、加熱温度あるいは圧延条
件によって種々の割れが発生するので、例えば、特開昭
63−168260号公報に記載のように、鋳片をその
表面温度がAr3 変態点より150〜50℃高い温度ま
で冷却時に、冷却媒体によって該鋳片内部が赤熱状態
で、かつその表面温度がAr1 変態点より100〜40
0℃低い温度となるように急冷して、その組織をベイナ
イト変態する連続鋳造片の熱間加工法が提案されてい
る。また、特開平2−299701号公報には、連続鋳
造機によって製造された鋳片を切断装置によって所定長
に切断した800〜900℃の鋳片を、トングクレーン
でラインとは別位置に配置された水槽に一定時間漬けて
熱処理を行う母材の熱間加工方法が提案されている。
2. Description of the Related Art A slab produced by a continuous casting method is then conveyed to a heating furnace and heated to a predetermined temperature,
Although it is rolled by a rolling mill, when it is conveyed to a heating furnace immediately after casting, various cracks occur depending on the composition of the slab, the structure, the heating temperature, or the rolling conditions. For example, it is described in JP-A-63-168260. As described above, when the slab is cooled to a temperature whose surface temperature is 150 to 50 ° C. higher than the Ar 3 transformation point, the inside of the slab is in a red hot state by the cooling medium, and the surface temperature is 100 to 100 ° C. from the Ar 1 transformation point. 40
There has been proposed a hot working method for a continuously cast piece in which the structure is bainite-transformed by rapidly cooling it to a temperature lower by 0 ° C. Further, in JP-A-2-299701, a slab produced by a continuous casting machine is cut into a predetermined length by a cutting device, and a slab at 800 to 900 ° C. is arranged at a position different from the line by a tong crane. There has been proposed a hot working method for a base material in which a base material is heat-treated by immersing it in a water tank for a certain period of time.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開昭
63−168260号公報記載の連続鋳造片の熱間加工
法においては以下のような問題がある。 変化する鋳造速度で連続的に流れる鋳片を、スプレー
冷却等によって所定の時間冷却することが難しく、結果
として正確な熱処理が困難である。 鋳造された鋳片をガス切断する前に冷却媒体によって
冷却しているので、鋳片の温度が下がり、これによって
後続するガス切断速度を下げざるを得なくなり、結果と
して鋳造速度が減少して生産能力を減少せざるをえな
い。また、特開平2−299701号公報の母材の熱間
処理方法においては、以下のような問題がある。 鋳造ラインで搬送中の鋳片を一旦オフラインの水槽に
浸漬する必要があり、クレーン等のハンドリング設備が
必要となり、水槽に鋳片を浸漬する時間も正確に制御す
る必要があるので、操業が複雑となる。 鋳片を漬ける水槽は、給水及び排水の配管を必要と
し、更には浸漬中の鋳片の下面に噴出水の配管を設ける
必要があり、ハンドリング装置も含めて全体的に設備が
複雑化し、設備価格の高騰を招く。 本発明はかかる事情に鑑みてなされたもので、オンライ
ンで行え、しかも鋳片の鋳造速度に影響を与えることな
く、更に熱処理も正確に行うことが可能な連続鋳造され
た鋳片の熱処理方法を提供することを目的とする。
However, the hot working method for continuous cast pieces described in Japanese Patent Laid-Open No. 168260/1988 has the following problems. It is difficult to cool a slab that continuously flows at a changing casting speed for a predetermined time by spray cooling or the like, and as a result, it is difficult to perform accurate heat treatment. Since the cast slab is cooled by the cooling medium before it is gas cut, the temperature of the slab is lowered, which inevitably reduces the subsequent gas cutting speed, resulting in a decrease in casting speed and production. I have no choice but to reduce my ability. Further, the method of hot treating the base material disclosed in Japanese Patent Laid-Open No. 2-299701 has the following problems. It is necessary to once immerse the slabs being transported in the casting line in the offline water tank, a handling facility such as a crane is required, and the time to immerse the slabs in the water tank must be accurately controlled, so the operation is complicated. Becomes The water tank for immersing the slab requires water supply and drainage pipes, and it is necessary to install a jet water pipe on the lower surface of the slab during immersion, which complicates the equipment as a whole, including the handling device. Invites a sharp rise in prices. The present invention has been made in view of such circumstances, and a heat treatment method for continuously cast slabs that can be performed online, and that does not affect the casting speed of the slabs, and that can also accurately perform heat treatment. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】前記目的に沿う請求項1
記載の連続鋳造された鋳片の熱処理方法は、連続鋳造に
よって製造され、所定の長さに切断された鋳片を搬送テ
ーブルに載せて搬送する途中に、上下左右に設けられた
スプレーから0.3m3 /min・m2 以上の水を、移
動する前記鋳片に散水して該鋳片表面の急冷処理を行う
ように構成されている。そして、請求項2記載の連続鋳
造された鋳片の熱処理方法は、請求項1記載の方法にお
いて、前記搬送テーブルのテーブル移動速度を調整する
ことによって、前記鋳片の熱処理時間を制御している。
A method according to the above-mentioned object.
According to the heat treatment method for continuously cast slabs described above, a slab, which is manufactured by continuous casting and cut into a predetermined length, is placed on a conveyor table and conveyed, and then sprayed from top, bottom, left, and right to a value of 0. Water of 3 m 3 / min · m 2 or more is sprinkled on the moving slab to quench the surface of the slab. The heat treatment method for continuously cast slabs according to claim 2 is the method according to claim 1, wherein the heat treatment time of the slabs is controlled by adjusting the table moving speed of the transport table. .

【0005】[0005]

【作用】請求項1及び2記載の連続鋳造された鋳片の熱
処理方法においては、連続鋳造された鋳片を所定の長さ
に切断した後に、熱処理を行っているので、スプレー噴
射による熱処理工程における鋳片の速度を、鋳造速度に
関係せず自由に設定でき、従って、最良の状態で連続鋳
造が可能となる。一方、切断後の鋳片の温度は切断前の
鋳片の温度より下がっているので、伝熱効率も下がり効
率的に熱処理を行う場合には、従来のスプレー冷却より
能率の良い水槽冷却を行うのが好ましいが、水槽冷却
(いわゆる、水槽に鋳片をどぶ漬けすることをいう)を
行う場合には、前述のような問題が発生する。勿論、従
来のスプレー冷却でも長時間行えば、水槽冷却と同様な
抜熱能は有するが、時間がかかるので、鋳片の内部まで
冷却されてしまい、急冷後赤熱状態の鋳片内部の保有熱
により再度表面組織を加熱するという熱処理が困難とな
る。
In the heat treatment method for continuously cast slabs according to claims 1 and 2, since the heat treatment is performed after the continuously cast slab is cut into a predetermined length, the heat treatment step by spray injection is performed. The speed of the slab can be freely set regardless of the casting speed, and therefore continuous casting can be performed in the best condition. On the other hand, since the temperature of the slab after cutting is lower than the temperature of the slab before cutting, if the heat transfer efficiency is also lowered and heat treatment is performed efficiently, cooling in a water tank that is more efficient than conventional spray cooling is performed. However, when cooling the water tank (so-called soaking the slab in the water tank), the above-mentioned problems occur. Of course, if it is done with conventional spray cooling for a long time, it has the same heat removal ability as water tank cooling, but it takes time, so the inside of the slab is cooled, and the heat retained inside the slab after the rapid cooling is retained. Heat treatment of heating the surface structure again becomes difficult.

【0006】そこで、請求項1及び2記載の連続鋳造さ
れた鋳片の熱処理方法においては、スプレー噴射による
冷却水の量を0.3m3 /min・m2 以上とし、これ
によって短時間に十分な鋳片表面の冷却を行う、水槽冷
却と同様な急速冷却を鋳片に与えて、適切な熱処理を行
うことを可能とした。以下、この理由について水槽冷却
と比較しながら、更に詳しく説明する。図1には、切断
後の鋳片を所定時間水槽冷却して直ちに引き上げた場合
の鋳片表面の温度変化を静止水と、噴水攪拌の場合に分
けて示しているが、この処理によって鋳片の表面がベイ
ナイト組織になって、その加熱、圧延工程で割れ等の欠
陥が生じにくいことが分かっている。次に、図2は図1
に示す水槽冷却での熱伝達係数(h)と表面温度との関
係を示しており、図3にはスプレー冷却における水量密
度と熱伝達係数との関係を表面温度毎に示している。従
って、水槽冷却であってもスプレー冷却であっても熱伝
達係数が同じであれば、鋳片に対して同一の冷却能を有
することになり、表面温度に関してこの関係を纏める
と、図4に示すようになる。図4において、下の線aは
静止水による水槽冷却となるので、これをスプレー冷却
に対応させた場合には、冷却水の量を0.3m3 /mi
n・m2 以上ですれば十分があることが分かる。そし
て、水槽冷却を行った場合には、図4の上の線bが上限
となるが、略2m3 /min・m2 程度が上限となり、
水槽冷却に対応させる場合には、スプレーからの冷却水
の量は0.3〜2m3 /min・m2 が適当となるが、
スプレーからの冷却水の量を更に増やして冷却能を増加
すれば、更に、冷却時の鋳片の搬送速度を向上すること
ができる。特に、請求項2記載の連続鋳造された鋳片の
熱処理方法においては、鋳片の搬送テーブルのテーブル
移動速度を調整することによって、スプレーによる冷却
時間を変えることができ、これによって、鋼種や用途に
応じた熱処理ができる。
Therefore, in the heat treatment method for continuously cast slabs according to the first and second aspects, the amount of cooling water by spray injection is set to 0.3 m 3 / min · m 2 or more, which is sufficient for a short time. It was made possible to apply appropriate heat treatment to the slab by subjecting the slab to rapid cooling similar to water bath cooling, which cools the surface of the slab. Hereinafter, the reason will be described in more detail while comparing with the water tank cooling. FIG. 1 shows the temperature change on the surface of the slab when the slab after cutting was cooled in a water tank for a predetermined period of time and immediately pulled up by dividing it into static water and stirring with a fountain. It has been found that the surface of has a bainite structure and cracks and other defects are less likely to occur during the heating and rolling processes. Next, FIG.
3 shows the relationship between the heat transfer coefficient (h) in the water tank cooling and the surface temperature, and FIG. 3 shows the relationship between the water amount density and the heat transfer coefficient in the spray cooling for each surface temperature. Therefore, if the heat transfer coefficient is the same regardless of whether it is water tank cooling or spray cooling, it will have the same cooling ability for the slab. As shown. In FIG. 4, the lower line a indicates cooling of the water tank with still water. Therefore, when this is adapted to spray cooling, the amount of cooling water is 0.3 m 3 / mi.
It can be seen that there is enough if n / m 2 or more. When the water tank is cooled, the upper line b in FIG. 4 is the upper limit, but the upper limit is about 2 m 3 / min · m 2 ,
In the case of supporting water tank cooling, the amount of cooling water from the spray is suitable to be 0.3 to 2 m 3 / min · m 2 ,
If the cooling capacity is increased by further increasing the amount of cooling water from the spray, it is possible to further improve the transport speed of the slab during cooling. Particularly, in the heat treatment method for continuously cast slabs according to claim 2, the cooling time by spraying can be changed by adjusting the table moving speed of the slab conveying table, whereby the steel type and application It is possible to perform heat treatment according to.

【0007】[0007]

【実施例】続いて、添付した図面を参照しつつ、本発明
を具体化した実施例につき説明し、本発明の理解に供す
る。ここに、図5は本発明の一実施例に係る連続鋳造さ
れた鋳片の熱処理方法を適用した設備の側面図、図6は
同正断面図である。
Embodiments of the present invention will now be described with reference to the accompanying drawings to provide an understanding of the present invention. 5 is a side view of equipment to which the heat treatment method for continuously cast slabs according to an embodiment of the present invention is applied, and FIG. 6 is a front sectional view of the same.

【0008】図5に示すように、連続鋳造された鋳片1
0を搬送する搬送テーブルはローラコンベアからなっ
て、カッターテーブルA、カッター出側テーブルB、冷
却前テーブルC、鋳片冷却テーブルD、出側テーブル
E、及び搬送テーブルFに区分され、それぞれにその速
度を独立に制御できるモータを備えている。
As shown in FIG. 5, continuously cast slab 1
The transport table for transporting 0 is composed of a roller conveyor and is divided into a cutter table A, a cutter outlet table B, a pre-cooling table C, a slab cooling table D, an outlet table E, and a transport table F, each of which has its own table. It has a motor that can control the speed independently.

【0009】前記カッターテーブルAの上部にガス切断
機11を備え、連続鋳造された鋳片(例えば、370m
m×480mm)10を所定長(例えば、3〜6m)に
ガス切断するようになっている。また、鋳片冷却テーブ
ルDの周囲はチャンバー12によって覆われていると共
に、図5、図6に示すように、内部にはスプレー(散水
機)13〜16が上下左右でしかも、鋳片進行方向に複
数段設けられ、図示しないポンプによって供給される大
量の冷却水をスプレー13〜16から噴出し、鋳片10
を4面から冷却するようになっている。このように、チ
ャンバー12によってスプレー13〜16の周囲を覆う
ことによって、飛散する水が系外に噴出するのを防止で
きる。
A gas cutting machine 11 is provided above the cutter table A, and continuously cast slabs (for example, 370 m).
m × 480 mm) 10 is gas-cut to a predetermined length (for example, 3 to 6 m). Further, the periphery of the slab cooling table D is covered by the chamber 12, and as shown in FIGS. 5 and 6, sprays (sprinklers) 13 to 16 are vertically and horizontally arranged in the slab traveling direction. A large amount of cooling water provided by a pump (not shown) is ejected from the sprayers 13 to 16 to form a slab 10.
Is cooled from four sides. As described above, by covering the periphery of the sprays 13 to 16 with the chamber 12, it is possible to prevent the splashed water from spouting out of the system.

【0010】また、前記鋳片冷却テーブルDの底部に
は、集水溝17が設けられ、スプレー13〜16によっ
て鋳片10に噴射された後の冷却水を集めるようになっ
ている。なお、前記スプレー13〜16からの噴出水量
は、前記した如く鋳片の面積に対して0.3〜2m3
min・m2 の範囲で調整できるようになっている。こ
のように、水の流量、鋳片冷却テーブルDの搬送速度を
制御することによって、鋼種に応じた熱処理制御ができ
る。
A water collecting groove 17 is provided at the bottom of the slab cooling table D so as to collect the cooling water after being sprayed on the slab 10 by the sprays 13 to 16. The amount of water ejected from the sprays 13 to 16 is 0.3 to 2 m 3 / area of the slab area as described above.
It can be adjusted within the range of min · m 2 . In this way, by controlling the flow rate of water and the transport speed of the slab cooling table D, it is possible to control the heat treatment according to the steel type.

【0011】従って、この設備においては、約0.6m
/minで鋳造された鋳片10を、ガス切断機11によ
って所定長に切断した後、カッター出側テーブルB、冷
却前テーブルCを経由して、鋳片冷却テーブルDに載せ
て2〜3m/minの速度で搬送する。これによって、
Ar3 変態点より50〜150℃程度に加熱された鋳片
がAr1 変態点より100〜400℃低い温度に急冷さ
れ、鋳片10の表面組織がベイナイト組織になり、搬送
時及び加熱時の2相域で、γ粒界へのAlNの析出が防
止でき、更にはベイナイト組織はフェライト+パーライ
ト組織に比較して延性が高いので、搬送時及び加熱時の
熱膨張や、組織変態に対して割れにくいという利点を有
する。なお、スプレー13〜16による鋳片10の冷却
温度は鋼種によって異なるのは当然である。以上の熱処
理を完了した鋳片10は出側テーブルEを経由して搬送
テーブルFに載って高速搬送される。
Therefore, in this equipment, about 0.6 m
After cutting the slab 10 cast at a speed of / min to a predetermined length by the gas cutting machine 11, the slab 10 is placed on the slab cooling table D via the cutter delivery side table B and the pre-cooling table C for 2-3 m / Transport at a speed of min. by this,
The slab heated to about 50 to 150 ° C. from the Ar 3 transformation point is rapidly cooled to a temperature 100 to 400 ° C. lower than the Ar 1 transformation point, and the surface structure of the slab 10 becomes a bainite structure. In the two-phase region, precipitation of AlN at the γ grain boundary can be prevented, and since the bainite structure has a higher ductility than the ferrite + pearlite structure, it is possible to prevent thermal expansion and microstructural transformation during transportation and heating. It has the advantage of being hard to break. The cooling temperature of the slab 10 by the sprays 13 to 16 naturally varies depending on the steel type. The slab 10 that has been subjected to the above heat treatment is placed on the transport table F via the delivery table E and is transported at high speed.

【0012】以上の実施例においては、スプレーからの
冷却水の流量を0.3〜2m3 /min・m2 とした
が、更に水圧、及び水量を増加して冷却することも可能
であり、特に、空気中においては水中と異なり周囲の水
の抵抗がないので、著しく水速を向上することができ、
効率的な冷却が期待できる。
In the above embodiments, the flow rate of the cooling water from the spray is set to 0.3 to 2 m 3 / min · m 2 , but it is also possible to further increase the water pressure and the water amount for cooling. In particular, in the air, unlike underwater, there is no resistance to the surrounding water, so the water speed can be significantly improved,
Efficient cooling can be expected.

【0013】[0013]

【発明の効果】請求項1及び2記載の連続鋳造された鋳
片の熱処理方法は、切断された鋳片を搬送テーブルで搬
送しながら、スプレーにより0.3m3 /min・m2
以上の水を鋳片に吹き付けて冷却するので、オンライン
で水槽冷却と同様な冷却効果を発揮させながら、鋳片を
熱処理できる。そして、冷却過程にあっては熱処理され
る鋳片が連続鋳造中の鋳片と分離しているので、連続鋳
造速度を自由に設定できる他、鋳片の冷却制御も自由に
行え、より正確な熱処理制御が可能となる。更には、鋳
片を水槽に入れて左右、上下から高速で水をスプレーす
ることは極めて大がかりな装置と動力が必要であるが、
気中であれば周囲の水の抵抗がないので、極めて容易で
あり、装置も小型に形成することができる。
The heat treatment method for continuously cast slabs according to claims 1 and 2 is 0.3 m 3 / min · m 2 by spraying while conveying the cut slabs on a transport table.
Since the above-described water is sprayed onto the slab for cooling, the slab can be heat-treated while exhibiting the same cooling effect as the water tank cooling online. And, in the cooling process, since the slab to be heat treated is separated from the slab being continuously cast, the continuous casting speed can be freely set, and the slab cooling control can also be freely performed, resulting in a more accurate The heat treatment can be controlled. Furthermore, it is necessary to put a slab in a water tank and spray water at high speed from the left and right, and from above and below at a very large scale and with a large amount of power.
Since there is no resistance of surrounding water in the air, it is extremely easy and the device can be made compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】水槽冷却における冷却時間と鋳片表面温度分布
の関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a cooling time in a water tank cooling and a slab surface temperature distribution.

【図2】水槽冷却における鋳片表面温度と熱伝達係数と
の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a slab surface temperature and a heat transfer coefficient in cooling in a water tank.

【図3】スプレー冷却における水量密度と熱伝達係数と
の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a water amount density and a heat transfer coefficient in spray cooling.

【図4】鋳片の表面温度とスプレー水量との関係を示す
グラフである。
FIG. 4 is a graph showing the relationship between the surface temperature of a slab and the amount of spray water.

【図5】本発明の一実施例に係る連続鋳造された鋳片の
熱処理方法を適用した設備の側面図である。
FIG. 5 is a side view of equipment to which a heat treatment method for continuously cast slabs according to an embodiment of the present invention is applied.

【図6】同正断面図である。FIG. 6 is a front sectional view of the same.

【符号の説明】[Explanation of symbols]

10 鋳片 11 ガス切断機 12 チャンバー 13 スプレー 14 スプレー 15 スプレー 16 スプレー 17 集水溝 A カッターテーブル B カッター出側テーブル C 冷却前テーブル D 鋳片冷却テーブル E 出側テーブル F 搬送テーブル 10 Slab 11 Gas cutting machine 12 Chamber 13 Spray 14 Spray 15 Spray 16 Spray 17 Water collecting groove A Cutter table B Cutter outlet table C Pre-cooling table D Slab cooling table E Ejection table F Transport table

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造によって製造され、所定の長さ
に切断された鋳片を搬送テーブルに載せて搬送する途中
に、上下左右に設けられたスプレーから0.3m3 /m
in・m2 以上の水を、移動する前記鋳片に散水して該
鋳片表面の急冷処理を行うことを特徴とする連続鋳造さ
れた鋳片の熱処理方法。
1. A slab, which is manufactured by continuous casting and cut into a predetermined length, is 0.3 m 3 / m from a spray provided on the upper, lower, left and right sides while being carried on a carrier table.
A heat treatment method for continuously cast slabs, characterized by sprinkling water of in · m 2 or more onto the moving slabs to quench the surface of the slabs.
【請求項2】 前記搬送テーブルのテーブル移動速度を
調整することによって、前記鋳片の熱処理時間を制御す
る請求項1記載の連続鋳造された鋳片の熱処理方法。
2. The heat treatment method for continuously cast slabs according to claim 1, wherein the heat treatment time of the slab is controlled by adjusting the table moving speed of the transport table.
JP6340602A 1994-12-28 1994-12-28 Heat treatment method of continuously cast slab Pending JPH08187560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6340602A JPH08187560A (en) 1994-12-28 1994-12-28 Heat treatment method of continuously cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6340602A JPH08187560A (en) 1994-12-28 1994-12-28 Heat treatment method of continuously cast slab

Publications (1)

Publication Number Publication Date
JPH08187560A true JPH08187560A (en) 1996-07-23

Family

ID=18338557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6340602A Pending JPH08187560A (en) 1994-12-28 1994-12-28 Heat treatment method of continuously cast slab

Country Status (1)

Country Link
JP (1) JPH08187560A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020192A (en) * 2013-07-19 2015-02-02 株式会社神戸製鋼所 Cooling method of cast slab
JP2015193042A (en) * 2014-03-26 2015-11-05 株式会社神戸製鋼所 Cooling method of casting piece of high strength steel
JP2015193039A (en) * 2014-03-26 2015-11-05 株式会社神戸製鋼所 Cooling method of casting piece of low alloy steel
JP2015193041A (en) * 2014-03-26 2015-11-05 株式会社神戸製鋼所 Cooling method of casting piece of spring steel
JP2015193038A (en) * 2014-03-26 2015-11-05 株式会社神戸製鋼所 Cooling method of casting piece of carbon steel
JP2015193040A (en) * 2014-03-26 2015-11-05 株式会社神戸製鋼所 COOLING METHOD OF CASTING PIECE OF HIGH Si SPRING STEEL
CN111618264A (en) * 2020-06-02 2020-09-04 北京科技大学 Casting blank cooling method for improving temperature uniformity of casting blank

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330112A (en) * 1986-07-22 1988-02-08 Mitsubishi Electric Corp Cooling control method and device for sheet stock
JPH01249253A (en) * 1988-03-30 1989-10-04 Sumitomo Metal Ind Ltd Method and device for uniformly rapid cooling round cast billet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330112A (en) * 1986-07-22 1988-02-08 Mitsubishi Electric Corp Cooling control method and device for sheet stock
JPH01249253A (en) * 1988-03-30 1989-10-04 Sumitomo Metal Ind Ltd Method and device for uniformly rapid cooling round cast billet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020192A (en) * 2013-07-19 2015-02-02 株式会社神戸製鋼所 Cooling method of cast slab
JP2015193042A (en) * 2014-03-26 2015-11-05 株式会社神戸製鋼所 Cooling method of casting piece of high strength steel
JP2015193039A (en) * 2014-03-26 2015-11-05 株式会社神戸製鋼所 Cooling method of casting piece of low alloy steel
JP2015193041A (en) * 2014-03-26 2015-11-05 株式会社神戸製鋼所 Cooling method of casting piece of spring steel
JP2015193038A (en) * 2014-03-26 2015-11-05 株式会社神戸製鋼所 Cooling method of casting piece of carbon steel
JP2015193040A (en) * 2014-03-26 2015-11-05 株式会社神戸製鋼所 COOLING METHOD OF CASTING PIECE OF HIGH Si SPRING STEEL
CN111618264A (en) * 2020-06-02 2020-09-04 北京科技大学 Casting blank cooling method for improving temperature uniformity of casting blank
CN111618264B (en) * 2020-06-02 2021-08-20 北京科技大学 Casting blank cooling method for improving temperature uniformity of casting blank

Similar Documents

Publication Publication Date Title
US6374901B1 (en) Differential quench method and apparatus
CA2192834C (en) Apparatus for producing strip of stainless steel
KR910004610B1 (en) Method for producing non-aging hot-dip galvanized steel strip
CN109097534B (en) Very thin precise stainless steel strip busbar bright annealing technology
JP5759103B2 (en) Control method of metal material in heat treatment furnace
JPH03210963A (en) Cast billet cooling and device used for performance of said method
CA1265421A (en) Method and apparatus for cooling rolled steels
JPH08187560A (en) Heat treatment method of continuously cast slab
EP0760397B1 (en) Equipment for manufacturing stainless steel strip
US5363902A (en) Contained quench system for controlled cooling of continuous web
EP0181101B1 (en) Apparatus and method for air cooling hot rolled steel rod
JP3453990B2 (en) Cooling method for continuous casting bloom
JPH0641647A (en) Heat treatment of wire rod
JPH04344859A (en) Device for cooling continuous cast slab
JP3406459B2 (en) Cooling method for continuous casting bloom
JP3783640B2 (en) Cooling method and equipment
JPH0929395A (en) Manufacture of stainless steel strip by continuous casting hot rolling and heat treatment furnace therefor
JP2003181608A (en) Method for cooling bloom outside continuous casting machine
JPS6234811B2 (en)
JPS61119623A (en) Cooling device for metallic plate or the like
JPH07275919A (en) Cooling method for wire rod
JPH0387312A (en) Steel hardening using liquid cooling medium
JPS6196041A (en) Multifunction heat treating equipment of steel wire rod
JPS6324050B2 (en)
JP2000246411A (en) Manufacture of continuously cast bloom

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000704