JP2008019505A - Method and facility for cooling steel strip - Google Patents

Method and facility for cooling steel strip Download PDF

Info

Publication number
JP2008019505A
JP2008019505A JP2007105873A JP2007105873A JP2008019505A JP 2008019505 A JP2008019505 A JP 2008019505A JP 2007105873 A JP2007105873 A JP 2007105873A JP 2007105873 A JP2007105873 A JP 2007105873A JP 2008019505 A JP2008019505 A JP 2008019505A
Authority
JP
Japan
Prior art keywords
cooling
steel strip
water
temperature
rapid cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007105873A
Other languages
Japanese (ja)
Other versions
JP5200406B2 (en
Inventor
Hirokazu Kobayashi
弘和 小林
Shigeto Sasaki
成人 佐々木
Yasutaka Morikawa
容任 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007105873A priority Critical patent/JP5200406B2/en
Publication of JP2008019505A publication Critical patent/JP2008019505A/en
Application granted granted Critical
Publication of JP5200406B2 publication Critical patent/JP5200406B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a facility for cooling a steel strip, wherein in a continuous annealing process, high cooling speed is ensured at the same level as the conventional water quenching and also, the high productive efficiency can stably be ensured. <P>SOLUTION: The method for cooling the steel strip in the continuous annealing process related to this invention, is characterized in that after cooling by spraying the water to the heated steel strip 1, when this cooled steel strip 1 is cooled by dripping in a dipping vessel 52 at 60-90°C water temperature, the temperature of water to be sprayed to the steel strip 1 is lower than the water temperature in dipping vessel 52. Further, the cooling facility 5 for steel strip related to this invention, is provided with a rapid cooling means 51 for performing rapid cooling by spraying the water to the steel strip 1, the dipping vessel 52 arranged at downstream side of this rapid cooling means 51 and a cut-off means 53 for water-cut arranged between the rapid cooling means 51 and the dipping vessel 52. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、連続焼鈍工程において、焼鈍後の鋼帯の焼入れを行う際の鋼帯の冷却方法および冷却設備に関する。   TECHNICAL FIELD The present invention relates to a steel strip cooling method and cooling equipment when quenching a steel strip after annealing in a continuous annealing step.

鋼帯の連続焼鈍工程において、処理される鋼帯に必要とされる機械的特性を付与するためには、加熱及び冷却の熱処理条件の制御が重要である。一方、連続焼鈍工程において高張力鋼帯を製造する場合、鋼帯の高強度化の観点から、加熱された鋼帯を急速に冷却する処理が必要であり、またプレス成形性の観点から、冷却された鋼帯を再度加熱する処理(焼戻し処理)が必要となる。   In the continuous annealing process of the steel strip, it is important to control the heat treatment conditions of heating and cooling in order to impart the mechanical properties required for the steel strip to be treated. On the other hand, when producing a high-strength steel strip in the continuous annealing process, a treatment for rapidly cooling the heated steel strip is necessary from the viewpoint of increasing the strength of the steel strip, and from the viewpoint of press formability, cooling is required. A treatment (tempering treatment) for heating the steel strip again is necessary.

ところで、近年においては、高張力鋼帯の需要が増大してきており、高張力鋼板の製造に不可欠な急速冷却技術の重要性が増している。この急速冷却の方法としては、水焼入れ法、ロール冷却法、気水混合(ミスト)冷却法、ガスジェット冷却法等があり、必要な材質を得るためにこれらの方法が適宜選択される。   By the way, in recent years, the demand for high-strength steel strips has increased, and the importance of rapid cooling technology essential for the production of high-tensile steel plates has increased. As the rapid cooling method, there are a water quenching method, a roll cooling method, an air-water mixing (mist) cooling method, a gas jet cooling method, and the like, and these methods are appropriately selected in order to obtain a necessary material.

これらの中で、冷却水中に鋼帯を浸漬させる水焼入れ法が最も冷却速度が速く、強度を高めるための合金元素の添加を少なくできることから高張力鋼板の製造に適している。水焼入れ法としては、加熱された鋼帯を水中に浸漬させると同時に、水中に設けられたクエンチノズルから冷却水を鋼帯に噴射し、急冷を行う方法が一般的である。   Among these, the water quenching method in which the steel strip is immersed in the cooling water has the fastest cooling rate and is suitable for the production of a high-strength steel sheet because the addition of alloy elements for increasing the strength can be reduced. As a water quenching method, a method is generally used in which a heated steel strip is immersed in water, and at the same time, cooling water is jetted from a quench nozzle provided in water to the steel strip to perform rapid cooling.

しかし、水焼入れ法は、その速い冷却速度のために、冷却停止温度を制御することが困難であり、鋼帯が浸漬槽内を通過する間に水温と同じ温度まで冷却されてしまう。   However, in the water quenching method, it is difficult to control the cooling stop temperature because of its fast cooling rate, and the steel strip is cooled to the same temperature as the water temperature while passing through the immersion bath.

図7に、従来の連続焼鈍設備において水焼入れ法を用いた場合の鋼帯の温度履歴の概略図を示す。図7に示すように、従来の水焼入れ法を用いた方法では、クエンチノズルにより鋼帯表面をスプレー冷却した後、浸漬槽内でさらに冷却されるため、浸漬槽内の水温が35℃の場合(クエンチノズル噴射速度:3m/s、噴射水温度:30℃)、誘導加熱装置に到達する時点での鋼帯の温度も35℃まで冷却されてしまう。このため、急冷後の過時効処理において、鋼帯を再加熱する誘導加熱装置での加熱能力に与える負荷が高くなってしまう。一方、誘導加熱装置での加熱能力の負荷を下げるために、冷却水の水温を上げることが考えられるが、水温の上昇は冷却能力の低下をもたらし、必要とされる所定の材質が得られなくなる。   In FIG. 7, the schematic of the temperature history of the steel strip at the time of using the water quenching method in the conventional continuous annealing equipment is shown. As shown in FIG. 7, in the method using the conventional water quenching method, after the steel strip surface is spray-cooled by the quench nozzle, it is further cooled in the immersion tank, so the water temperature in the immersion tank is 35 ° C. (Quench nozzle injection speed: 3 m / s, jet water temperature: 30 ° C.), the temperature of the steel strip at the time of reaching the induction heating device is also cooled to 35 ° C. For this reason, in the overaging process after rapid cooling, the load given to the heating capability with the induction heating apparatus which reheats a steel strip will become high. On the other hand, in order to reduce the heating capacity load in the induction heating apparatus, it is conceivable to increase the cooling water temperature. However, the increase in the water temperature results in a decrease in the cooling capacity, and the required predetermined material cannot be obtained. .

また、鋼帯速度を増速させた場合、誘導加熱装置への負荷が著しく大きくなる事から、鋼帯速度の増速による生産性の向上は難しい(図7における通板速度:90m/min、鋼帯板厚:1.6mm、TS(引張り強さ):990MPa、El(伸び):17.4%)。   Further, when the steel strip speed is increased, the load on the induction heating device becomes remarkably large, so it is difficult to improve the productivity by increasing the steel strip speed (plate feed speed in FIG. 7: 90 m / min, Steel strip thickness: 1.6 mm, TS (tensile strength): 990 MPa, El (elongation): 17.4%.

水焼入れ法の速い冷却速度を維持しつつ、再加熱能力の負荷を低減する方法として、特許文献1に開示されている技術がある。これは鋼帯を急冷するにあたり、空中スプレーにより冷却を行い、その直後に従来と同様に水中に浸漬させる。さらに、浸漬槽内には複数の加熱ロールが設けられており、冷却と同時に加熱も行い、浸漬槽出側における鋼帯の温度を高めて、再加熱能力の負荷の低減を狙ったものである。   As a method for reducing the load of the reheating capacity while maintaining the fast cooling rate of the water quenching method, there is a technique disclosed in Patent Document 1. In order to rapidly cool the steel strip, it is cooled by air spray, and immediately after that, it is immersed in water as in the prior art. Furthermore, a plurality of heating rolls are provided in the immersion tank, and heating is performed simultaneously with cooling, and the temperature of the steel strip on the exit side of the immersion tank is increased, aiming to reduce the load of the reheating capacity. .

また、特許文献2には、連続焼鈍炉におけるストリップの冷却方法として、急冷却用のノズルと熱水噴射可能なノズルとを設置し、前記急冷却用のノズルを使用して鋼帯を急冷する冷却方法と、前記熱水噴射可能なノズルを使用して鋼帯を所定の温度で冷却停止させる冷却方法との2種類の方法が開示されている。また、熱水を噴射する際に、ノズルから噴射された熱水を下流側へ排水させないように遮蔽板を設けて捕集し、受水槽に回収する方法が開示されている。
特公平1−18974号公報 特開昭61−183415号公報
In Patent Document 2, as a method for cooling a strip in a continuous annealing furnace, a rapid cooling nozzle and a nozzle capable of injecting hot water are installed, and the steel strip is rapidly cooled using the rapid cooling nozzle. Two types of methods are disclosed: a cooling method and a cooling method in which cooling of the steel strip is stopped at a predetermined temperature using the nozzle capable of injecting hot water. Moreover, when injecting hot water, the method of providing and collecting a shielding board so that the hot water injected from the nozzle may not be drained to the downstream side, and collect | recovering in a water receiving tank is disclosed.
Japanese Patent Publication No. 1-18974 JP-A 61-183415

しかし、上記特許文献1で開示されている従来方法では、空中スプレーと浸漬槽内での冷却により冷却速度を確保しているため、冷却長が必然的に長くなり、高張力鋼板に必要な冷却速度を確保するのが困難であるという問題がある。また、浸漬槽内の加熱ロールは浸漬槽内の水溶液中にあるため、ロール内部では加熱されているものの、ロール表面では水溶液と接触しているため冷やされる。そのため、ロール温度は非常に不安定であり、定常的な操業には不向きである。   However, in the conventional method disclosed in Patent Document 1, since the cooling rate is ensured by air spray and cooling in the immersion tank, the cooling length is inevitably long, and the cooling required for the high-tensile steel plate. There is a problem that it is difficult to ensure speed. Moreover, since the heating roll in the immersion tank is in the aqueous solution in the immersion tank, it is heated inside the roll, but is cooled because it is in contact with the aqueous solution on the roll surface. For this reason, the roll temperature is very unstable and is not suitable for steady operation.

また、上記特許文献2で開示されている方法の場合、急冷却用のノズルを用いて冷却を実施した場合には、鋼帯は水温まで冷却されてしまうため、その後、鋼帯を再加熱する際の加熱能力の負荷を軽減させることは困難である。また、熱水噴射可能なノズルを用いた場合、冷却能力が低下するため、製造する全ての鋼帯について所望の特性を確保するために充分な冷却速度を確保することは困難となる。さらに、冷却用ノズルの下流側に設置してある遮蔽板については、熱水噴射を行う際の液滴捕集用の装置として設置されており、急冷却時の機能については何も効果を有していない。   In the case of the method disclosed in Patent Document 2, when cooling is performed using a rapid cooling nozzle, the steel strip is cooled to the water temperature, and then the steel strip is reheated. It is difficult to reduce the load of the heating capacity. In addition, when a nozzle capable of hot water injection is used, the cooling capacity is lowered, so that it is difficult to ensure a sufficient cooling rate for ensuring desired characteristics for all steel strips to be manufactured. Furthermore, the shielding plate installed on the downstream side of the cooling nozzle is installed as a device for collecting droplets when performing hot water injection, and has no effect on the function during rapid cooling. Not done.

そこで、本発明は、連続焼鈍工程において、従来の水焼入れ法と同程度の高い冷却速度を確保すると共に、安定的に高い生産能率を確保することが可能な鋼帯の冷却方法および冷却設備を提供することを目的とする。   Therefore, the present invention provides a steel strip cooling method and cooling equipment capable of ensuring a high cooling rate comparable to that of the conventional water quenching method and stably ensuring a high production efficiency in the continuous annealing process. The purpose is to provide.

上記課題を解決するために、本発明は以下のような特徴を有する。
[1]連続焼鈍工程における鋼帯の冷却方法であって、
加熱された鋼帯に水を噴射して冷却した後、該冷却した鋼帯を水温が60〜90℃の浸漬槽内に浸漬して冷却するに際し、前記鋼帯に噴射する水の温度を前記浸漬槽内の水温より低い温度とすることを特徴とする鋼帯の冷却方法。
[2]上記[1]において、鋼帯に噴射する水の温度を25℃以上、60℃未満とすることを特徴とする鋼帯の冷却方法。
[3]鋼帯に水を噴射し急速冷却を行う急速冷却手段と、
該急速冷却手段の下流側に配した浸漬槽と、
前記急速冷却手段と前記浸漬槽との間に配した水切りのための仕切り手段とを有することを特徴とする鋼帯の冷却設備。
[4]連続焼鈍工程における鋼帯の冷却方法であって、
加熱された鋼帯に水を噴射して冷却した後、該冷却した鋼帯を、冷却媒体として、その少なくとも一部にイオン性液体を含有している液体を用いた浸漬槽内に浸漬することを特徴とする鋼帯の冷却方法。
[5]イオン性液体が、次式(1)〜(5)の化学式で表される塩の1種または2種以上の混合物からなることを特徴とする請求項4に記載の鋼帯の冷却方法。
In order to solve the above problems, the present invention has the following features.
[1] A method for cooling a steel strip in a continuous annealing process,
After cooling the heated steel strip by injecting water, when cooling the cooled steel strip by immersing it in an immersion bath having a water temperature of 60 to 90 ° C., the temperature of the water injected to the steel strip is A method for cooling a steel strip, characterized in that the temperature is lower than the water temperature in the immersion bath.
[2] The method for cooling a steel strip according to [1], wherein the temperature of water sprayed onto the steel strip is 25 ° C. or more and less than 60 ° C.
[3] Rapid cooling means for rapidly cooling the steel strip by injecting water;
An immersion bath disposed downstream of the rapid cooling means;
A steel strip cooling facility comprising a partition means for draining disposed between the rapid cooling means and the immersion bath.
[4] A method for cooling a steel strip in a continuous annealing process,
After cooling the heated steel strip by spraying water, the cooled steel strip is immersed in an immersion bath using a liquid containing an ionic liquid at least in part as a cooling medium. A method for cooling a steel strip.
[5] The cooling of the steel strip according to claim 4, wherein the ionic liquid comprises one or a mixture of two or more salts represented by chemical formulas of the following formulas (1) to (5): Method.

Figure 2008019505
Figure 2008019505

ここで、式中R〜R は、直鎖または分枝鎖、置換または非置換のアルキル、アリール、アルコキシアルキル、アルキレンアリール、ヒドロキシアルキルおよびハロアルキルから成る群から選択され、Nは窒素原子またはリン原子、Xはメチルサルフェート、PF 、BF およびハロゲン化合物より選択される陰イオン、Yは窒素またはホスフェートのようなテヘロ原子を含有する陽イオン、Zはグリセロール、クエン酸、尿素、その他の中性プロトン供与体もしくは受容体より選ばれる水素結合の可能な中性分子である。また、mおよびnは電気的中性を付与するために選択された整数であり、qは0〜1000の整数である。
[6]上記[4]または[5]において、鋼帯に噴射する水の温度を25℃以上、60℃未満とし、浸漬槽内の冷却媒体の温度を150〜300℃とすることを特徴とする鋼帯の冷却方法。
Wherein R 1 to R 4 are selected from the group consisting of linear or branched, substituted or unsubstituted alkyl, aryl, alkoxyalkyl, alkylenearyl, hydroxyalkyl and haloalkyl, where N is a nitrogen atom or A phosphorus atom, X is an anion selected from methyl sulfate, PF 6 , BF 4 and a halogen compound, Y is a cation containing a thero atom such as nitrogen or phosphate, Z is glycerol, citric acid, urea, It is a neutral molecule capable of hydrogen bonding selected from other neutral proton donors or acceptors. M and n are integers selected for imparting electrical neutrality, and q is an integer of 0 to 1000.
[6] In the above [4] or [5], the temperature of water sprayed on the steel strip is 25 ° C. or more and less than 60 ° C., and the temperature of the cooling medium in the immersion bath is 150 to 300 ° C. To cool the steel strip.

本発明によれば、連続焼鈍工程において、従来の水焼入れ法と同程度の高い冷却速度を確保すると共に、安定的に高い生産能率を確保することが可能な鋼帯の冷却方法および冷却設備が提供される。   According to the present invention, in a continuous annealing process, a steel strip cooling method and a cooling facility capable of ensuring a high cooling rate comparable to that of a conventional water quenching method and stably ensuring a high production efficiency are provided. Provided.

以下、本発明を実施するための最良の形態の一例を説明する。   Hereinafter, an example of the best mode for carrying out the present invention will be described.

図1に本発明に係る冷却設備が適用される連続焼鈍設備の設備構成の一例を示す。また、図2および図3に、本発明に係る冷却設備の設備構成の一例を示す。   FIG. 1 shows an example of the equipment configuration of a continuous annealing equipment to which the cooling equipment according to the present invention is applied. 2 and 3 show an example of the equipment configuration of the cooling equipment according to the present invention.

図1に示すように鋼帯の連続焼鈍設備は、連続して搬送される鋼帯1を連続的に加熱または冷却する加熱帯2、均熱帯3、ガスジェット冷却帯4、冷却設備5、誘導加熱装置6、過時効帯7から構成されている。   As shown in FIG. 1, the steel strip continuous annealing equipment includes a heating zone 2, a soaking zone 3, a gas jet cooling zone 4, a cooling facility 5, induction for continuously heating or cooling the steel strip 1 that is continuously conveyed. It consists of a heating device 6 and an overaging zone 7.

また、図2および図3に示すように、前記冷却設備5は、鋼帯1に水を噴射し急速冷却を行う急速冷却手段51と、この急速冷却手段51の下流側に配した浸漬槽52と、前記急速冷却手段51と前記浸漬槽52との間に配した水切りのための仕切り手段53とを有する。なお、前記急速冷却手段51の鋼帯1入側の直上にはピンチロール8が設置され、前記浸漬槽52の下流側にはリンガーロール9とドライヤー10とが設置される。また、浸漬槽52内に冷却媒体として水の代わりに、イオン性液体、または、冷却媒体の少なくとも一部にイオン性液体を含有している液体を用いる場合は、図3に示すように前記液体を保温するためのヒーター11が取り付けられる。   As shown in FIGS. 2 and 3, the cooling facility 5 includes a rapid cooling means 51 that injects water into the steel strip 1 to perform rapid cooling, and a dipping tank 52 disposed on the downstream side of the rapid cooling means 51. And partition means 53 for draining water disposed between the rapid cooling means 51 and the immersion tank 52. A pinch roll 8 is installed immediately above the steel strip 1 entry side of the rapid cooling means 51, and a ringer roll 9 and a dryer 10 are installed downstream of the immersion tank 52. In addition, in the case where an ionic liquid or a liquid containing an ionic liquid in at least a part of the cooling medium is used instead of water as the cooling medium in the immersion tank 52, as shown in FIG. A heater 11 for keeping the temperature is attached.

ここで、前記イオン性液体は100℃以上の高温で安定な液体として存在する。また、前記イオン性液体は不揮発性であり蒸発せず、劣化も起こしにくいため、繰り返し使えるという特徴を有する。さらに、熱容量が大きく保温性も高い。   Here, the ionic liquid exists as a stable liquid at a high temperature of 100 ° C. or higher. Further, the ionic liquid is non-volatile, does not evaporate, and does not easily deteriorate, so that it can be used repeatedly. Furthermore, it has a large heat capacity and high heat retention.

このように、前記イオン性液体は100℃以上の高温で液体として存在できるため、浸漬槽52内に入れた場合、水より冷却停止温度を高く保つことが可能となり、後段側の誘導加熱装置6の負荷を低減することができる。   Thus, since the ionic liquid can exist as a liquid at a high temperature of 100 ° C. or higher, the cooling stop temperature can be kept higher than that of water when placed in the immersion tank 52, and the induction heating device 6 on the rear stage side can be maintained. Can be reduced.

前記イオン性液体の性質を損なわないように、浸漬槽52内の冷却媒体中に含有させるイオン性液体の含有比率は高い方が望ましく、冷却媒体をイオン性液体のみで構成することがより望ましい。しかし、イオン性液体に水、他のイオンや他の混合物等が含まれていてもよい。   In order not to impair the properties of the ionic liquid, it is desirable that the content ratio of the ionic liquid contained in the cooling medium in the immersion bath 52 is high, and it is more desirable that the cooling medium is composed of only the ionic liquid. However, the ionic liquid may contain water, other ions, other mixtures, or the like.

上記のような効果を示すイオン性液体として、以下の化学式(1)〜(5)で表されるものを用いることが好ましい。なお、このイオン性液体は、以下の化学式(1)〜(5)で表されるものを単独で用いてもよく、2種以上を混合して用いてもよい。   As the ionic liquid exhibiting the effects as described above, those represented by the following chemical formulas (1) to (5) are preferably used. In addition, as this ionic liquid, what is represented by the following chemical formula (1)-(5) may be used independently, and 2 or more types may be mixed and used for it.

Figure 2008019505
Figure 2008019505

ここで、式中R〜R は、直鎖または分枝鎖、置換または非置換のアルキル、アリール、アルコキシアルキル、アルキレンアリール、ヒドロキシアルキルおよびハロアルキルから成る群から選択され、Nは窒素原子またはリン原子、Xはメチルサルフェート、PF 、BF およびハロゲン化合物より選択される陰イオン、Yは窒素またはホスフェートのようなテヘロ原子を含有する陽イオン、Zはグリセロール、クエン酸、尿素、その他の中性プロトン供与体もしくは受容体より選ばれる水素結合の可能な中性分子である。また、mおよびnは電気的中性を付与するために選択された整数であり、qは0〜1000の整数である。 Wherein R 1 to R 4 are selected from the group consisting of linear or branched, substituted or unsubstituted alkyl, aryl, alkoxyalkyl, alkylenearyl, hydroxyalkyl and haloalkyl, where N is a nitrogen atom or A phosphorus atom, X is an anion selected from methyl sulfate, PF 6 , BF 4 and a halogen compound, Y is a cation containing a thero atom such as nitrogen or phosphate, Z is glycerol, citric acid, urea, It is a neutral molecule capable of hydrogen bonding selected from other neutral proton donors or acceptors. M and n are integers selected for imparting electrical neutrality, and q is an integer of 0 to 1000.

前記急速冷却手段51としては、鋼帯1の表裏面のそれぞれに冷却水をスプレー可能とするように、鋼帯1の表裏面の両側にそれぞれ複数段に配したスリットノズル54により構成することができる。前記スリットノズル54から、前記急速冷却手段51が配される急速冷却帯に進入してきた鋼帯1の表裏面全面に冷却水を噴射することで、加熱された鋼帯1の急速冷却が可能となる。   The rapid cooling means 51 may be configured by slit nozzles 54 arranged in multiple stages on both sides of the front and back surfaces of the steel strip 1 so that cooling water can be sprayed on each of the front and back surfaces of the steel strip 1. it can. By injecting cooling water from the slit nozzle 54 onto the entire front and back surfaces of the steel strip 1 that has entered the rapid cooling zone in which the rapid cooling means 51 is disposed, the heated steel strip 1 can be rapidly cooled. Become.

ここで、前記急速冷却手段51と前記浸漬槽52との間には、前記急速冷却手段51で噴射された冷却水が、後段側に配された前記浸漬槽52に流れ込まないように水切りのための仕切り手段53が配されている。仕切り手段53が無いと、急速冷却手段51で噴射された冷却水が、浸漬槽52に多く流れ込み、この結果、浸漬槽内の水温が低下して、冷却後、誘導加熱装置6における加熱負荷が増大する。このため、浸漬槽内の水温の低下を抑制する仕切り手段53が必要となる。この仕切り手段53としては、遮蔽板を用いることができるが、特に遮蔽板に限定されるものではなく、例えばロール等を用いてもよい。ロールを使用することにより、鋼帯1により近接して設置することが可能となり、浸漬槽52への冷却水の流入量をより抑えることができる。また、仕切り手段53にガスノズルを設置し、このガスノズルからガスを噴射し、パージを行うことも浸漬槽52への冷却水の流入防止に有効である。   Here, between the rapid cooling means 51 and the immersion tank 52, the cooling water sprayed by the rapid cooling means 51 is drained so as not to flow into the immersion tank 52 disposed on the rear stage side. The partition means 53 is arranged. Without the partitioning means 53, a large amount of cooling water sprayed by the rapid cooling means 51 flows into the immersion tank 52. As a result, the water temperature in the immersion tank decreases, and after cooling, the heating load in the induction heating device 6 is increased. Increase. For this reason, the partition means 53 which suppresses the fall of the water temperature in an immersion tank is needed. As the partition means 53, a shielding plate can be used, but is not particularly limited to the shielding plate, and for example, a roll or the like may be used. By using the roll, it is possible to install the steel strip 1 closer to the steel strip 1, and the amount of cooling water flowing into the immersion tank 52 can be further suppressed. It is also effective to prevent cooling water from flowing into the immersion tank 52 by installing a gas nozzle in the partitioning means 53, injecting gas from the gas nozzle, and purging.

前記急速冷却手段51のスリットノズル54から噴射された冷却水の大部分は、前記仕切り手段53によりせき止められ、急速冷却手段51に設けられた排水口55から循環槽56に回収される。前記循環槽56に回収された冷却水は、冷却装置57により所定の温度に冷却されたのち、循環槽56に戻され、再びスリットノズル54から噴射される。   Most of the cooling water jetted from the slit nozzle 54 of the rapid cooling means 51 is dammed by the partition means 53 and is collected in the circulation tank 56 from the drain outlet 55 provided in the rapid cooling means 51. The cooling water collected in the circulation tank 56 is cooled to a predetermined temperature by the cooling device 57, returned to the circulation tank 56, and sprayed from the slit nozzle 54 again.

スリットノズル54から噴射された冷却水の一部は仕切り手段53と鋼帯1、あるいは仕切り手段53の間隙から後段側の浸漬槽52内に流入する場合もある。しかし、浸漬槽52内に流入する量は浸漬槽52内の水量または液量に比べ少なく、浸漬槽52内の水温または液温への影響はほとんどない。   A part of the cooling water sprayed from the slit nozzle 54 may flow into the rear immersion tank 52 from the partition means 53 and the steel strip 1 or the gap between the partition means 53. However, the amount flowing into the immersion tank 52 is smaller than the amount of water or liquid in the immersion tank 52, and there is almost no influence on the water temperature or liquid temperature in the immersion tank 52.

一般に、鋼帯の強度は急冷時の冷却速度に依存し、冷却速度が遅くなると強度不足となる。従来の水中でスプレー冷却をする水焼入れ法では、噴流により鋼帯表面の境界層を打ち破ることによって、単に鋼帯を水中に浸漬させるよりも速い冷却速度を達成している。一方、本発明においては、急速冷却手段51と浸漬槽52とを分離した場合においても、急速冷却手段51において、十分な水量をスリットノズル54から噴射することにより、水中でスプレーするのと同等の冷却能力が得られる。   In general, the strength of the steel strip depends on the cooling rate at the time of rapid cooling, and the strength becomes insufficient when the cooling rate becomes slow. In the conventional water quenching method in which water is spray-cooled in water, a boundary layer on the surface of the steel strip is broken by a jet to achieve a faster cooling rate than simply immersing the steel strip in water. On the other hand, in the present invention, even when the rapid cooling means 51 and the immersion tank 52 are separated, the rapid cooling means 51 is equivalent to spraying in water by ejecting a sufficient amount of water from the slit nozzle 54. Cooling capacity is obtained.

同一の鋼帯サイズの場合、冷却速度は、スリットノズル54からの噴射流速および冷却水の水温に依存する。ノズルからの噴射流速が速いほど冷却速度は高まるが、ある程度以上(例えば、2m/s以上)の噴射流速であれば、冷却効果はほぼ同じである。それに対し、水温は、その温度が高いほど冷却速度が低くなる。したがって、速い冷却速度を保つためには、急速冷却手段51の冷却水の温度は、浸漬槽52内の水温よりも低くする必要がある。ここで、冷却水の温度はなるべく低い方がよく、鋼帯の材質との兼ね合いから25℃以上、60℃未満とすることが好ましい。   In the case of the same steel strip size, the cooling rate depends on the jet flow rate from the slit nozzle 54 and the coolant temperature. The faster the jet flow rate from the nozzle, the higher the cooling rate. However, if the jet flow rate is a certain level (eg, 2 m / s or more), the cooling effect is almost the same. On the other hand, the cooling rate of the water temperature decreases as the temperature increases. Therefore, in order to maintain a high cooling rate, the temperature of the cooling water in the rapid cooling means 51 needs to be lower than the water temperature in the immersion tank 52. Here, the temperature of the cooling water is preferably as low as possible, and is preferably 25 ° C. or more and less than 60 ° C. in consideration of the material of the steel strip.

なお、急速冷却手段51に進入する鋼帯1の温度である焼入れ開始温度、冷却水の水温のばらつき、連続焼鈍設備のライン速度の変動等を考慮すると、前記スリットノズル54から噴射される冷却水の温度の上限は、45℃とすることがより好ましい。これにより、安定的な操業がより可能となる。   In consideration of the quenching start temperature, which is the temperature of the steel strip 1 entering the rapid cooling means 51, variations in the cooling water temperature, fluctuations in the line speed of the continuous annealing equipment, etc., the cooling water injected from the slit nozzle 54 The upper limit of the temperature is more preferably 45 ° C. Thereby, stable operation becomes possible.

前記急速冷却手段51により冷却された鋼帯1は、次に浸漬槽52内の冷却媒体である水またはイオン性液体中に浸漬される。ここで、前記浸漬槽52内の水温または液温は、後段側の誘導加熱装置6の加熱負荷を低減させるため、水の場合は60〜90℃、イオン性液体の場合は150〜300℃にすることが好ましい。   The steel strip 1 cooled by the rapid cooling means 51 is then immersed in water or ionic liquid which is a cooling medium in the immersion tank 52. Here, the water temperature or the liquid temperature in the immersion bath 52 is 60 to 90 ° C. for water and 150 to 300 ° C. for ionic liquid in order to reduce the heating load of the induction heating device 6 on the rear stage side. It is preferable to do.

図4に、本発明に係る鋼帯の冷却方法を用いた場合の鋼帯の温度履歴の概略図を示す。図4に示すように、例えば浸漬槽52内の冷却水の水温を80℃で保持させた場合には(クエンチノズル噴射速度:3m/s、噴射水温度:35℃)、誘導加熱装置6に到達する時点での鋼帯の温度を80℃程度に保持することが可能となる。そのため誘導加熱装置6の加熱能力に与える負荷が低減可能となり、且つ鋼帯速度の増速が可能となる。なお、図4における通板速度:130m/min、鋼帯板厚:1.6mm、TS(引張り強さ):998MPa、El(伸び):17.6%であった。   In FIG. 4, the schematic of the temperature history of the steel strip at the time of using the cooling method of the steel strip which concerns on this invention is shown. As shown in FIG. 4, for example, when the water temperature of the cooling water in the immersion tank 52 is maintained at 80 ° C. (quenching nozzle injection speed: 3 m / s, injection water temperature: 35 ° C.), the induction heating device 6 It becomes possible to keep the temperature of the steel strip at the time of reaching about 80 ° C. Therefore, the load given to the heating capacity of the induction heating device 6 can be reduced, and the steel strip speed can be increased. In FIG. 4, the sheet passing speed was 130 m / min, the steel strip thickness: 1.6 mm, TS (tensile strength): 998 MPa, and El (elongation): 17.6%.

さらに、別の一例として、図5に、本発明に係る鋼帯の冷却方法を用いた場合の鋼帯の温度履歴の概略図を示す。図5に示すように、例えば浸漬槽52内のイオン性液体の液温を250℃で保持させた場合には(クエンチノズル噴射速度:3m/s、噴射水温度:35℃)、誘導加熱装置6に到達する時点での鋼帯の温度を250℃程度に保持することが可能となる。そのため誘導加熱装置6の加熱能力に与える負荷が低減可能となり、且つ鋼帯速度の増速が可能となる。なお、図5における通板速度:180m/min、鋼帯板厚:1.6mm、TS(引張り強さ):998MPa、El(伸び):17.6%であった。   Furthermore, as another example, FIG. 5 shows a schematic diagram of the temperature history of the steel strip when the steel strip cooling method according to the present invention is used. As shown in FIG. 5, for example, when the liquid temperature of the ionic liquid in the immersion tank 52 is maintained at 250 ° C. (quenching nozzle injection speed: 3 m / s, injection water temperature: 35 ° C.), the induction heating device The temperature of the steel strip when reaching 6 can be maintained at about 250 ° C. Therefore, the load given to the heating capacity of the induction heating device 6 can be reduced, and the steel strip speed can be increased. In addition, the sheet | seat speed | rate in FIG. 5: 180 m / min, steel strip board thickness: 1.6 mm, TS (tensile strength): 998 MPa, El (elongation): 17.6%.

このように、本発明においては、急速冷却手段51における冷却と浸漬槽52内での冷却を分離し、急速冷却手段51では比較的低い水温で急冷を行い、浸漬槽52内では比較的高温の水またはイオン性液体を用い、浸漬槽52出側における鋼帯温度をなるべく高温で保持することにより、品質と生産能率の向上を両立できた。   Thus, in the present invention, the cooling in the rapid cooling means 51 and the cooling in the immersion tank 52 are separated, the rapid cooling means 51 performs rapid cooling at a relatively low water temperature, and the immersion tank 52 has a relatively high temperature. By using water or an ionic liquid and maintaining the steel strip temperature at the exit side of the immersion tank 52 as high as possible, both the quality and the production efficiency could be improved.

本発明例として、図1および図2に示す連続焼鈍設備および冷却設備を用いて、板厚1.6mm、板幅1000mmの980MPa級の高張力冷延鋼板を製造した。ここでの焼入れ温度は680℃とした。   As an example of the present invention, a high-tensile cold-rolled steel sheet of 980 MPa class having a plate thickness of 1.6 mm and a plate width of 1000 mm was manufactured using the continuous annealing equipment and the cooling equipment shown in FIGS. The quenching temperature here was 680 ° C.

冷却設備5における急速冷却手段51のスリットノズル54は鋼帯の表裏面とも9段設置され、冷却長は900mmである。前記スリットノズル54からの噴射水量は1000T/Hrとした。また、前記スリットノズル54から噴射されるの冷却水の水温は、鋼帯から持ち込まれる熱量により上昇するため、30℃に保持するように循環水の冷却装置57により冷却を行った。   The slit nozzle 54 of the rapid cooling means 51 in the cooling facility 5 is installed in 9 stages on both the front and back surfaces of the steel strip, and the cooling length is 900 mm. The amount of water sprayed from the slit nozzle 54 was 1000 T / Hr. Moreover, since the water temperature of the cooling water sprayed from the slit nozzle 54 rises due to the amount of heat brought in from the steel strip, the circulating water cooling device 57 was cooled so as to keep it at 30 ° C.

浸漬槽52内の水温または液温は、急速冷却手段51の出側板温が100℃以上であるため、鋼帯から奪う熱量により上昇する。ここでは、ライン速度の条件を変更することにより、水温を制御した。ライン速度が105mpmの時、浸漬槽52内の水温は60℃、ライン速度が130mpmの時、浸漬槽52内の水温は80℃となった。   The water temperature or liquid temperature in the immersion tank 52 rises due to the amount of heat taken from the steel strip because the outlet side plate temperature of the rapid cooling means 51 is 100 ° C. or higher. Here, the water temperature was controlled by changing the line speed condition. When the line speed was 105 mpm, the water temperature in the immersion tank 52 was 60 ° C., and when the line speed was 130 mpm, the water temperature in the immersion tank 52 was 80 ° C.

また、ライン速度180mpmの時、浸漬槽52内のイオン性液体の液温は250℃となった。ここで使用したイオン性液体は、イオン性液体IL−A2(広栄化学工業株式会社製)である。これは、脂肪族アミン系イオン性液体で、陽イオンはトリメチルヘキシルアンモニウムイオンで構造式は次式(6)で表される。   When the line speed was 180 mpm, the liquid temperature of the ionic liquid in the immersion tank 52 was 250 ° C. The ionic liquid used here is ionic liquid IL-A2 (manufactured by Guangei Chemical Industry Co., Ltd.). This is an aliphatic amine-based ionic liquid, the cation is trimethylhexylammonium ion, and the structural formula is represented by the following formula (6).

Figure 2008019505
Figure 2008019505

また、陰イオンは、(CFSOである。 Furthermore, anion, (CF 3 SO 2) 2 N - is.

このイオン性液体の分解点は484.6℃、粘度は25℃で634.9cPs、イオン伝導度は25℃で6.1×10−5S/cmである。 The decomposition point of this ionic liquid is 484.6 ° C., the viscosity is 634.9 cPs at 25 ° C., and the ionic conductivity is 6.1 × 10 −5 S / cm at 25 ° C.

上記それぞれのライン速度の条件で鋼帯の製造を行い、材質の評価を行った。その結果、ライン速度105mpm、浸漬槽52内の水温60℃の時(本発明例1)は、TS(引張り強さ):995MPa、El(伸び):17.4%、また、ライン速度130mpm、浸漬槽52内の水温80℃の時(本発明例2)は、TS(引張り強さ):999MPa、El(伸び):17.5%、また、ライン速度180mpm、浸漬槽52内のイオン性液体の液温250℃の時(本発明例3)は、TS(引張り強さ):998MPa、El(伸び):17.6%であった。このように、本発明例においても従来の製造時と同等の強度レベルであった。なお、前記材質の評価の方法は、製造された鋼帯の板幅中央部の圧延方向にJIS5号試験片を採取し、JIS Z 2241の規定に準拠して引張試験を行い、引張特性(引張強さ(TS)、伸び(El))を求めた。   Steel strips were manufactured under the above line speed conditions, and the materials were evaluated. As a result, when the line speed was 105 mpm and the water temperature in the immersion tank 52 was 60 ° C. (Invention Example 1), TS (tensile strength): 995 MPa, El (elongation): 17.4%, and line speed 130 mpm, When the water temperature in the immersion tank 52 is 80 ° C. (Example 2 of the present invention), TS (tensile strength): 999 MPa, El (elongation): 17.5%, line speed 180 mpm, ionicity in the immersion tank 52 When the liquid temperature was 250 ° C. (Example 3 of the present invention), TS (tensile strength) was 998 MPa, and El (elongation) was 17.6%. Thus, also in the example of this invention, it was the intensity level equivalent to the time of the conventional manufacture. In addition, the method for evaluating the material is that a JIS No. 5 test piece is taken in the rolling direction at the center of the width of the manufactured steel strip, a tensile test is performed in accordance with the provisions of JIS Z 2241, and tensile properties (tensile Strength (TS) and elongation (El) were determined.

比較例として、従来方法により本発明例と同等の引張り特性を有する高張力冷延鋼板を製造した(鋼板板厚:1.6mm、TS:994MPa、El:17.4%)。この比較例では、クエンチノズルは浸漬槽内に設置され、クエンチノズルから噴射される冷却水および浸漬槽内の水温は30℃となるように設定した。この比較例の場合、浸漬槽内で鋼帯の温度が30℃まで冷却されてしまうため、再加熱時における誘導加熱装置での加熱負荷が高くなり、再加熱温度まで昇温させるためにライン速度を90mpmとしなければならなかった。   As a comparative example, a high-tensile cold-rolled steel sheet having the same tensile properties as the example of the present invention was produced by a conventional method (steel sheet thickness: 1.6 mm, TS: 994 MPa, El: 17.4%). In this comparative example, the quench nozzle was installed in the immersion tank, and the cooling water sprayed from the quench nozzle and the water temperature in the immersion tank were set to 30 ° C. In the case of this comparative example, since the temperature of the steel strip is cooled to 30 ° C. in the immersion tank, the heating load in the induction heating device during reheating increases, and the line speed is increased to raise the temperature to the reheating temperature. Had to be 90 mpm.

本発明例および比較例で高張力冷延鋼板を製造した際のライン速度の比較を図6に示す。図6に示すように、比較例である従来の浸漬槽内でスプレーする方法に比べ、本発明例では、浸漬槽出側板温が高くなったことにより、誘導加熱装置での加熱負荷が減り、浸漬槽内の水温60℃の場合で約2割、浸漬槽内の水温80℃の場合で約4割、浸漬槽内の液温250℃の場合で約2倍の増速が可能になった。   FIG. 6 shows a comparison of line speeds when producing high-tensile cold-rolled steel sheets in the inventive examples and comparative examples. As shown in FIG. 6, compared with the method of spraying in the conventional immersion tank as a comparative example, in the present invention example, the heating temperature in the induction heating device is reduced due to the increase in the immersion tank outlet side plate temperature, About 20% when the water temperature in the immersion tank is 60 ° C, about 40% when the water temperature in the immersion tank is 80 ° C, and about twice as fast as the liquid temperature in the immersion tank is 250 ° C. .

本発明に係る冷却設備が適用される連続焼鈍設備の設備構成の一例を示す図である。It is a figure which shows an example of the equipment structure of the continuous annealing equipment to which the cooling equipment which concerns on this invention is applied. 本発明に係る冷却設備の設備構成の一例を示す図である。It is a figure which shows an example of the equipment structure of the cooling equipment which concerns on this invention. 本発明に係る冷却設備の設備構成の他の一例を示す図である。It is a figure which shows another example of the equipment structure of the cooling equipment which concerns on this invention. 本発明に係る鋼帯の冷却方法を用いた場合の鋼帯の温度履歴の概略図である。It is the schematic of the temperature history of a steel strip at the time of using the cooling method of the steel strip which concerns on this invention. 別の一例である、本発明に係る鋼帯の冷却方法を用いた場合の鋼帯の温度履歴の概略図である。It is the schematic of the temperature history of the steel strip at the time of using the cooling method of the steel strip which concerns on this invention which is another example. 本発明例および比較例で高張力冷延鋼板を製造した際のライン速度の比較を示した図である。It is the figure which showed the comparison of the line speed at the time of manufacturing a high tension cold-rolled steel plate by the example of this invention and a comparative example. 従来の連続焼鈍設備において水焼入れ法を用いた場合の鋼帯の温度履歴の概略図である。It is the schematic of the temperature history of the steel strip at the time of using the water quenching method in the conventional continuous annealing equipment.

符号の説明Explanation of symbols

1 鋼帯
2 加熱帯
3 均熱帯
4 ガスジェット冷却帯
5 冷却設備
51 急速冷却手段
52 浸漬槽
53 仕切り手段
54 スリットノズル
55 排水口
56 循環槽
57 冷却装置
6 誘導加熱装置
7 過時効帯
8 ピンチロール
9 リンガーロール
10 ドライヤー
11 ヒーター
DESCRIPTION OF SYMBOLS 1 Steel strip 2 Heating zone 3 Soaking zone 4 Gas jet cooling zone 5 Cooling equipment 51 Rapid cooling means 52 Immersion tank 53 Partition means 54 Slit nozzle 55 Drain outlet 56 Circulation tank 57 Cooling device 6 Induction heating device 7 Overaging zone 8 Pinch roll 9 Ringer roll 10 Hair dryer 11 Heater

Claims (6)

連続焼鈍工程における鋼帯の冷却方法であって、
加熱された鋼帯に水を噴射して冷却した後、該冷却した鋼帯を水温が60〜90℃の浸漬槽内に浸漬して冷却するに際し、前記鋼帯に噴射する水の温度を前記浸漬槽内の水温より低い温度とすることを特徴とする鋼帯の冷却方法。
A method for cooling a steel strip in a continuous annealing process,
After cooling the heated steel strip by injecting water, when cooling the cooled steel strip by immersing it in an immersion bath having a water temperature of 60 to 90 ° C., the temperature of the water injected to the steel strip is A method for cooling a steel strip, characterized in that the temperature is lower than the water temperature in the immersion bath.
鋼帯に噴射する水の温度を25℃以上、60℃未満とすることを特徴とする請求項1に記載の鋼帯の冷却方法。   The method for cooling a steel strip according to claim 1, wherein the temperature of water sprayed on the steel strip is 25 ° C or higher and lower than 60 ° C. 鋼帯に水を噴射し急速冷却を行う急速冷却手段と、
該急速冷却手段の下流側に配した浸漬槽と、
前記急速冷却手段と前記浸漬槽との間に配した水切りのための仕切り手段とを有することを特徴とする鋼帯の冷却設備。
A rapid cooling means for injecting water into the steel strip to perform rapid cooling;
An immersion bath disposed downstream of the rapid cooling means;
A steel strip cooling facility comprising a partition means for draining disposed between the rapid cooling means and the immersion bath.
連続焼鈍工程における鋼帯の冷却方法であって、
加熱された鋼帯に水を噴射して冷却した後、該冷却した鋼帯を、冷却媒体として、その少なくとも一部にイオン性液体を含有している液体を用いた浸漬槽内に浸漬することを特徴とする鋼帯の冷却方法。
A method for cooling a steel strip in a continuous annealing process,
After cooling the heated steel strip by spraying water, the cooled steel strip is immersed in an immersion bath using a liquid containing an ionic liquid at least in part as a cooling medium. A method for cooling a steel strip.
イオン性液体が、次式(1)〜(5)の化学式で表される塩の1種または2種以上の混合物からなることを特徴とする請求項4に記載の鋼帯の冷却方法。
Figure 2008019505
ここで、式中R〜R は、直鎖または分枝鎖、置換または非置換のアルキル、アリール、アルコキシアルキル、アルキレンアリール、ヒドロキシアルキルおよびハロアルキルから成る群から選択され、Nは窒素原子またはリン原子、Xはメチルサルフェート、PF 、BF およびハロゲン化合物より選択される陰イオン、Yは窒素またはホスフェートのようなテヘロ原子を含有する陽イオン、Zはグリセロール、クエン酸、尿素、その他の中性プロトン供与体もしくは受容体より選ばれる水素結合の可能な中性分子である。また、mおよびnは電気的中性を付与するために選択された整数であり、qは0〜1000の整数である。
5. The method for cooling a steel strip according to claim 4, wherein the ionic liquid comprises one or a mixture of two or more salts represented by chemical formulas of the following formulas (1) to (5).
Figure 2008019505
Wherein R 1 to R 4 are selected from the group consisting of linear or branched, substituted or unsubstituted alkyl, aryl, alkoxyalkyl, alkylenearyl, hydroxyalkyl and haloalkyl, where N is a nitrogen atom or A phosphorus atom, X is an anion selected from methyl sulfate, PF 6 , BF 4 and a halogen compound, Y is a cation containing a thero atom such as nitrogen or phosphate, Z is glycerol, citric acid, urea, It is a neutral molecule capable of hydrogen bonding selected from other neutral proton donors or acceptors. M and n are integers selected for imparting electrical neutrality, and q is an integer of 0 to 1000.
鋼帯に噴射する水の温度を25℃以上、60℃未満とし、浸漬槽内の冷却媒体の温度を150〜300℃とすることを特徴とする請求項4または5に記載の鋼帯の冷却方法。   The temperature of the water sprayed to a steel strip shall be 25 degreeC or more and less than 60 degreeC, and the temperature of the cooling medium in an immersion tank shall be 150-300 degreeC, The cooling of the steel strip of Claim 4 or 5 characterized by the above-mentioned. Method.
JP2007105873A 2006-06-13 2007-04-13 Steel strip cooling method Expired - Fee Related JP5200406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007105873A JP5200406B2 (en) 2006-06-13 2007-04-13 Steel strip cooling method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006163199 2006-06-13
JP2006163199 2006-06-13
JP2007105873A JP5200406B2 (en) 2006-06-13 2007-04-13 Steel strip cooling method

Publications (2)

Publication Number Publication Date
JP2008019505A true JP2008019505A (en) 2008-01-31
JP5200406B2 JP5200406B2 (en) 2013-06-05

Family

ID=39075682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105873A Expired - Fee Related JP5200406B2 (en) 2006-06-13 2007-04-13 Steel strip cooling method

Country Status (1)

Country Link
JP (1) JP5200406B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747206A (en) * 2011-04-22 2012-10-24 宝山钢铁股份有限公司 Water quenching method for producing cold rolling phase transition reinforced high strength strip steel
CN102747205A (en) * 2011-04-22 2012-10-24 宝山钢铁股份有限公司 Water quenching system for producing cold rolling phase transition reinforced high strength strip steel
CN104762454A (en) * 2015-04-24 2015-07-08 马鞍山华东回转支承有限公司 Preparation method and application of special quenching liquid for 50Mn steel
CN105605908A (en) * 2016-01-07 2016-05-25 山东亨圆铜业有限公司 Steel band drying device and method
CN105803165A (en) * 2016-05-31 2016-07-27 梁辉章 Quenching medium
JP2017025356A (en) * 2015-07-16 2017-02-02 中外炉工業株式会社 Steel strip cooling device
JP2017025357A (en) * 2015-07-16 2017-02-02 中外炉工業株式会社 Steel strip cooling device
JP2017110229A (en) * 2012-02-02 2017-06-22 プロイオニック ゲーエムベーハー Cooling ionic liquid in high temperature environment
WO2019101503A1 (en) * 2017-11-21 2019-05-31 Sms Group Gmbh Method for manufacturing multi-phase steels with ionic fluids
CN110052382A (en) * 2019-06-11 2019-07-26 鞍山发蓝股份公司 On-line cooling device after the japanning drying of steel belt for packages production line
WO2021065583A1 (en) 2019-09-30 2021-04-08 Jfeスチール株式会社 Metal strip quenching device, metal strip quenching method, and method for producing metal strip product
CN117347420A (en) * 2022-06-29 2024-01-05 江苏鑫亿鼎石英科技股份有限公司 Cold storm monitoring system for quartz sand production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0118974B2 (en) * 1981-11-24 1989-04-10 Nippon Kokan Kk
JPH08283874A (en) * 1995-04-10 1996-10-29 Nippon Steel Corp Device for cooling steel strip in continuous annealing line
JPH11181529A (en) * 1997-12-18 1999-07-06 Nippon Steel Corp Method for cooling steel sheet in final cooling zone of continuous annealing furnace and device therefor
JP2003286521A (en) * 2002-03-28 2003-10-10 Nippon Steel Corp Cooling method and cooling unit for steel strip
WO2004076096A1 (en) * 2003-02-28 2004-09-10 So & So Sommerhofer Oeg Continuous casting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0118974B2 (en) * 1981-11-24 1989-04-10 Nippon Kokan Kk
JPH08283874A (en) * 1995-04-10 1996-10-29 Nippon Steel Corp Device for cooling steel strip in continuous annealing line
JPH11181529A (en) * 1997-12-18 1999-07-06 Nippon Steel Corp Method for cooling steel sheet in final cooling zone of continuous annealing furnace and device therefor
JP2003286521A (en) * 2002-03-28 2003-10-10 Nippon Steel Corp Cooling method and cooling unit for steel strip
WO2004076096A1 (en) * 2003-02-28 2004-09-10 So & So Sommerhofer Oeg Continuous casting method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747206A (en) * 2011-04-22 2012-10-24 宝山钢铁股份有限公司 Water quenching method for producing cold rolling phase transition reinforced high strength strip steel
CN102747205A (en) * 2011-04-22 2012-10-24 宝山钢铁股份有限公司 Water quenching system for producing cold rolling phase transition reinforced high strength strip steel
CN102747205B (en) * 2011-04-22 2013-07-17 宝山钢铁股份有限公司 Water quenching system for producing cold rolling phase transition reinforced high strength strip steel
CN102747206B (en) * 2011-04-22 2013-07-17 宝山钢铁股份有限公司 Water quenching method for producing cold rolling phase transition reinforced high strength strip steel
US10677532B2 (en) 2012-02-02 2020-06-09 Proionic Gmbh Ionic liquids for cooling in high temperature environment
JP2017110229A (en) * 2012-02-02 2017-06-22 プロイオニック ゲーエムベーハー Cooling ionic liquid in high temperature environment
CN104762454A (en) * 2015-04-24 2015-07-08 马鞍山华东回转支承有限公司 Preparation method and application of special quenching liquid for 50Mn steel
JP2017025357A (en) * 2015-07-16 2017-02-02 中外炉工業株式会社 Steel strip cooling device
JP2017025356A (en) * 2015-07-16 2017-02-02 中外炉工業株式会社 Steel strip cooling device
CN105605908B (en) * 2016-01-07 2017-12-08 山东亨圆铜业有限公司 A kind of steel band drying device and drying means
CN105605908A (en) * 2016-01-07 2016-05-25 山东亨圆铜业有限公司 Steel band drying device and method
CN105803165A (en) * 2016-05-31 2016-07-27 梁辉章 Quenching medium
WO2019101503A1 (en) * 2017-11-21 2019-05-31 Sms Group Gmbh Method for manufacturing multi-phase steels with ionic fluids
CN110052382A (en) * 2019-06-11 2019-07-26 鞍山发蓝股份公司 On-line cooling device after the japanning drying of steel belt for packages production line
WO2021065583A1 (en) 2019-09-30 2021-04-08 Jfeスチール株式会社 Metal strip quenching device, metal strip quenching method, and method for producing metal strip product
KR20220052999A (en) 2019-09-30 2022-04-28 제이에프이 스틸 가부시키가이샤 Metal to metal quenching device and metal to metal quenching method and manufacturing method for metal to metal products
CN117347420A (en) * 2022-06-29 2024-01-05 江苏鑫亿鼎石英科技股份有限公司 Cold storm monitoring system for quartz sand production
CN117347420B (en) * 2022-06-29 2024-05-17 江苏鑫亿鼎石英科技股份有限公司 Cold storm monitoring system for quartz sand production

Also Published As

Publication number Publication date
JP5200406B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5200406B2 (en) Steel strip cooling method
KR910004610B1 (en) Method for producing non-aging hot-dip galvanized steel strip
TWI653362B (en) Method of producing metal-coated steel strip
JPS62202029A (en) Method and apparatus for treating steel wire
EP3029163B9 (en) Method and system of treating a carbon steel strip, especially for pickling
JP2006307244A (en) Sealing unit and sealing method for cooling process in continuous heat treatment facility for steel strip
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
KR102431023B1 (en) Methods and Sections for Rapid Cooling of Continuous Lines for Processing Metal Sheets
JP5991282B2 (en) Steel strip manufacturing method and manufacturing equipment
KR102492108B1 (en) Lead-free patterning method and apparatus
JP2013185182A (en) Apparatus and method for manufacturing steel strip
JP7314989B2 (en) Quenching device and method for manufacturing metal plate
JP6256325B2 (en) Continuous hot dip galvanizing method and continuous hot dip galvanizing equipment
CN102747213B (en) Cooling method for continuous heat treatment of high-strength steel
JPS5842254B2 (en) Continuous annealing equipment
CN111172368A (en) Process and circulation system combining steel wire hot rolling and sorbitizing treatment
JP4901276B2 (en) Steel strip cooling device
KR20150018086A (en) cooling apparatus for metal strip
JP4561104B2 (en) Cooling method for cold-rolled steel sheet
CN117836435A (en) Liquid cooling of a strip running in a continuous line
JP5900080B2 (en) Steel strip manufacturing apparatus and steel strip manufacturing method
JPS5967323A (en) Cooler of steel strip
JP6760002B2 (en) Steel plate cooling method
JP2004217979A (en) Forcible convection type cooling method for steel strip in continuous type heat treatment facility and its apparatus
KR20220110813A (en) Device and method for heat treatment of steels, including wet cooling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R150 Certificate of patent or registration of utility model

Ref document number: 5200406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees