JPH04253505A - Direct rolling method for continuous cast slab - Google Patents

Direct rolling method for continuous cast slab

Info

Publication number
JPH04253505A
JPH04253505A JP3151191A JP3151191A JPH04253505A JP H04253505 A JPH04253505 A JP H04253505A JP 3151191 A JP3151191 A JP 3151191A JP 3151191 A JP3151191 A JP 3151191A JP H04253505 A JPH04253505 A JP H04253505A
Authority
JP
Japan
Prior art keywords
slab
temperature
continuous casting
steel
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3151191A
Other languages
Japanese (ja)
Inventor
Mikio Suzuki
幹雄 鈴木
Hiroshi Murakami
洋 村上
Shinobu Miyahara
忍 宮原
Atsushi Kubota
淳 久保田
Toshio Masaoka
政岡 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3151191A priority Critical patent/JPH04253505A/en
Publication of JPH04253505A publication Critical patent/JPH04253505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To provide a direct rolling method for a continuous cast slab possible to reduce the generation of surface flow of the slab. CONSTITUTION:The steel slab drawn out of a continuous casting mold is cooled until the surface temperature comes to a range below point A1, then, cooling and heat insulation of the slab are adjusted, the surface of the slab is reheated up to more than 1000 deg.C by using sensible heat and latent heat of solidification held by the residual molten steel existing in the slab, then, the slab is heated uniformly in its width direction up to more than 1000 deg.C in an on-line heating zone installed at the rear stage of a continuous casting machine and then rolled. Then, in the same way, the slab is cooled until its surface temperature comes to >=point A1 and <=950 deg.C, the slab is heated uniformly until the temperature is its width direction exceeds 1000 deg.C as said above, then, is held for >=2min, then rolled.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は鋼の連続鋳造における
鋳片の直接圧延方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method for directly rolling slabs in continuous steel casting.

【0002】0002

【従来の技術】連続鋳造鋳片の直接圧延(HDR)は、
連続鋳造機で鋳造された鋳片を冷却することなく、その
まま保温もしくはオンライン加熱することにより、熱間
圧延機により圧延加工する方法である。このHDRプロ
セスは工程の大幅な合理化が実現されるもので、今後さ
らに開発が進められ発展するものと期待されている。し
かし、HDRで製造された鋳片は、従来の方法すなわち
連続鋳造鋳片終了後、鋳片を冷却し、その後再加熱して
から圧延する方法(HCR)に比して表面疵の発生が多
く、歩留りの低下が懸念されている。
[Prior Art] Direct rolling (HDR) of continuously cast slabs is
This is a method in which a slab cast in a continuous casting machine is kept warm or heated online without being cooled, and then rolled in a hot rolling mill. This HDR process realizes a significant streamlining of the process, and is expected to be further developed and expanded in the future. However, slabs manufactured by HDR have more surface defects than the conventional method (HCR), in which the slab is cooled after continuous casting, then reheated, and then rolled. , there is a concern that the yield will decrease.

【0003】一般に連続鋳造鋳片に発生する表面疵は縦
割れ、横割れまたは表層下介在物に起因する割れが良く
知られている。縦割れについては、モールド内で割れの
起点が形成され、その後の冷却過程で割れが進展するこ
とが明らかになっている。この防止対策としては、モー
ルドパウダーの選択、モールドテーパーの適正化、湯面
変動の適正範囲へのコントロール、または2次冷却帯で
の均一冷却などが重要な対策として実施されている。
[0003] Surface defects that generally occur in continuously cast slabs are well known to include vertical cracks, transverse cracks, and cracks caused by subsurface inclusions. Regarding vertical cracks, it has been revealed that the starting point of the crack is formed within the mold, and the crack progresses during the subsequent cooling process. Important countermeasures to prevent this include selection of mold powder, optimization of mold taper, control of fluctuations in the melt level within an appropriate range, and uniform cooling in the secondary cooling zone.

【0004】また、表層下の介在物に起因する割れは、
モールド内の初期凝固シェルに介在物が補足されるかど
うかに関係があり、この対策として溶鋼の清浄化をはか
り、溶鋼中のAl2 O3 を少なくすること、および
モールド内湯面変動を適正にしてパウダーの巻き込みを
防ぐことが行われている。
[0004] Furthermore, cracks caused by inclusions below the surface layer are
This is related to whether inclusions are trapped in the initial solidified shell in the mold, and countermeasures to this problem include cleaning the molten steel, reducing the amount of Al2O3 in the molten steel, and adjusting the level fluctuations in the mold to improve powder control. Efforts are being made to prevent entanglement.

【0005】横割れは凝固冷却中の不純物元素の析出に
起因した鋳片の高温脆化によるものと考えられている。 横割れ防止の基本対策は連続鋳造機内で曲げ変形(矯正
)を加えた時、鋳片の表面温度を高温脆化温度範囲を回
避して矯正することである。更に、析出物の成因である
S,P,Nなどの不純物元素の低減を図り、高温脆化を
極力少なくすることもその対策のひとつとして行われて
いる。
[0005] Transverse cracking is thought to be caused by high-temperature embrittlement of the slab due to precipitation of impurity elements during solidification and cooling. The basic measure to prevent transverse cracking is to correct the surface temperature of the slab by avoiding the high temperature embrittlement temperature range when bending deformation (straightening) is applied in the continuous casting machine. Furthermore, one of the countermeasures is to reduce impurity elements such as S, P, and N, which are the causes of precipitates, to minimize high-temperature embrittlement.

【0006】そして、これら一般的な表面疵対策がHD
Rで製造された鋳片にも適用されている。
[0006] These general surface flaw countermeasures are HD
It is also applied to slabs manufactured by R.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
表面疵低減対策を実施してもなお、HDRプロセスによ
る鋳片は従来のHCRプロセスによる鋳片に比して表面
疵、特に横割れが多いという問題は解消されていない。
[Problem to be Solved by the Invention] However, even if conventional surface flaw reduction measures are implemented, slabs produced by the HDR process have more surface flaws, especially horizontal cracks, than slabs produced by the conventional HCR process. The problem is not resolved.

【0008】この発明はかかる事情に鑑みてなされたも
ので、鋳片の表面疵の発生を低減することができる連続
鋳造鋳片の直接圧延方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for directly rolling continuously cast slabs, which can reduce the occurrence of surface defects on slabs.

【0009】[0009]

【課題を解決するための手段および作用】この発明に係
る連続鋳造鋳片の直接圧延法は、第1に、連続鋳造鋳型
から引き出された鋼の鋳片をその表面温度がA1 点以
下の範囲になるまでスプレーもしくはミストスプレー等
により冷却し、次いで、鋳片の冷却と断熱とを調節する
とともに、鋳片内部に存在する残溶鋼が保持する顕熱お
よび凝固潜熱を利用して、鋳片表面を1000℃以上に
復熱させた後、連続鋳造機の後段に設置されたオンライ
ン加熱帯で鋳片幅方向の温度を1000℃以上に均一に
加熱し、その後圧延加工を行うことを特徴とする。
[Means for Solving the Problems and Effects] The direct rolling method for continuously cast slabs according to the present invention firstly involves rolling steel slabs pulled out from a continuous casting mold so that the surface temperature thereof is within a range of A1 point or lower. The slab is cooled by spray or mist spray, etc., until the slab reaches After reheating to 1000°C or higher, the cast slab is uniformly heated in the width direction to 1000°C or higher in an online heating zone installed at the latter stage of the continuous casting machine, and then rolled. .

【0010】また、第2に、連続鋳造鋳型から引き出さ
れた鋼の鋳片をその表面温度がA1 点以上950℃以
下の温度になるまで冷却し、次いで、鋳片の冷却と断熱
とを調節するとともに、鋳片内部に存在する残溶鋼が保
持する顕熱および凝固潜熱を利用して、鋳片表面を10
00℃以上に復熱させた後、連続鋳造機の後段に設置さ
れたオンライン加熱帯で鋳片幅方向の温度を1000℃
以上に均一に加熱して、少なくとも2分間以上この温度
に保持し、その後圧延加工を行うことを特徴とする。
Second, the steel slab drawn from the continuous casting mold is cooled until its surface temperature reaches a temperature above the A1 point and below 950°C, and then the cooling and heat insulation of the slab are adjusted. At the same time, the surface of the slab is heated to 10
After reheating to 00°C or higher, the temperature in the width direction of the slab is raised to 1000°C in the online heating zone installed at the rear stage of the continuous casting machine.
It is characterized in that it is heated uniformly above, held at this temperature for at least 2 minutes, and then rolled.

【0011】本願発明者等は、HDRプロセスによって
製造された鋳片に特有な表面疵の発生原因について検討
した結果、以下のような結論を得た。
The inventors of the present invention have studied the causes of surface flaws peculiar to slabs produced by the HDR process, and have come to the following conclusion.

【0012】鋼を凝固・冷却させると、オーステナイト
相(以下γ相)中のSはγ粒界に偏析する。そのため鋼
中のSとMnとが反応して、MnSや(Fe,Mn)S
が析出してくる。このような鋼が連続的に冷却されると
、このときのMnSや(Fe,Mn)Sの析出形態はγ
粒界に沿って微細に析出してくる。この状態の鋼は、そ
の熱間強度が非常に低く、脆い状態であるため、この鋳
片を熱間圧延すると割れが発生しやすくなる。従って、
このような割れに起因して表面疵が多く発生するのであ
る。
[0012] When steel is solidified and cooled, S in the austenite phase (hereinafter referred to as γ phase) segregates at γ grain boundaries. Therefore, S and Mn in the steel react, producing MnS and (Fe, Mn)S.
will precipitate out. When such steel is continuously cooled, the precipitation form of MnS and (Fe,Mn)S is γ.
It precipitates finely along the grain boundaries. Since the steel in this state has very low hot strength and is brittle, cracks are likely to occur when this slab is hot rolled. Therefore,
Many surface defects occur due to such cracks.

【0013】そこで、この発明では、第1に、鋳片の表
面および表面温度を一旦A1 点以下の温度(完全にフ
ィライト+パ−ライト相になる範囲、以下α+P相と略
す)にした後、さらに復熱させることによって鋳片表層
部をα+P相からγ相に戻し、オンライン加熱帯におい
て鋳片幅方向の温度を1000℃以上に均一に加熱する
。このような処理によって微細なγ粒を得ることができ
る。そして、γ粒界に析出するMnSや(Fe,Mn)
Sの濃度が低くなると同時に、復熱過程を通して微細に
析出していたMnSや(Fe,Mn)Sが粗大化する。 このようにMnSや(Fe,Mn)Sが粗大化すること
によって鋼の高温延性が回復し、圧延時の割れを防止す
ることができる。
Therefore, in the present invention, firstly, after the surface and surface temperature of the slab are once lowered to a temperature below the A1 point (a range where the phyllite + pearlite phase is completely formed, hereinafter abbreviated as α + P phase), By further reheating, the surface layer of the slab is returned from the α+P phase to the γ phase, and the temperature in the width direction of the slab is uniformly heated to 1000° C. or higher in the online heating zone. Fine γ grains can be obtained by such treatment. Then, MnS and (Fe, Mn) precipitate at the γ grain boundaries.
At the same time as the concentration of S decreases, MnS and (Fe, Mn)S, which had been finely precipitated through the reheating process, become coarse. By coarsening MnS and (Fe, Mn)S in this way, the high-temperature ductility of the steel is restored, and cracking during rolling can be prevented.

【0014】また、第2に、鋳片の表面および表面温度
を一旦A1 点以上950℃以下の温度範囲(完全にフ
ィライト相になる範囲、以下α相と略す)にした後、さ
らに復熱させることによって鋳片表層部をα相からγ相
に戻し、オンライン加熱帯において鋳片幅方向の温度を
1000℃以上に均一に加熱して、少なくとも2分間以
上この温度に保持する。このような処理によって、上記
原理と同様な原理に基づいて、微細なγ粒を得ることが
でき、かつMnSや(Fe,Mn)Sを粗大化させるこ
とができる。従って、やはり鋼の高温延性が回復し、圧
延時の割れを防止することができる。
[0014] Secondly, after the surface and surface temperature of the slab are once brought to a temperature range from the A1 point to 950°C (the range where the phyllite phase is completely formed, hereinafter abbreviated as α phase), the slab is further reheated. By doing this, the surface layer of the slab is returned from the α phase to the γ phase, and the temperature in the width direction of the slab is uniformly heated to 1000° C. or higher in the online heating zone, and maintained at this temperature for at least 2 minutes or more. By such processing, based on a principle similar to the above-mentioned principle, fine γ grains can be obtained and MnS and (Fe,Mn)S can be coarsened. Therefore, the high-temperature ductility of the steel is restored, and cracking during rolling can be prevented.

【0015】[0015]

【実施例】以下、添付図面を参照しながら、この発明の
実施例について説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

【0016】図1は連続鋳造鋳片から製造した熱延板に
見られた表面疵の中で、鋳片の割れもしくは熱間圧延過
程で生ずる割れが原因となって熱延板の表面疵となる疵
、すなわち硫化物(MnSとか(Fe,Mn)S)に起
因する熱間脆性に基づくと考えられる疵の個数と鋼中の
Mn/S比との関係を示したものである。この図に示す
ように、HDRの場合は、HCRの場合と比べて疵発生
数が数倍も多いことが確認された。このときの熱延板の
成分は重量%で、次の通りであった。
[0016] Figure 1 shows that among the surface flaws found on hot-rolled sheets manufactured from continuously cast slabs, surface flaws on the hot-rolled sheets are caused by cracks in the slab or cracks generated during the hot rolling process. This figure shows the relationship between the number of defects considered to be caused by hot embrittlement caused by sulfides (MnS or (Fe,Mn)S) and the Mn/S ratio in steel. As shown in this figure, it was confirmed that in the case of HDR, the number of defects generated was several times higher than in the case of HCR. The components of the hot rolled sheet at this time were as follows in weight percent.

【0017】   C=0.01〜0.05        Si=0
.01〜0.03  Mn=0.25〜0.35   
   P=0.010〜0.025  S=0.012
〜0.030    sol.Al=0.02〜0.0
3図1ではMn/S比が低下すると疵発生率が高くなっ
ているが、これは高温脆性の低下によるものであり、こ
の図は、これを防止するには、従来からよく知られてい
るように、鋼中のSを低減することが有効であることを
示している。しかし、同一のSレベルにおいてHDRと
HCRプロセスによる差があるのは何に起因するのか、
その原因については従来解明されていなかった。本願発
明者らはHDRプロセスの鋳片から製造した鋼板の表面
疵の低減を目的として、その原因究明を行った。
C=0.01~0.05 Si=0
.. 01~0.03 Mn=0.25~0.35
P=0.010~0.025 S=0.012
~0.030 sol. Al=0.02~0.0
3 In Figure 1, the flaw occurrence rate increases as the Mn/S ratio decreases, but this is due to a decrease in high-temperature brittleness, and this figure shows that in order to prevent this, it is well known that This shows that it is effective to reduce S in steel. However, what causes the difference between HDR and HCR processes at the same S level?
The cause of this has not been elucidated until now. The inventors of the present invention investigated the cause of surface flaws in steel sheets manufactured from cast slabs produced by the HDR process, with the aim of reducing surface flaws.

【0018】高温引張り試験機により、HDR及びHC
Rのシミュレーション試験を行った。すなわちHDRに
対応して、前記試験機内で試験片の溶解、凝固、所定温
度まで所定時間で冷却した後、引張り試験を行った。ま
たHCRに対応して、前記試験機内で試験片の溶解、凝
固、300℃まで冷却後、再加熱した後、引張り試験を
行った。この際の試験結果を図2に示す。図2は引張試
験の温度とその際の延性(絞り値)との関係を示す図で
ある。図から明らかなようにHDRをシミュレ−トした
ものでは、800〜1200℃の高温において延性の低
下が著しい。
[0018] HDR and HC
A simulation test was conducted on R. That is, in accordance with HDR, the test piece was melted, solidified, and cooled to a predetermined temperature in a predetermined time in the testing machine, and then a tensile test was conducted. Further, in correspondence with HCR, the test piece was melted and solidified in the test machine, cooled to 300°C, reheated, and then subjected to a tensile test. The test results at this time are shown in FIG. FIG. 2 is a diagram showing the relationship between the temperature of the tensile test and the ductility (restriction of area) at that time. As is clear from the figure, in the HDR simulation, the ductility decreases significantly at high temperatures of 800 to 1200°C.

【0019】次ぎに、HDRをシミュレ−トした試験片
及びHCRをシミュレ−トした試験片について、その破
断面を走査型電子顕微鏡(SEM)で観察した。その結
果、前者の試験片では、微細で多数のMnSや(Fe,
Mn)Sが析出しており、後者のものは粗大化し、その
数は極めて少ないことが判明した。したがって、図2に
示したようにHDRによる熱延板の表面疵が多いのは熱
履歴の差によるものと考えられる。
Next, the fracture surfaces of the HDR-simulated test piece and the HCR-simulated test piece were observed using a scanning electron microscope (SEM). As a result, in the former specimen, many fine MnS and (Fe,
It was found that Mn)S had precipitated, and the latter had become coarse and its number was extremely small. Therefore, as shown in FIG. 2, the reason why there are many surface flaws on the hot-rolled sheet due to HDR is considered to be due to the difference in thermal history.

【0020】HDRをシミュレ−トした試験について、
熱履歴と予備加工の熱間延性向上効果を調べる試験のた
め、高温引張り試験を行った。その結果Mn/S比が小
さい鋼の場合について得られた知見は次の通りである。
Regarding the test simulating HDR,
A high-temperature tensile test was conducted to investigate the thermal history and hot ductility improvement effect of preliminary processing. As a result, the following findings were obtained regarding steel with a small Mn/S ratio.

【0021】(1)試験片を溶解・凝固の後、冷却し、
1000℃以上に保持したまま、引張り試験を行うと、
熱間延性は非常に良好である(図6)。
(1) After melting and solidifying the test piece, cooling it,
When a tensile test is performed while holding the temperature above 1000℃,
Hot ductility is very good (Figure 6).

【0022】(2)試験片を溶解・凝固の後、冷却し、
一旦約700℃以下まで温度を下げ、その後再度加熱し
て1000℃以上に温度を上げ、引張り試験を行うと、
熱間延性は非常に良好になる(図7)。
(2) After melting and solidifying the test piece, cooling it,
Once the temperature is lowered to about 700℃ or less, then heated again to raise the temperature to 1000℃ or higher and a tensile test is performed.
Hot ductility becomes very good (Figure 7).

【0023】(3)試験片を溶解・凝固の後、冷却し、
一旦およそ750℃〜950℃の範囲に保持した後、再
度加熱して、1000℃以上の温度に保持して、2分間
以上保持した後、引張り試験を行うと伸びは著しく良好
となる(熱間延性向上)。
(3) After melting and solidifying the test piece, cooling it,
Once held in the range of approximately 750°C to 950°C, heated again, held at a temperature of 1000°C or more, held for 2 minutes or more, and then subjected to a tensile test, the elongation is significantly better (hot improved ductility).

【0024】これらの引張り試験の結果を踏まえて、連
続鋳造鋳片の直接圧延の条件を検討しホット・ダイレク
ト・チャージ(Hot Direct Charge 
)の実験を行った。 実施例−1 上述した組成の鋼をHDRプロセスで製造する試験を行
った。連続鋳造の二次冷却パターンを次のように設定し
た。連続鋳造鋳型から鋳片を引き抜いて直ちに、スプレ
ーもしくはミストスプレーを用いて冷却し、鋳片表面温
度を700℃まで下げ、その後、鋳片内部の未凝固部分
の顕熱と潜熱とを利用して鋳片表面を復熱させるととも
に、二次冷却帯の冷却強度のコントロール(弱冷の採用
)及び連鋳機内への断熱カバーの設置を行って、鋳片表
面温度を1000℃以上にコントロールした後、連鋳機
の後段に設置されているエッジヒーターを使って、鋳片
エッジ部を積極的に加熱し(オンライン加熱)、その後
素早く熱間圧延機に搬送し熱間圧延を行った。熱間圧延
終了後の鋼板(熱延板)の表面を観察し、表面疵の数を
カウントした。このとき用いた鋳片表面温度パターンを
従来のパタ−ンと比較して図6に示す。また、表1に従
来HDRと本発明のHDR法とを比較して熱延板の表面
疵指数を示した。なお、表面疵発生指数は表面疵発生板
数÷観察板枚数×100で示した。
Based on the results of these tensile tests, the conditions for direct rolling of continuously cast slabs were investigated, and hot direct charge (Hot Direct Charge)
) experiments were conducted. Example-1 A test was conducted in which steel having the composition described above was manufactured by the HDR process. The secondary cooling pattern for continuous casting was set as follows. Immediately after pulling the slab out of the continuous casting mold, it is cooled using spray or mist spray to lower the surface temperature of the slab to 700°C, and then, using the sensible heat and latent heat of the unsolidified part inside the slab. After reheating the surface of the slab, controlling the cooling intensity of the secondary cooling zone (using weak cooling), and installing a heat insulating cover inside the continuous casting machine, the surface temperature of the slab was controlled to over 1000℃. Using an edge heater installed at the latter stage of the continuous casting machine, the edge of the slab was actively heated (online heating), and then quickly transferred to a hot rolling mill for hot rolling. The surface of the steel plate (hot rolled plate) after hot rolling was observed and the number of surface flaws was counted. The slab surface temperature pattern used at this time is shown in FIG. 6 in comparison with a conventional pattern. Further, Table 1 shows the surface flaw index of hot rolled sheets by comparing the conventional HDR method and the HDR method of the present invention. Note that the surface flaw occurrence index was expressed as the number of plates with surface flaws divided by the number of observation plates x 100.

【0025】[0025]

【表1】 この表1から明らかなように、本発明の範囲内の二次冷
却パターンを用いることにより、低Mn/Sの鋼を連続
鋳造・直接圧延する際に、従来例に比較して鋼板表面の
疵の発生率を極めて少なくすることができることが判明
した。 実施例−2 この実施例においても、上述した組成の鋼をHDRプロ
セスで製造する試験を行った。連続鋳造の二次冷却パタ
ーンを実施例1とは異なり、次のように設定した。連続
鋳造鋳型から鋳片を引き抜いて直ちに、スプレーもしく
はミストスプレーを用いて冷却し、鋳片表面温度を90
0℃まで下げ、その後、鋳片内部の未凝固部分の顕熱と
潜熱とを利用して鋳片表面を復熱させるとともに、二次
冷却帯の冷却強度のコントロール(弱冷の採用)及び連
鋳機内への断熱カバーの設置を行って、鋳片表面温度を
1000℃以上にコントロールした後、連鋳機の後段に
設置されているエッジヒーターを使って、鋳片エッジ部
を積極的に加熱し(オンライン加熱)、少なくとも2分
間以上この温度で保持した後、素早く熱間圧延機に搬送
し熱間圧延を行った。熱間圧延終了後の鋼板(熱延板)
の表面を観察し、表面疵の数をカウントした。このとき
用いた鋳片表面温度パターンを図7に示す。また、比較
のため、連続鋳造鋳型から鋳片を引き抜いた後、冷却せ
ずに1000℃以上の温度に保持し、その後に熱間圧延
したもの(比較例)についても表面疵の数をカウントし
た。なお、この比較例及び上述の従来例の鋳片表面温度
パタ−ンも合わせて図7に示す。また、表2に本発明の
範囲内である実施例2の表面疵発生指数を、従来例及び
比較例の表面疵発生指数とともに示した。
[Table 1] As is clear from Table 1, by using the secondary cooling pattern within the scope of the present invention, when continuously casting and directly rolling low Mn/S steel, compared to the conventional example, It has been found that the incidence of flaws on the surface of steel sheets can be extremely reduced. Example 2 In this example as well, a test was conducted in which steel having the above-mentioned composition was manufactured by the HDR process. The secondary cooling pattern of continuous casting was different from Example 1 and was set as follows. Immediately after pulling out the slab from the continuous casting mold, cool it using spray or mist spray to bring the surface temperature of the slab to 90°C.
After that, the surface of the slab is reheated using the sensible heat and latent heat of the unsolidified part inside the slab, and the cooling intensity of the secondary cooling zone is controlled (weak cooling is adopted) and continuous cooling is performed. After installing a heat insulating cover inside the casting machine and controlling the surface temperature of the slab to over 1000℃, we actively heat the edge of the slab using the edge heater installed at the rear of the continuous casting machine. After holding at this temperature for at least 2 minutes (on-line heating), it was quickly transported to a hot rolling mill and hot rolled. Steel plate after hot rolling (hot rolled plate)
The number of surface flaws was counted. Figure 7 shows the slab surface temperature pattern used at this time. For comparison, we also counted the number of surface flaws on slabs that were pulled out from the continuous casting mold, held at a temperature of 1000°C or higher without cooling, and then hot-rolled (comparative example). . Incidentally, the slab surface temperature patterns of this comparative example and the above-mentioned conventional example are also shown in FIG. Further, Table 2 shows the surface flaw occurrence index of Example 2, which is within the scope of the present invention, together with the surface flaw occurrence index of the conventional example and the comparative example.

【0026】[0026]

【表2】 この表2から明らかなように、本発明の範囲内の二次冷
却パターンを用いた実施例2では、実施例1と同様に、
従来例に比較して鋼板表面の疵発生率が極めて少ないこ
とが判明した。また、比較例は実施例2と同様にMnS
等の粗大化が達成されているため表面疵の発生率は低い
が、内部割れが発生した。これは、γ粒の粗大化が原因
しているものと考えられる。
[Table 2] As is clear from Table 2, in Example 2 using the secondary cooling pattern within the scope of the present invention, as in Example 1,
It was found that the incidence of defects on the surface of the steel sheet was extremely low compared to the conventional example. In addition, in the comparative example, as in Example 2, MnS
Although the incidence of surface flaws was low because of the coarsening achieved, internal cracks did occur. This is considered to be caused by coarsening of the γ grains.

【0027】[0027]

【発明の効果】本発明によれば、予備加工によってMn
Sや(Fe・Mn)Sの析出が促進され、これら析出物
の析出状態がより平衡状態に近くなるため、その後の復
熱過程においてMnSや(Fe,Mn)Sの粗大化を図
ることができる。従って、熱間延性が向上し、表面疵を
減少させることができる。
Effects of the Invention According to the present invention, by preliminary processing, Mn
The precipitation of S and (Fe/Mn)S is promoted, and the precipitation state of these precipitates becomes closer to the equilibrium state, so it is possible to coarsen MnS and (Fe, Mn)S in the subsequent reheating process. can. Therefore, hot ductility is improved and surface flaws can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】鋼中のMn/Sと表面疵発生指数との関係を示
す図。
FIG. 1 is a diagram showing the relationship between Mn/S in steel and surface flaw occurrence index.

【図2】引張試験の温度とその際の延性との関係を示す
図。
FIG. 2 is a diagram showing the relationship between the temperature of a tensile test and the ductility at that time.

【図3】高温での保持時間と延性との関係を示す図。FIG. 3 is a diagram showing the relationship between holding time at high temperature and ductility.

【図4】鋳片を凝固・冷却した後の温度と延性との関係
を示す図。
FIG. 4 is a diagram showing the relationship between temperature and ductility after solidifying and cooling a slab.

【図5】引張試験前の保持時間と延性との関係を示す図
FIG. 5 is a diagram showing the relationship between holding time before a tensile test and ductility.

【図6】この発明の一実施例における鋳片表面温度パタ
−ンを示す図。
FIG. 6 is a diagram showing a slab surface temperature pattern in an embodiment of the present invention.

【図7】この発明の他の実施例における鋳片表面温度パ
タ−ンを示す図。
FIG. 7 is a diagram showing a slab surface temperature pattern in another embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  連続鋳造鋳型から引き出された鋼の鋳
片をその表面温度がA1 点以下の範囲になるまで冷却
し、次いで、鋳片の冷却と断熱とを調節するとともに、
鋳片内部に存在する残溶鋼が保持する顕熱および凝固潜
熱を利用して、鋳片表面を1000℃以上に復熱させた
後、連続鋳造機の後段に設置されたオンライン加熱帯で
鋳片幅方向の温度を1000℃以上に均一に加熱し、そ
の後圧延加工を行うことを特徴とする鋼の連続鋳造鋳片
の直接圧延方法。
Claim 1: Cooling a steel slab drawn from a continuous casting mold until its surface temperature falls within a range of A1 point or below, and then controlling the cooling and heat insulation of the slab, and
After reheating the surface of the slab to 1000℃ or higher using the sensible heat and latent heat of solidification held by the residual molten steel inside the slab, the slab is heated in an online heating zone installed at the rear of the continuous casting machine. A method for directly rolling continuously cast steel slabs, characterized by uniformly heating the temperature in the width direction to 1000° C. or higher, and then rolling.
【請求項2】  連続鋳造鋳型から引き出された鋼の鋳
片をその表面温度がA1 点以上950℃以下の温度に
なるまで冷却し、次いで、鋳片の冷却と断熱とを調節す
るとともに、鋳片内部に存在する残溶鋼が保持する顕熱
および凝固潜熱を利用して、鋳片表面を1000℃以上
に復熱させた後、連続鋳造機の後段に設置されたオンラ
イン加熱帯で鋳片幅方向の温度を1000℃以上に均一
に加熱して、少なくとも2分間以上この温度に保持し、
その後圧延加工を行うことを特徴とする鋼の連続鋳造鋳
片の直接圧延方法。
2. Cool the steel slab pulled out from the continuous casting mold until its surface temperature reaches a temperature above the A1 point and below 950°C, and then adjust the cooling and heat insulation of the slab, and After reheating the surface of the slab to 1000℃ or higher using the sensible heat and latent heat of solidification held by the residual molten steel inside the slab, the width of the slab is heated in an online heating zone installed at the rear stage of the continuous casting machine. Uniformly heat the temperature in the direction to 1000 ° C. or more and maintain this temperature for at least 2 minutes,
A method for directly rolling continuously cast steel slabs, which is characterized in that a rolling process is then carried out.
JP3151191A 1991-01-31 1991-01-31 Direct rolling method for continuous cast slab Pending JPH04253505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3151191A JPH04253505A (en) 1991-01-31 1991-01-31 Direct rolling method for continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3151191A JPH04253505A (en) 1991-01-31 1991-01-31 Direct rolling method for continuous cast slab

Publications (1)

Publication Number Publication Date
JPH04253505A true JPH04253505A (en) 1992-09-09

Family

ID=12333239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3151191A Pending JPH04253505A (en) 1991-01-31 1991-01-31 Direct rolling method for continuous cast slab

Country Status (1)

Country Link
JP (1) JPH04253505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107030121A (en) * 2017-04-13 2017-08-11 杭州电子科技大学 A kind of quick self-adapted temperature control method of continuous casting billet sensing heating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203606A (en) * 1986-03-03 1987-09-08 Sumitomo Metal Ind Ltd Hot rolling method for preventing surface crack of billet
JPS63188401A (en) * 1987-01-29 1988-08-04 Nkk Corp Cooling method for billet manufactured by continuous casting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203606A (en) * 1986-03-03 1987-09-08 Sumitomo Metal Ind Ltd Hot rolling method for preventing surface crack of billet
JPS63188401A (en) * 1987-01-29 1988-08-04 Nkk Corp Cooling method for billet manufactured by continuous casting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107030121A (en) * 2017-04-13 2017-08-11 杭州电子科技大学 A kind of quick self-adapted temperature control method of continuous casting billet sensing heating
CN107030121B (en) * 2017-04-13 2019-03-29 杭州电子科技大学 A kind of quick self-adapted temperature control method of continuous casting billet induction heating

Similar Documents

Publication Publication Date Title
JP2007245232A (en) Method for preventing surface crack of continuously cast slab
JPH04253505A (en) Direct rolling method for continuous cast slab
JPH04253501A (en) Direct rolling method for continuous cast slab
JP3575400B2 (en) Direct-feed rolling method of continuous cast slab
JP3555538B2 (en) Direct-feed rolling method of continuous cast slab
JP3042398B2 (en) How to control slab surface cracks
JPH0112561B2 (en)
KR100327792B1 (en) Method for manufacturing hot rolled steel sheet for pipe by thin slab direct rolling process
JP2910180B2 (en) Direct rolling method of steel
JPS5852444B2 (en) Method for suppressing steel billet surface cracking during hot rolling
JPS5877756A (en) Continuous casting method for defect-free slab of nickel-containing steel
JPH0568525B2 (en)
JP3227057B2 (en) Method for producing hot rolled silicon steel sheet with excellent surface properties
EP0628359B1 (en) Method of manufacturing hot rolled silicon steel sheets of excellent surface properties
JP2761046B2 (en) Method for producing Si-Cr spring wire excellent in wire drawability
JP6946847B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3133855B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH07290101A (en) Method for preventing surface crack at time of hot edging/rolling continuously cast slab
JPH0347601A (en) Hot edging method for continuously cast and unidirectionally oriented magnetic steel slab
JPH07256306A (en) Method for preventing surface flaw at the time of hot-rolling cast steel slab
JP2015131311A (en) Method of hot-working steel material excellent in surface quality
JP3428296B2 (en) Manufacturing method of hot rolled steel sheet
JPS6176616A (en) Manufacture of thick steel plate superior in toughness
JPH05117751A (en) Method for hot-rolling continuously cast slab for grain-oriented electrical steel sheet
JPS59173218A (en) Manufacture of single-oriented silicon steel sheet having high magnetic flux density and low iron loss