JPS6234811B2 - - Google Patents

Info

Publication number
JPS6234811B2
JPS6234811B2 JP17528782A JP17528782A JPS6234811B2 JP S6234811 B2 JPS6234811 B2 JP S6234811B2 JP 17528782 A JP17528782 A JP 17528782A JP 17528782 A JP17528782 A JP 17528782A JP S6234811 B2 JPS6234811 B2 JP S6234811B2
Authority
JP
Japan
Prior art keywords
cooling
strip
gas
liquid
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17528782A
Other languages
Japanese (ja)
Other versions
JPS5967323A (en
Inventor
Tetsuya Oohara
Yoshihiko Kawai
Kozaburo Ichida
Koichi Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17528782A priority Critical patent/JPS5967323A/en
Publication of JPS5967323A publication Critical patent/JPS5967323A/en
Publication of JPS6234811B2 publication Critical patent/JPS6234811B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は連続焼鈍ラインにおける鋼帯(以下ス
トリツプと云う)の冷却装置に関するものであ
る。 近時、自動車用鋼板等に用いられる加工用冷延
鋼板の熱処理(焼鈍)はバツチ式焼鈍から連続焼
鈍方式に代りつつあり、すでに国内外で採用され
既に実用稼動している。 この連続焼鈍設備の主要部をなす連続炉は概ね
加熱帯、均熱帯、1次冷却帯、過時効帯、2次冷
却帯からなつている。このうち、1次冷却帯にお
ける冷却速度制御技術が、冷延鋼板の加工性を左
右する重大なフアクターとなることは種々文献で
紹介されている通りである。 鋼板の加工性全般を向上させるためには、鋼板
の結晶粒径を十分大きく、また鋼板に含まれる固
溶Cをできるだけ少なくすることが必要である。
更に深絞り成形加工については平均塑性歪比値
の大きいことが好ましい。これ等を考慮した冷却
速度制御の一例として、特開昭55―104430号公報
には焼鈍後最初の冷却が早過ぎるとγ―α変態に
よつて結晶粒が細粒化、値も低下するので、焼
鈍後最初の冷却は冷却速度35℃/秒未満とし、
600℃以上の温度Tθで徐冷を中止し、50℃/秒
以上の急冷処理を行い、過時効処理を行う冷却方
法が開示されている。なお、この急冷処理は焼鈍
中の炭化物溶解を抑制し、更にCの過飽和度を高
めておけば過時効の所要時間短縮に効果がある。
上記したような冷却速度を徐冷から急冷に変化制
御する冷却方法を肩付冷却方法と称し、加工性の
優れた冷延鋼板を得るための公知技術の一つであ
る。 その典型的な熱サイクルを模式的に第2図に実
線にて示す。AB間が徐冷域であり、BC間が急冷
域である。 また同じ図中に、高張力鋼板の肩付冷却方法を
破線にて模式的に示す。A′B′間が徐冷域であ
り、B′C′間が急冷域である。このA′B′間の徐冷
により、C,Mn等の合金成分はオーステナイト
相へ濃縮され、次のB′C′間の急冷によりそのオ
ーステナイト相は効果的にマルテンサイトを含む
組織に硬化変態する。同時に先の徐冷によりマト
リツクスのフエライト相は合金成分を減じて純化
しているので高い延性をもつ。即ち、この肩付冷
却法により少ない合金成分をもつ安価な素材によ
り十分な強度をもち且つ加工性の良好な高張力鋼
板を製造することができる。 今、従来から周知の液体浸漬法、ガス冷却法、
さらに先に本出願人が特許出願した気液噴射装置
(特願昭55―135680号)及び液体噴射装置(特願
昭57−18837号)による冷却方法の4法によつて
前述した肩付冷却を実施しようとしても第1表に
示す如く一長一短があり推奨できるものがない。
The present invention relates to a cooling device for steel strip (hereinafter referred to as "strip") in a continuous annealing line. Recently, batch annealing has been replaced by continuous annealing in the heat treatment (annealing) of cold-rolled steel sheets for processing used in automobile steel plates, etc., and this method has already been adopted domestically and internationally and is already in practical use. The continuous furnace, which forms the main part of this continuous annealing equipment, generally consists of a heating zone, a soaking zone, a primary cooling zone, an overaging zone, and a secondary cooling zone. Among these, it has been introduced in various literature that the cooling rate control technology in the primary cooling zone is an important factor that influences the workability of cold rolled steel sheets. In order to improve the overall workability of a steel plate, it is necessary to make the crystal grain size of the steel plate sufficiently large and to minimize the amount of solid solution C contained in the steel plate.
Furthermore, for deep drawing processing, it is preferable that the average plastic strain ratio value is large. As an example of cooling rate control that takes these into consideration, JP-A-55-104430 states that if the initial cooling after annealing is too early, the crystal grains will become finer due to γ-α transformation and the value will also decrease. , the first cooling after annealing is performed at a cooling rate of less than 35°C/sec,
A cooling method is disclosed in which slow cooling is stopped at a temperature Tθ of 600° C. or higher, rapid cooling is performed at 50° C./second or higher, and overaging treatment is performed. Note that this rapid cooling treatment is effective in suppressing dissolution of carbides during annealing, and in shortening the time required for overaging by increasing the degree of supersaturation of C.
A cooling method in which the cooling rate is controlled to change from gradual cooling to rapid cooling as described above is called a shoulder cooling method, and is one of the known techniques for obtaining a cold-rolled steel sheet with excellent workability. A typical thermal cycle is schematically shown in FIG. 2 by a solid line. The area between AB is the slow cooling area, and the area between BC is the rapid cooling area. Also, in the same figure, a shoulder cooling method for high-tensile steel plates is schematically shown by broken lines. The area between A'B' is the slow cooling area, and the area between B'C' is the rapid cooling area. Through this slow cooling between A′B′, alloy components such as C and Mn are concentrated into the austenite phase, and through the next rapid cooling between B′C′, the austenite phase is effectively hardened and transformed into a structure containing martensite. do. At the same time, the ferrite phase of the matrix is purified by reducing the alloying components due to the previous slow cooling, so it has high ductility. That is, by this shoulder cooling method, a high tensile strength steel plate having sufficient strength and good workability can be manufactured using an inexpensive material having a small alloy component. Currently, the well-known liquid immersion method, gas cooling method,
Furthermore, the above-mentioned shoulder cooling method is applied using the four methods of cooling using a gas-liquid injection device (Japanese Patent Application No. 135680-1983) and a liquid injection device (Japanese Patent Application No. 18837-1983), for which the present applicant has previously applied for a patent. However, there are advantages and disadvantages as shown in Table 1, and there is nothing that can be recommended.

【表】 即ち、液体浸漬法では1次冷却の急冷域には適
しているが前記肩付冷却制御を行うに際し冷却能
力が大きすぎて徐冷操作が困難である。又過時効
処理を要する場合、冷却制御性がないため、いつ
たん温度を下げて過時効処理温度迄再加熱する必
要があり不経済である。これに反してガス冷却法
を用いる場合は、徐冷域では好適であつても、急
冷域では前記液体犢漬法に比し冷却能力が不足で
必然的に冷却有効設備長を長くとる必要が生じま
た、高張力鋼板の製造に際して多量の合金添加を
要するなど好ましくない。一方、前2者の欠点を
解消する目的で先に本出願人が提案した気液噴射
装置及び液体噴射装置による冷却法では前記した
肩付冷却制御をそれなりに行うことができ有益な
ものであるが前者の気液噴射法は急冷域で、又後
者の液体噴射法は徐冷域で、それぞれ冷却速度制
御性の点で前記した液体浸漬法及びガス冷却法に
劣る。 この点を詳述すれば以下の通りである。即ち、
気液噴射法の場合には、急冷域での冷却能力が不
足するか、又は冷却能力は十分であつても多量の
液体を霧化するために大量の気体を循環する必要
があり設備費及び操業コストが嵩むという問題が
ある。一方、液体噴射法の場合には、徐冷域にお
いて冷却能力、従つて液体流量を絞る結果、霧化
が不十分となり、不均一冷却による鋼帯の形状
(平坦度)不良を生じ易い。さらに、場合によつ
ては液流の勢いが足りず、鋼帯へ到達せず冷却そ
のものがなされないという不具合も生じ得る。 本発明者等は、上記不具合を解消する目的で、
前記冷却法について研究を積み重ねた結果、すで
に出願提案した前記気液噴射装置と液体噴射装置
とを連設せしむることによつて1次冷却の最初の
冷却に徐冷却を要するいわゆる肩付冷却処理に対
しては気液噴射装置を、所望温度に急冷終点制御
させるために液体噴射装置をそれぞれ独立に設
け、冷却機能を分解せしめることによつて、複雑
な冷却制御にも対応できる冷却装置が得られるこ
とを知見したものである。 即ち、本発明の要旨とするところは、ストリツ
プの連続熱処理設備に設けた冷却装置において、
上下方向に走行する高温のストリツプの表裏面
に、先ず、気体流と液体流を混合してつくつた気
液混合流体を噴射する気液噴射冷却装置と液体の
みを単独噴射する液体流噴射冷却装置とを連設せ
しめたことを特徴としたストリツプの冷却装置で
ある。 以下、本発明による冷却装置の実施例を図面に
より詳細に説明する。 第1図は冷延鋼板を製造する連続焼鈍工程にお
ける1次冷却処理工程に本発明の冷却装置を適用
した1例である。 説明の都合上、主として1次冷却工程を中心
に、その構成及び作用について述べる。1は連続
焼鈍炉内で高温状態に加熱均熱保持されたストリ
ツプで連続焼鈍炉均熱帯2と通路3間を上から下
に向つて移動する。この連続焼鈍炉均熱帯2と通
路3間には通常1種類の冷却手段からなる冷却室
が介在してストリツプを所望の温度に冷却制御し
ている。しかるに本発明の冷却装置は第1冷却室
4と第2冷却室5の2冷却室から構成され、さら
に各冷却室内の冷却手段は各冷却室間で互いに異
なつた冷却手段を保有している。即ち第1冷却室
4内には気水噴射冷却装置6(以下フオグスプレ
ー装置と云う)、第2冷却室5内には水噴射冷却
装置7(以下単にスプレー装置と云う)が鋼帯の
進行方向に対し平行に、かつストリツプの巾方向
に対し平行にそれぞれ多段に対峙して設けられて
いる。各冷却室の出側にはストリツプ表面に付着
した水を除去するための水切り用スプレー装置
8,8′が設けられている。 第1冷却室内に設けられたフオグスプレー装置
6は既に本出願人が特願昭55―135680号で先に提
案したフオグスプレー装置が利用できる。即ち、
不活性ガス(以下「ガス」と呼ぶ)はガス供給ヘ
ツダー9から、又水か水供給ヘツダー管10から
供給され各先端部で外部混合され、矢示方向にス
トリツプに対しやや上向きに気水混合流となつて
吹付けられる。もし、このフオグ吹付け方向をス
トリツプに対し水平方向に吹付けるのであれば、
先行して噴射されたフオグと後続のフオグとが干
渉してその結果、ストリツプの表面及びその近傍
にちらばることになり、ストリツプ表面に水膜が
形成しあるいは形成しやすい雰囲気となり冷却む
らが生じあるいは生じやすく、このため効率の良
い冷却と冷却コントロールが困難となる。このよ
うにフオグを水平に対し上向きに噴射することに
より、冷却がむらなく効率的に行われる。なおフ
オグ噴射速度は通常40〜100m/secの速度でスト
リツプに噴射される。フオグスプレー装置6から
ストリツプに噴射された飛散水はストリツプに当
つてはね返り、フオグスプレー装置に設けられた
水誘導板11上を伝つて下部に設けられた排水口
12,12′から排水本管121に導かれ系外に
排出される。なお、水誘導板11はストリツプに
戻らないように後方に傾斜した構造になつてい
る。第1冷却室内のガスは排気口13から排気本
管131に導かれ系外に排出される。 第1冷却室を上述の如きフオグスプレー装置6
に構成すれば加工性の良い冷延鋼板を得るために
必要な1次冷却初期徐冷(通常35℃/秒未満)、
いわゆる肩付冷却を容易に実施できるのである。
ストリツプを過時効温度(300〜500℃)迄徐冷を
続けると、過時効処理で炭素の析出が不充分で鋼
中に残留し時効性の点で問題が残るため、600℃
以上の温度Tθで徐冷却を停止した後、50℃/秒
以上の冷却速度で急冷処理を施して、ある程度鋼
中に過飽和に炭素を固溶させておいて、過時効処
理を施せば、炭素の析出が促進され加工性及び時
効性ともに満足した良材質の冷延鋼板が得られ
る。 本発明の冷却装置においてはこの急冷処理に対
処するため前記第1冷却室4に連設して急冷処理
専用の第2冷却室5を設けている。第2冷却室5
の急冷処理は、ストリツプを所定の過時効処理温
度で停止してやる必要から、冷却終点制御可能な
冷却手段として本実施例ではスプレーによる冷却
を取り込んだ。このスプレー処理については、特
に種類は問わないが、既に本出願人が先に特願昭
57−18837号で提案したスプレー装置が終点温度
制御をともなう冷却には有効であるため、本実施
例ではこのスプレー装置を採用した。このスプレ
ー装置はスプレーノズル14の向きに工夫がこら
されており、最上段のスプレーノズルはストリツ
プに対し下向きに、第2段目のスプレーノズルは
水平に、第3段目以降は全て上向きにそれぞれ設
けられている。最上段のスプレーノズルの向きを
下向きにすることによつて、噴射された冷却水が
ストリツプ表面で逆流現象を阻止し、均一な液滴
流の衝突帯をストリツプ上に形成することができ
る。第2段目のノズル向きを水平にすることによ
つて、最上段のスプレーノズルによつて得られた
均一液滴流を散乱させない働きがある。次に3段
目以降に設けられたスプレーノズルの向きを全て
上向きにすることによつてストリツプ上に垂れる
水量を低減させることができる。15及び15′
は第2冷却室内の排水口で排水本管121と連結
している。 なお、第1冷却室内のフオグスプレー及び第2
冷却室内の水スプレーの配置はストリツプの表面
をむらなく冷却するべくストリツプ表裏面でラツ
プしないようにする方が良く、上下方向又は左右
方向或いはその両方でずらして配置する。このよ
うに配置することによりストリツプの形状を悪化
させないで冷却できる。 第1冷却室と第2冷却室との中間にストリツプ
のぶれ止め用ガイドロール16を配設している。
17,17′,17″はステアリングロールで焼鈍
炉均熱帯2に1個、通路3に2個配設されてい
る。通路3の底部に排水口18が設けられ排水本
管121と連結して通路内の溜り水を排除できる
ようになつている。 第1冷却室で徐冷、第2冷却室で急冷され過時
効温度(300〜500℃)で急冷停止されたストリツ
プは、通路3を通つて、図示していないが過時効
帯、2次冷却帯で連続焼鈍工程を終了し、最後に
調質圧延機で1〜2%圧下を掛けられコイルに巻
取つて冷延鋼板となる。 本発明の冷却装置を上記1次冷却帯に適用すれ
ば、従来1手段の冷却では制御困難であつた冷却
初期に徐冷を要するいわゆる肩付冷却に対して冷
却能力が水単独スプレー冷却に比しゆるやかなフ
オグスプレー冷却装置を内在させた第1冷却室で
行わせ、引続いて急冷処理に移行する際は、フオ
グスプレー冷却に比し大きな冷却能力を有し、か
つ終点温度制御が可能な水スプレー冷却装置を内
在させた第2冷却室で急冷処理することにより、
容易に複雑な冷却制御を行うことができる。した
がつて、例えば肩付冷却処理を要する加工性が良
く時効劣化の少ない深絞り用冷延鋼板の製造に最
適な冷却装置である。また、同様に肩付冷却処理
の有効な良加工性高強度鋼板を安価な素材かな製
造するのに適した冷却装置である。 深絞り用冷延鋼板及び高張力冷延鋼板の肩付冷
却処理は、第2図の熱サイクル上に示すように、
徐冷域(AB及びA′B′間)を記号FSにて表わされ
るフオグスプレーにて、また急冷域(BC及び
B′C′間)を記号Sにて表わされる水スプレーに
て冷却することにより行われる。なお、1次冷却
で肩付冷却不要の場合は第1冷却室のフオグスプ
レー装置を止めて、第2冷却室の水スプレー装置
のみで冷却することもできる。 以上詳述した如く、いずれにせよ、徐冷却に適
した気液噴射冷却と急冷却に適した液体噴射冷却
を組合せた本発明の冷却装置によれば安価な設備
費及び操業コストにより巾広い冷却制御を行い得
るという顕著な効果が奏されうる。
[Table] That is, the liquid immersion method is suitable for the rapid cooling range of primary cooling, but when carrying out the shoulder cooling control, the cooling capacity is too large and slow cooling operation is difficult. Moreover, when overaging treatment is required, since there is no cooling controllability, it is necessary to lower the temperature and reheat to the overaging treatment temperature, which is uneconomical. On the other hand, when using the gas cooling method, although it is suitable in the slow cooling region, in the rapid cooling region the cooling capacity is insufficient compared to the liquid immersion method, and the length of the effective cooling equipment inevitably needs to be longer. , it is undesirable that a large amount of alloy must be added when manufacturing high-strength steel sheets. On the other hand, the cooling method using a gas-liquid injection device and a liquid injection device previously proposed by the present applicant for the purpose of eliminating the drawbacks of the former two methods is useful because it can perform the above-mentioned shoulder cooling control to a certain degree. However, the former gas-liquid injection method is inferior to the liquid immersion method and the gas cooling method described above in terms of cooling rate controllability in the rapid cooling region, and the latter liquid injection method in the slow cooling region. This point will be explained in detail as follows. That is,
In the case of the gas-liquid injection method, the cooling capacity in the quenching region is insufficient, or even if the cooling capacity is sufficient, it is necessary to circulate a large amount of gas to atomize a large amount of liquid, which increases equipment costs and costs. There is a problem that operating costs increase. On the other hand, in the case of the liquid injection method, as a result of restricting the cooling capacity and therefore the liquid flow rate in the slow cooling region, atomization becomes insufficient and the shape (flatness) of the steel strip tends to be poor due to uneven cooling. Furthermore, in some cases, the force of the liquid flow may be insufficient, resulting in a problem that the liquid does not reach the steel strip and cooling itself is not performed. In order to eliminate the above-mentioned problems, the inventors of the present invention,
As a result of repeated research on the cooling method, we have developed so-called shoulder cooling, which requires slow cooling for the first stage of primary cooling, by connecting the gas-liquid injection device and the liquid injection device, which we have already proposed. For processing, a gas-liquid injection device is installed independently, and a liquid injection device is installed to control the end point of rapid cooling to a desired temperature, and by disassembling the cooling function, a cooling system that can handle complex cooling control is created. This is what I found out that it can be obtained. That is, the gist of the present invention is that in a cooling device installed in a continuous strip heat treatment facility,
A gas-liquid injection cooling device that first injects a gas-liquid mixed fluid created by mixing a gas flow and a liquid flow onto the front and back surfaces of a high-temperature strip that runs vertically, and a liquid jet cooling device that injects only liquid alone. This is a strip cooling device characterized by having a strip cooling device connected with a strip cooling device. Hereinafter, embodiments of the cooling device according to the present invention will be described in detail with reference to the drawings. FIG. 1 is an example in which the cooling device of the present invention is applied to a primary cooling treatment step in a continuous annealing step for producing cold rolled steel sheets. For convenience of explanation, the structure and operation will be described mainly focusing on the primary cooling process. A strip 1 is heated and soaked at a high temperature in a continuous annealing furnace and moves from top to bottom between a soaking zone 2 and a passage 3 in the continuous annealing furnace. A cooling chamber consisting of one type of cooling means is usually interposed between the continuous annealing furnace soaking zone 2 and the passage 3 to cool and control the strip to a desired temperature. However, the cooling device of the present invention is composed of two cooling chambers, a first cooling chamber 4 and a second cooling chamber 5, and each cooling chamber has a different cooling means. That is, an air/water injection cooling device 6 (hereinafter referred to as a fog spray device) is installed in the first cooling chamber 4, and a water injection cooling device 7 (hereinafter simply referred to as a spray device) is installed in the second cooling chamber 5 in the direction of advance of the steel strip. and parallel to the width direction of the strip, facing each other in multiple stages. On the outlet side of each cooling chamber, a spray device 8, 8' for removing water adhering to the surface of the strip is provided. As the fog spray device 6 provided in the first cooling chamber, the fog spray device previously proposed by the present applicant in Japanese Patent Application No. 135680/1988 can be used. That is,
Inert gas (hereinafter referred to as "gas") is supplied from the gas supply header 9 and from the water or water supply header pipe 10, and is externally mixed at each tip, so that the air and water are mixed slightly upwardly with respect to the strip in the direction of the arrow. It is sprayed in a stream. If this fog spray direction is horizontal to the strip,
The fog that was injected in advance interferes with the fog that follows, and as a result, the fog is scattered on the surface of the strip and its vicinity, causing a water film to form on the surface of the strip, or creating an atmosphere where it is easy to form, resulting in uneven cooling. Otherwise, it tends to occur, which makes efficient cooling and cooling control difficult. By injecting the fog in an upward direction relative to the horizontal direction, cooling is performed evenly and efficiently. The fog is usually sprayed onto the strip at a speed of 40 to 100 m/sec. Splashed water sprayed onto the strip from the fog spray device 6 bounces off the strip, travels on the water guide plate 11 provided on the fog spray device, and is led to the drain main 121 from the drain ports 12, 12' provided at the bottom. It is discharged from the system. Note that the water guide plate 11 is structured to be tilted backward so as not to return to the strip. The gas in the first cooling chamber is guided from the exhaust port 13 to the exhaust main pipe 131 and exhausted to the outside of the system. The first cooling chamber is a fog spray device 6 as described above.
If configured as follows, the primary cooling initial slow cooling (usually less than 35°C/sec) necessary to obtain a cold-rolled steel sheet with good workability,
So-called shoulder cooling can be easily performed.
If the strip is slowly cooled to the overaging temperature (300 to 500℃), carbon will not precipitate sufficiently during the overaging treatment and will remain in the steel, causing problems in terms of aging.
After stopping slow cooling at the above temperature Tθ, rapid cooling is performed at a cooling rate of 50°C/second or more to form a solid solution of carbon in the steel to a certain degree of supersaturation.If overaging treatment is performed, carbon The precipitation of is promoted, and a cold-rolled steel sheet of good quality with satisfactory workability and aging resistance can be obtained. In the cooling device of the present invention, in order to cope with this rapid cooling process, a second cooling chamber 5 dedicated to the rapid cooling process is provided adjacent to the first cooling chamber 4. Second cooling chamber 5
In the rapid cooling process, it is necessary to stop the strip at a predetermined overaging temperature, so in this embodiment, spray cooling was used as a cooling means capable of controlling the cooling end point. The type of spray treatment is not particularly important, but the applicant has already filed a patent application
Since the spray device proposed in No. 57-18837 is effective for cooling with end point temperature control, this spray device was adopted in this example. This spray device is designed with special attention to the orientation of the spray nozzles 14, with the topmost spray nozzle facing downwards relative to the strip, the second stage spray nozzles horizontally, and the third and subsequent stages all facing upwards. It is provided. By orienting the uppermost spray nozzle downward, the jetted cooling water can prevent the backflow phenomenon on the strip surface and form an impingement zone of uniform droplet flow on the strip. By oriented the second stage nozzle horizontally, the uniform droplet flow obtained by the top stage spray nozzle is prevented from being scattered. Next, the amount of water dripping onto the strip can be reduced by orienting all the spray nozzles provided in the third and subsequent stages upward. 15 and 15'
is connected to the drain main pipe 121 at a drain port in the second cooling chamber. In addition, the fog spray in the first cooling chamber and the second
In order to uniformly cool the surface of the strip, the water sprays in the cooling chamber are preferably arranged so that they do not overlap on the front and back surfaces of the strip, and are staggered vertically, horizontally, or both. This arrangement allows cooling without deteriorating the shape of the strip. A guide roll 16 for preventing the strip from shaking is disposed between the first cooling chamber and the second cooling chamber.
17, 17', and 17'' are steering rolls, one in the soaking zone 2 of the annealing furnace and two in the passage 3. A drain 18 is provided at the bottom of the passage 3 and is connected to the main drainage pipe 121. The strip is made to be able to remove accumulated water in the passage.The strip is gradually cooled in the first cooling chamber, rapidly cooled in the second cooling chamber, and then stopped at the overaging temperature (300 to 500℃) through passage 3. Then, although not shown, the continuous annealing process is completed in an overaging zone and a secondary cooling zone, and finally, the sheet is reduced by 1 to 2% in a temper rolling mill and wound into a coil to become a cold rolled steel sheet. If the cooling device of the invention is applied to the above-mentioned primary cooling zone, the cooling capacity will be higher than that of water-only spray cooling for so-called shoulder cooling, which requires slow cooling in the early stage of cooling, which was difficult to control with conventional single cooling means. The first cooling chamber is equipped with a gradual fog spray cooling system, and when the process is subsequently transferred to rapid cooling, water spray cooling is used, which has a greater cooling capacity than fog spray cooling and can control the end point temperature. By performing rapid cooling treatment in the second cooling chamber containing the device,
Complex cooling control can be easily performed. Therefore, it is an optimal cooling device for producing cold-rolled steel sheets for deep drawing, which require shoulder cooling treatment and have good workability and little aging deterioration. In addition, this cooling device is suitable for producing inexpensive high-strength steel sheets with good workability that can be effectively subjected to shoulder cooling treatment. The shoulder cooling treatment of cold-rolled steel sheets for deep drawing and high-strength cold-rolled steel sheets is performed as shown on the thermal cycle in Figure 2.
The slow cooling area (between AB and A'B') is treated with a fog spray indicated by the symbol FS, and the rapid cooling area (between BC and A'B') is
B′C′) is cooled with a water spray represented by the symbol S. Note that if shoulder cooling is not required for primary cooling, the fog spray device in the first cooling chamber can be stopped and cooling can be performed only with the water spray device in the second cooling chamber. As detailed above, in any case, the cooling device of the present invention, which combines gas-liquid injection cooling suitable for gradual cooling and liquid injection cooling suitable for rapid cooling, can provide a wide range of cooling with low equipment costs and operating costs. A remarkable effect of control can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で、連続焼鈍炉の1次
冷却帯に適用した概要図、第2図は本発明の実施
例を、深絞り用鋼板と高張力鋼板の熱サイクル上
に示したものである。 1:ストリツプ、2:焼鈍炉均熱帯、3:通
路、4:第1冷却室、5:第2冷却室、6:フオ
グスプレー装置、7:水スプレー装置、8:水切
り用スプレー装置、9:ガス供給ヘツダー、1
0:水供給ヘツダー管、11:水誘導板、12,
15,18:排水口、13:排気口、14:スプ
レーノズル。
Fig. 1 shows an embodiment of the present invention, which is a schematic diagram applied to the primary cooling zone of a continuous annealing furnace, and Fig. 2 shows an embodiment of the present invention on a thermal cycle of a deep drawing steel plate and a high-strength steel plate. It is something that 1: Strip, 2: Annealing furnace soaking zone, 3: Passage, 4: First cooling chamber, 5: Second cooling chamber, 6: Fog spray device, 7: Water spray device, 8: Draining spray device, 9: Gas Supply header, 1
0: Water supply header pipe, 11: Water guide plate, 12,
15, 18: Drain port, 13: Exhaust port, 14: Spray nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼帯の連続熱処理設備に設けた冷却装置にお
いて、上下方向に走行する鋼帯の表裏面の上部
に、気体流と液体流を混合してつくつた気液混合
流体を噴射する気液噴射冷却装置と該気液噴射冷
却装置の下部に液体のみを単独噴射する液体流噴
射冷却装置とを連設したことを特徴とする鋼帯の
冷却装置。
1 In a cooling device installed in a continuous heat treatment facility for steel strips, gas-liquid injection cooling injects a gas-liquid mixed fluid created by mixing a gas flow and a liquid flow onto the top and bottom surfaces of a steel strip running in the vertical direction. 1. A cooling device for steel strip, characterized in that the device and a liquid jet cooling device for injecting only liquid alone are connected to the lower part of the gas-liquid jet cooling device.
JP17528782A 1982-10-07 1982-10-07 Cooler of steel strip Granted JPS5967323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17528782A JPS5967323A (en) 1982-10-07 1982-10-07 Cooler of steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17528782A JPS5967323A (en) 1982-10-07 1982-10-07 Cooler of steel strip

Publications (2)

Publication Number Publication Date
JPS5967323A JPS5967323A (en) 1984-04-17
JPS6234811B2 true JPS6234811B2 (en) 1987-07-29

Family

ID=15993477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17528782A Granted JPS5967323A (en) 1982-10-07 1982-10-07 Cooler of steel strip

Country Status (1)

Country Link
JP (1) JPS5967323A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756057B2 (en) * 1985-02-07 1995-06-14 日本鋼管株式会社 Strip cooling method in continuous heat treatment furnace
BE1008792A6 (en) * 1994-10-26 1996-08-06 Centre Rech Metallurgique Accelerated cooling device substrate scroll continuous fast in a vertical plane.
KR20040037348A (en) * 2002-10-28 2004-05-07 주식회사 포스코 Vertical type Equipment for cleaning oil in strip grinding line
FR3125066B1 (en) * 2021-07-12 2024-02-02 Fives Stein LIQUID COOLING OF A CONTINUOUS LINE

Also Published As

Publication number Publication date
JPS5967323A (en) 1984-04-17

Similar Documents

Publication Publication Date Title
JP3365469B2 (en) Primary cooling method in continuous annealing of steel strip
JP2008019505A (en) Method and facility for cooling steel strip
EP0760397B1 (en) Equipment for manufacturing stainless steel strip
JP3691996B2 (en) Steckel hot rolling equipment
CN1158641A (en) Method of continuous annealing of cold rolled steel plate and equipment thereof
JPS6234811B2 (en)
CN102747205A (en) Water quenching system for producing cold rolling phase transition reinforced high strength strip steel
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
US4422623A (en) Apparatus for cooling steel strips to effect continuous annealing
JPS5842254B2 (en) Continuous annealing equipment
CA1133365A (en) Method and apparatus for cooling steel strips to effect continuous annealing
EP0803583B2 (en) Primary cooling method in continuously annealing steel strips
EP0086331A1 (en) Continuous heat treating line for mild and high tensile strength stell strips or sheets
CN102747213B (en) Cooling method for continuous heat treatment of high-strength steel
JPS6111299B2 (en)
JP2807134B2 (en) Gas jet chamber sealing device
WO2023105846A1 (en) Steel strip production device, continuous annealing facility, and production method
JPS6117886B2 (en)
JPS5844134B2 (en) Continuous annealing equipment
JPS6240086B2 (en)
JPS6320282B2 (en)
JPH05263148A (en) Method for controlling cooling furnace for strip continuous heat treating device
JPS6230248B2 (en)
JPS58120743A (en) Continuous heat treatment for high tensile cold rolled steel strip
JP2001058202A (en) Hot rolling mill, and hot rolling method