JPS63183766A - Method for continuously casting two-phase stainless steel cast slab - Google Patents

Method for continuously casting two-phase stainless steel cast slab

Info

Publication number
JPS63183766A
JPS63183766A JP1636487A JP1636487A JPS63183766A JP S63183766 A JPS63183766 A JP S63183766A JP 1636487 A JP1636487 A JP 1636487A JP 1636487 A JP1636487 A JP 1636487A JP S63183766 A JPS63183766 A JP S63183766A
Authority
JP
Japan
Prior art keywords
stainless steel
mold
cooling
surface layer
phase stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1636487A
Other languages
Japanese (ja)
Inventor
Yasuhiro Maehara
泰裕 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1636487A priority Critical patent/JPS63183766A/en
Publication of JPS63183766A publication Critical patent/JPS63183766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To make structure of a cast slab fine and to prevent the development of surface defect by rapidly cooling solidified surface layer part of two-phase stainless steel formed from molten steel in a mold at the suitable cooling velocity from higher temp. than the solidus line. CONSTITUTION:The molten steel 7 supplied in the mold 1 is cooled by upper inner wall face 5 arranging cooling water passage 10 and lower inner wall face 2 providing nozzles 4 for injecting coolant and inducing holes 6 for sucking to form the solidified surface layer part 9 and further, cooled by cooling water nozzles 11, and the formed cast slab is drawn downward. In continuous casting method for the above two-phase stainless steel slab, the solidified surface layer part 9 of the two-phase stainless steel formed in both end opening mold 1 is cooled at high cooling velocity, such as >=10 deg.C/sec in the range of temp. from higher than solidus line to at least 1300 deg.C by measuring the temp. sensors 3 buried in the lower inner wall face 2. The above rapid cooling is better to execute to above 10 mm depth and preferable to above 20 mm depth. In this way, the structure of cast slab is made to fine, and the development of surface defect is prevented and the yield improvement under saving cleaning process is obtd. at low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、連続鋳造法によって製造された2相ステン
レス鋼のブルームやスラブ、さらにその熱間圧延材に表
面疵C表面割れ)が発生するのを防止し、もって疵取り
工程の省略による歩留向上と工数削減を可能とする2相
ステンレス鋼鋳片の連続鋳造法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is a method for treating duplex stainless steel blooms and slabs manufactured by a continuous casting method, as well as hot-rolled materials thereof. The present invention relates to a method for continuous casting of duplex stainless steel slabs, which prevents the above problems and thereby makes it possible to improve the yield and reduce the number of man-hours by omitting the flaw removal process.

〔従来の技術〕[Conventional technology]

近年、両端解放鋳型を具備した垂直型あるいは彎曲型な
どの連続鋳造機を用いて、2相ステンレス鋼鋳片を連続
鋳造する方法が行なわれている。
In recent years, methods have been used to continuously cast duplex stainless steel slabs using vertical or curved continuous casting machines equipped with molds that are open at both ends.

〔発明が解決しようとする間覇点〕[The key point that the invention is trying to solve]

し刀)し、上記の連続鋳造法によって2相ステンレス鋼
のブルームやスラブなどの鋼片を製造しようとすると、
その鋳造の途中で鋼片に加わる曲げ応力や冷却に起因し
て生じる熱応力によって表面疵が発生したり、さらには
連続鋳造によって得られた鋼片の直送圧延時やホットチ
ャージ圧延、さらに再加熱圧延時にも同様な表面疵が圧
延材に発生するといったトラブルが目立ち、これが製品
歩留向上の障害となっているば刀)ってなく、熱間直送
圧延やホットチャージ圧延などを採用して鉄鋼製造プロ
セスの省力(ヒおよび省エネルギー化を推進する上でも
大きな障害となっており、さらに熱間圧延中に著しい耳
割れが発生するなどの問題点がある。
However, if you try to manufacture pieces of duplex stainless steel such as blooms or slabs using the continuous casting method described above,
Bending stress applied to the steel billet during casting and thermal stress caused by cooling may cause surface flaws, and furthermore, steel billets obtained by continuous casting may be subjected to direct rolling, hot charge rolling, or reheating. During rolling, problems such as similar surface flaws occurring on rolled materials are noticeable, and this is an obstacle to improving product yield. This is a major obstacle in promoting labor and energy saving in the manufacturing process, and there are also problems such as significant edge cracking during hot rolling.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、連続鋳
造された2相ステンレス鋼のブルームやスラブ、さらに
その熱間圧延材に表面疵(表面割れ)が発生するのを防
止すべく金属学的見地から研究を行なった結果、 (a)2相ステンレス鋼は、初晶であるδ−フェライト
マトリックスの粗大結晶粒界に、これよりも硬いフィル
ム状のオーステナイト相(以下γ相という)が析出した
組織、すなわちδ−フェライト結晶粒(以下δ粒という
)がγ相で囲まれた組織を有し、したがって2相ステン
レス鋼における上記の表面疵は、δ粒を単位として粒界
のγ相とδ粒の界面に生ずるものであり、さらに熱間加
工中に生ずる表面疵の1つであるしわ疵も加工方向に伸
展した粗大δ粒を単位とした変形によって生ずるもので
あること。
Therefore, from the above-mentioned viewpoint, the present inventors developed a method to prevent surface flaws (surface cracks) from occurring in continuously cast duplex stainless steel blooms and slabs, as well as hot-rolled materials thereof. As a result of research from a scientific point of view, (a) duplex stainless steel has a harder film-like austenite phase (hereinafter referred to as γ phase) at the coarse grain boundaries of the primary δ-ferrite matrix. The precipitated structure, that is, δ-ferrite crystal grains (hereinafter referred to as δ grains), has a structure surrounded by γ phase, and therefore, the above surface flaws in duplex stainless steel are caused by the γ phase at grain boundaries, with δ grains as a unit. Furthermore, wrinkle flaws, which are one of the surface flaws that occur during hot working, are also caused by the deformation of coarse δ grains extending in the working direction.

(b)シかして、δ粒を微細化すれば、上εの表面疵の
発生は防止されることになるが、δ粒の微細化は、2相
組織であるために、一方の相が他方の相の粒界移動をピ
ン止めすることから、きわめて難しいこと。
(b) If the δ grains are refined, the occurrence of surface flaws on the upper ε will be prevented, but since the δ grains have a two-phase structure, one phase This is extremely difficult because it pins down the grain boundary movement of the other phase.

(c)シかし、2相ステンレス鋼の連続鋳造に際して、
凝固が進行中の鋳片表1部の冷却速度を少なくとも13
00℃に到るまでを10℃/5ec12L上の高冷却速
度で冷却すると、組織の微細化が可能となること。
(c) During continuous casting of duplex stainless steel,
The cooling rate of the first part of the slab that is currently solidifying is at least 13
By cooling down to 00°C at a high cooling rate of 10°C/5ec12L, it is possible to refine the structure.

ldl  対象となる2相ステンレス鋼としては、主成
分としてFe * Cr 、およびNiを含有し、常温
付近でδ粒+γ相の2相組織をもつものならば特に制限
はな(、Crの代りにSi * Mo +さらにNiの
代りにM口やNを含有してもよく、その対象範囲は第1
図のシエフラーダイヤグラムに斜線部分(斜線部分中の
点!!示部分は通常の2相ステンレス鋼の範囲を示す)
で示される範囲であり、初晶δ単相となる鋼においてよ
り大きな効果が得られること。
ldl There are no particular restrictions on the target duplex stainless steel as long as it contains Fe*Cr and Ni as the main components and has a two-phase structure of δ grains + γ phase near room temperature (, Cr can be replaced with Si * Mo + Furthermore, M or N may be contained instead of Ni, and the target range is the first
The shaded area in the Schiefler diagram shown in the figure (points in the shaded area!! The indicated area indicates the range of normal duplex stainless steel)
It is within the range shown by , and a greater effect can be obtained in steel with a primary δ single phase.

以上(al〜(d)に示される知見を得たのである。The findings shown in (al to (d)) above were obtained.

この発明は、上記知見にもとづいてなされたものであっ
て、両端解放鋳型内で2相ステンレス鋼の凝固表層部を
溶鋼から形成した後、該凝固表層部を固相線以上の温度
から少なくとも1300℃までを10℃/ sec以上
の冷却速度で冷却する2相ステンレス鋼鋳片の連続鋳造
法に特徴を有するものである。
The present invention has been made based on the above findings, and includes forming a solidified surface layer of duplex stainless steel from molten steel in a mold with both ends open, and then heating the solidified surface layer from a temperature above the solidus line to a temperature of at least 1300°C. This method is characterized by a continuous casting method for duplex stainless steel slabs that cools down to 10°C at a cooling rate of 10°C/sec or more.

なお、この発明の方法において、2相ステンレス鋼鋳片
の冷却速度制御の対象となる表層部とは表面疵と直接関
係する10■までをいい、好ましくは20日までを急冷
するのがよい。
In the method of the present invention, the surface layer portion of the duplex stainless steel slab whose cooling rate is to be controlled refers to the portion directly related to surface flaws up to 10 days, preferably up to 20 days.

また、この発明の方法を実晦するに当り、凝固開始後か
ら1300℃までの冷却速度を、10℃/ sec以上
の高冷却速度とする具体的手段について検討するに、垂
直型または彎曲型連続鋳造機に使用されている通常の鋳
型(長さが700〜900日、あるいはこれ以上)では
、溶鋼メニスカス近傍でこそ凝固表層部と鋳型壁とが溶
融パウダーを介して密着した状態の凝固が進行し、十分
な冷却速度が確保されるものの、それより下方になると
溶鋼の凝固収縮と鋳片の温度降下に伴う収縮とで鋳片は
鋳型壁面から離れ、鋳型の抜熱作用を損なうエアーギャ
ップを生じるようになり、著しい冷却遅れが生じるので
、上記のような早い時期での高冷却速度の確保は不可能
であるという問題があり、また寸法の短かい鋳型を使用
した場合、鋳型内で形成される鋳片の凝固表層部はごく
薄いので、鋳型下端から早めに引き抜いた鋳片に冷却媒
体を吹き付けて高温度域での冷却速度を高めるという手
段を試みると、鋳片のブレークアウトが起きる危険がき
わめて高いなどの問題があるが、連続鋳造用鋳型として
、第2図に概略断面図で示されるように、鋳型lの下部
内壁面2に鋳片の凝固表層部の温度測定用検温センサー
3と、冷却媒体吹き込み用ノズル4とを配設し、かつ該
下部内壁面2の上方に冷却媒体吸引用導通孔6を設けた
鋳型を用いると、下部内壁面に達した凝固表層部9の温
度が上記の固相線以上の温度から少なくとも1300℃
までの温度範囲16粒微細化の急冷効果が期待できる範
囲)であるか否かを検温センサー3にて検知することか
できるとともに、前記の適正温度琥にある凝固表層部を
10℃/sec以上の冷却速度で冷却するように検温セ
ンサー3を介して冷却媒体吹き込み用ノズル4からの冷
却媒体吹き込み歌を調節でき、かつ、吹き込まれた冷却
媒体は、鋳型1の上部内壁面5と溶鋼7のメニスカス8
との間に間隙を作ってそこから上方に吹き抜け、メニス
カス8近傍の冷却を不安定化するのを冷却媒体吸引用導
通孔6からのスムーズな排出により防止できるようにな
り(第2図において、10は冷却水通路。
In addition, when carrying out the method of the present invention, we will examine specific means for increasing the cooling rate from the start of solidification to 1300°C to a high cooling rate of 10°C/sec or more. In normal molds used in casting machines (700 to 900 days or more in length), solidification progresses in the vicinity of the molten steel meniscus, where the solidified surface layer and mold wall are in close contact with each other through the molten powder. Although a sufficient cooling rate is ensured, below that point, the slab separates from the mold wall due to the solidification shrinkage of the molten steel and the shrinkage of the slab due to the temperature drop, creating an air gap that impairs the heat removal effect of the mold. There is a problem in that it is impossible to secure a high cooling rate at an early stage as described above, and if a mold with short dimensions is used, there will be a significant cooling delay. The surface layer of the solidified slab is very thin, so if a method is attempted to increase the cooling rate in high temperature ranges by spraying a cooling medium onto the slab that has been pulled out early from the bottom of the mold, breakout of the slab will occur. Although there are problems such as extremely high danger, as a mold for continuous casting, as shown in the schematic cross-sectional view in Fig. 2, a temperature sensor is installed on the lower inner wall surface 2 of the mold l to measure the temperature of the solidified surface layer of the slab. 3, a cooling medium injection nozzle 4, and a cooling medium suction passage hole 6 above the lower inner wall surface 2 are used. The temperature is at least 1300°C above the solidus line above.
The temperature sensor 3 can detect whether or not the temperature range is 16 (a range in which a rapid cooling effect of grain refinement can be expected), and the solidification surface layer at the above-mentioned appropriate temperature can be cooled at a rate of 10°C/sec or more. The blowing of the coolant from the coolant blowing nozzle 4 can be adjusted via the temperature measurement sensor 3 so that the cooling rate is 100%. meniscus 8
By creating a gap between the coolant and the coolant and blowing upward from there, destabilizing the cooling in the vicinity of the meniscus 8 can be prevented by smooth discharge from the coolant suction passage hole 6 (in Fig. 2, 10 is a cooling water passage.

11は冷却水スプレーノズルを示す)、この結果鋳片ブ
レークアウトによる危険を確実に回避しつつ鋳込まれた
溶鋼の高温での高い冷却速度を容易に確保することが可
能となり、鋳片の凝固表層部を固相線以上の温度から1
0℃/ set; I2i上の冷却速度で冷却するとい
う条件を安定して達成できるようになるのである。
11 indicates a cooling water spray nozzle), as a result, it is possible to easily ensure a high cooling rate of the cast molten steel at high temperature while reliably avoiding the risk of slab breakout, and the solidification of the slab can be easily achieved. 1 from the temperature of the surface layer above the solidus line
This makes it possible to stably achieve the condition of cooling at a cooling rate of 0°C/set; I2i.

すなわち、第2図において、鋳型1中に溶鋼7が鋳込ま
れると、先ず鋳型の上部内壁面5の抜熱作用によってご
く薄い凝固表層部が形成されるが、この上部内壁面5の
長さを1例えば4001程度(メニスカス下の長さ:3
00+w程度)とごく短かくしておくと、鋳片の凝固表
層部が形成されたばかりの部分は直ちに鋳型の下部内壁
面2の位置にまで降下されることとなり、冷却媒体吹き
込み用ノズル4から吹き込まれて冷却媒体吸引用導通孔
6へと還流する例えばHeガスや、 Heガスと水との
混合がスなどの冷却媒体によって効率よく、冷却される
ので、従来の両端開放鋳型(:おけるような“凝固や冷
却による収縮のために凝固表層部が鋳型内壁面から離れ
て両面間に空気層を形成し、これによって冷却遅れを生
じる”という不都合をきたすことがなく、しかも検温セ
ンサー3により急冷開始鋳片の凝固表層部温度を正確に
確認する ゛ことができる上、冷却速度の調整も容易と
なり、したがって凝固表層部の高温度域における高い冷
却速度が安定に確保されるもので・あり、また、このよ
うな構造の鋳型であれば所望厚の凝固表層部が形成され
るまでの鋳片部分を鋳型内に止めておくことができるの
で、ブレークアウトによる危険も生じることがないので
ある。なお、第2図はこの発明の方法の急冷態様を示し
たものであり、これに何ら制限されるものではない。
That is, in FIG. 2, when molten steel 7 is poured into the mold 1, a very thin solidified surface layer is formed by the heat removal action of the upper inner wall surface 5 of the mold, but the length of this upper inner wall surface 5 For example, about 4001 (length below the meniscus: 3
If the temperature is kept very short (approximately 00+w), the part of the slab where the solidified surface layer has just been formed will be immediately lowered to the position of the lower inner wall surface 2 of the mold, and the coolant will be blown from the cooling medium injection nozzle 4. For example, He gas or a mixture of He gas and water that flows back to the cooling medium suction passage hole 6 is efficiently cooled by the cooling medium such as gas, so that "solidification" as in a conventional mold with both ends open is possible. The solidified surface layer separates from the inner wall of the mold due to shrinkage and cooling, forming an air layer between both surfaces, which causes a delay in cooling.Moreover, the temperature sensor 3 allows the slab to be rapidly cooled. It is possible to accurately check the temperature of the solidified surface layer, and it is also easy to adjust the cooling rate, thus stably ensuring a high cooling rate in the high temperature range of the solidified surface layer. If the mold has such a structure, the slab can be kept in the mold until the solidified surface layer of the desired thickness is formed, so there is no risk of breakout. FIG. 2 shows a quenching mode of the method of the present invention, and the present invention is not limited thereto.

さらに、この発明の方法において、固相線以上の温度か
ら少なくとも1300’C1での温度範囲における冷却
速度を10℃/ see IJ上と定めたのは。
Further, in the method of the present invention, the cooling rate in the temperature range from the solidus temperature to at least 1300'C1 is set to be 10°C/see IJ or above.

前記温度範囲の冷却速度が10℃/ sec未満になる
と、所望の組織微細化、すなわちδ粒微細化をは冷却速
度による冷却温度範囲の下限値を1300℃、あるいは
これ以下と定めたのは、δ粒成長は1300℃までで決
まり、これより下の温度ではr相が析出するようになっ
てδ粒界移動を阻止して組織微細化に寄与するようにな
るという理由にもとづくものである。
When the cooling rate in the temperature range is less than 10°C/sec, the desired structure refinement, that is, δ grain refinement, is achieved. This is based on the reason that δ grain growth is determined up to 1300° C., and at temperatures below this, the r phase begins to precipitate, inhibits δ grain boundary movement, and contributes to microstructural refinement.

さらに、具体的に詳述すれば、重置%で(以下%は重置
%を示す)、 C:0.02%、    Si:0.30%。
More specifically, in terms of overlapping % (hereinafter % indicates overlapping %), C: 0.02%, Si: 0.30%.

Mn : 0.85%、     P:0.021%。Mn: 0.85%, P: 0.021%.

S:0.003%、   Ni:6.0%。S: 0.003%, Ni: 6.0%.

Cr:23.5%、    Mo:2.5%。Cr: 23.5%, Mo: 2.5%.

N:0.11%。N: 0.11%.

を含有し、残りがFeと不可避不純物からなる組成を有
する2相ステンレス鋼(91下A鋼という)、および。
A duplex stainless steel (referred to as 91-A steel) having a composition containing Fe and the remainder consisting of Fe and unavoidable impurities.

C:0.02%*    st:1.s%。C: 0.02%* st: 1. s%.

勤:3.5%、     P:0.0022%。Labor: 3.5%, P: 0.0022%.

S:O,,002%+   Ni:4.2%。S: O, 002% + Ni: 4.2%.

Cr:18.4%、    N:0.005%。Cr: 18.4%, N: 0.005%.

を含有し、残りがFeと不可避不純物からなる組成を有
する2相ステンレス鋼(tll下調鋼いう)、の小片を
、直径:20mx長さ:40mのアルミするつぼで15
50℃(=加熱して溶解した後、種々の冷却速度で10
00℃まで冷却後水冷した場合の6粒径と冷却速度の関
係が第3図に示しである。
A small piece of duplex stainless steel (referred to as TLL grade steel) having a composition of
50°C (= after heating and melting, 10°C at various cooling rates)
FIG. 3 shows the relationship between the six particle sizes and the cooling rate when water cooling was performed after cooling to 00°C.

第3図に示されるように、lO℃/5ecLl上の冷却
速度でδ粒微細化効果が著しく現われるようになること
がわかる。
As shown in FIG. 3, it can be seen that the δ grain refinement effect becomes remarkable at a cooling rate of 10° C./5 ecLl.

〔実施例〕  ・ つぎに、この発明の方法を実施例により具体的に説明す
る。
[Example] - Next, the method of the present invention will be specifically explained with reference to Examples.

通常の溶解法にて、 C:  0.0 4 %、       Si:0.2
5 %。
By normal dissolution method, C: 0.04%, Si: 0.2
5%.

Mn :  0.65 %、       P:0.0
21 %。
Mn: 0.65%, P: 0.0
21%.

S:0.004%、     Cr:25.3%。S: 0.004%, Cr: 25.3%.

Ni:6.5 %、        Mo:3.02%
Ni: 6.5%, Mo: 3.02%
.

N :  0.1 4 %。N: 0.1 4%.

を含有し、残りがFeと不可避不純物からなる組成を有
する2相ステンレス鋼c以下C鋼という)、および、 C:0.04%、    Si:0.31%。
Duplex stainless steel (hereinafter referred to as C steel (hereinafter referred to as C steel)), and C: 0.04%, Si: 0.31%.

Mn:0.55%、    P:0.022%。Mn: 0.55%, P: 0.022%.

S:0.003%、   Cr:19.2%。S: 0.003%, Cr: 19.2%.

Ni : 5.1%、N:0.009%。Ni: 5.1%, N: 0.009%.

を含有し、残りがFeと不可避不純物からなる組成を有
する2°相ステンレス鋼c以下り鋼という)、をそれぞ
れ溶製し、第2図に示される構造を有し、かつ全長=7
00■×上部内壁面長さ:3001の寸法をもった両端
1放鋳型1を備えた半径=12.5mの彎曲型連続鋳造
機を用い、前記鋳型1内における凝固表層部9の冷却速
度をそれぞれ、8℃/ sec、 10℃/ sB、 
20℃/ sec、および30℃/SeQとした条件で
連続鋳造して、250■×2100■の断面寸法をもっ
た鋳片とし、この鋳片における表面疵の発生状況を観察
し、ついでこの鋳片を温度: 1250℃に再加熱して
厚さ:50■の熱間圧延材とし、この状態でも表面疵を
目視により観察することにより本発明法を実施した。
2° phase stainless steel (hereinafter referred to as C steel) having a composition containing Fe and the remainder consisting of Fe and unavoidable impurities), each having the structure shown in Fig. 2 and having a total length of 7
Using a curved continuous casting machine with a radius of 12.5 m and equipped with a casting mold 1 at both ends with dimensions of 00 × upper inner wall surface length: 3001, the cooling rate of the solidified surface layer 9 in the mold 1 was determined. 8℃/sec, 10℃/sB, respectively.
Continuous casting was performed under conditions of 20°C/sec and 30°C/SeQ to obtain a slab with cross-sectional dimensions of 250cm x 2100mm, the appearance of surface flaws on this slab was observed, and then this casting was The piece was reheated to a temperature of 1250° C. to form a hot-rolled material having a thickness of 50 cm, and the method of the present invention was carried out by visually observing the surface flaws even in this state.

また、比較の目的で、鋳型として、冷却媒体吹込み用ノ
ズル、冷却水スプレーノズル、および検温センサーを具
備しない全長ニア00■の従来両端開放鋳型を用いる以
外は同一の条件で従来法を実施した。
In addition, for the purpose of comparison, a conventional method was carried out under the same conditions except that a conventional mold with a total length of near 00 mm and open at both ends, which was not equipped with a cooling medium injection nozzle, a cooling water spray nozzle, and a temperature sensor, was used as the mold. .

〔発明の効果〕〔Effect of the invention〕

この結果、本発明法で製造された鋳片、並びにこれより
の熱間圧延材には、いずれの場合も表面疵の発生は皆無
で、手入れを全く必要としないのに対して、従来法にお
いては、C鋼およびD鋼の鋳片とも表面疵が多発し、か
つ熱間圧延材ではいずれの鋼も耳割れが発生し、クライ
ンダ研削を必要とするものであった。
As a result, the slabs produced by the method of the present invention and the hot-rolled materials produced therefrom have no surface flaws and do not require any maintenance, whereas the conventional method The slabs of steel C and steel D had many surface flaws, and both of the hot-rolled steels had edge cracks, requiring grinder grinding.

上述のように、この発明の方法によれば、連続鋳造法に
よって製造された2相ステンレス鋼のプルームやスラブ
、さらにその熱間圧延材に表面疵が発生するのを防止す
ることができるので、疵取り工程が省略でき、これに伴
ない、歩留向上と工数削減による低コスト化をはかるこ
とができるなど工業上有用な効果がもたらされるのであ
る。
As described above, according to the method of the present invention, it is possible to prevent surface defects from occurring in plumes and slabs of duplex stainless steel manufactured by continuous casting, as well as in hot rolled materials thereof. The scratch removal process can be omitted, which brings about industrially useful effects such as improved yield and reduced costs due to reduced man-hours.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の2相ステンレス鋼の対象範囲を示す
シエフラーダイヤグラム、第2図はこの発明の方法の急
冷態様を示す概略断面図、第3図は1300℃までの冷
却速度と6粒径との関係図である。 1・・・鋳型、      2・・・下部内壁面。 3・・・検温センサー。 4・・・冷却媒体吹込用ノズル。 5・・・上部内壁面、6・・・冷却媒体吸引用導通孔。 7・・・溶鋼、      8・・・メニスカス。 9・・・凝固表1部、10・・・冷却水通路。 10・・・冷却水スプレーノズル。 Creq = Cr + Mo +1.5 Si第1図 ′:$2図
Figure 1 is a Schiefler diagram showing the target range of the duplex stainless steel of this invention, Figure 2 is a schematic sectional view showing the quenching mode of the method of this invention, and Figure 3 is a cooling rate up to 1300°C and 6 grains. It is a relationship diagram with a diameter. 1... Mold, 2... Lower inner wall surface. 3...Temperature sensor. 4...Nozzle for blowing cooling medium. 5... Upper inner wall surface, 6... Cooling medium suction conduction hole. 7... Molten steel, 8... Meniscus. 9... Part 1 of the solidification table, 10... Cooling water passage. 10... Cooling water spray nozzle. Creq = Cr + Mo +1.5 Si Figure 1': $2 Figure

Claims (1)

【特許請求の範囲】[Claims] 両端解放鋳型内で2相ステンレス鋼の凝固表層部を溶鋼
から形成した後、該凝固表層部を固相線以上の温度から
少なくとも1300℃までを10℃/sec以上の冷却
速度で冷却することを特徴とする2相ステンレス鋼鋳片
の連続鋳造法。
After forming a solidified surface layer of duplex stainless steel from molten steel in a mold with both ends open, the solidified surface layer is cooled from a temperature above the solidus line to at least 1300°C at a cooling rate of 10°C/sec or more. Continuous casting method for duplex stainless steel slabs.
JP1636487A 1987-01-27 1987-01-27 Method for continuously casting two-phase stainless steel cast slab Pending JPS63183766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1636487A JPS63183766A (en) 1987-01-27 1987-01-27 Method for continuously casting two-phase stainless steel cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1636487A JPS63183766A (en) 1987-01-27 1987-01-27 Method for continuously casting two-phase stainless steel cast slab

Publications (1)

Publication Number Publication Date
JPS63183766A true JPS63183766A (en) 1988-07-29

Family

ID=11914271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1636487A Pending JPS63183766A (en) 1987-01-27 1987-01-27 Method for continuously casting two-phase stainless steel cast slab

Country Status (1)

Country Link
JP (1) JPS63183766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010073236A (en) * 1999-11-09 2001-08-01 이구택 Method for continuously casting duplex stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010073236A (en) * 1999-11-09 2001-08-01 이구택 Method for continuously casting duplex stainless steel

Similar Documents

Publication Publication Date Title
Shibuya et al. Strip casting techniques for steel
JP2002086252A (en) Continous casting method
JPH0947854A (en) Method for restraining surface crack of cast slab
JPH0742513B2 (en) Method for producing austenitic stainless steel sheet
JPS63183766A (en) Method for continuously casting two-phase stainless steel cast slab
JP2018099704A (en) Continuous casting method for steel
JP3453990B2 (en) Cooling method for continuous casting bloom
JP5402790B2 (en) Method for cooling continuous cast bloom slab and method for manufacturing the slab
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JP3406459B2 (en) Cooling method for continuous casting bloom
JPH0688125A (en) Method for hot-working continuously cast slab and steel ingot
JP3412418B2 (en) Slab secondary cooling device
JPS63192537A (en) Continuous casting method for austenitic stainless steel cast slab
JP2003181608A (en) Method for cooling bloom outside continuous casting machine
JP4001264B2 (en) Manufacturing method of steel with few surface defects
JPH0112561B2 (en)
JPH1190598A (en) Method for continuously casting stainless steel
JPS63168260A (en) Hot working method for continuously cast billet
JPS58224054A (en) Method for preventing surface cracking of continuous casting ingot
JP7370470B2 (en) Reduced final grain size of amorphous wrought material produced via semi-continuous casting (DC) route
JPH06246414A (en) Continuous casting of high carbon steel
JPS63177950A (en) Method for casting ferritic stainless steel
JP2518618B2 (en) Mold for continuous casting of steel
JPS6363559A (en) Prevention for hot cracking in continuously cast slab
JP3356094B2 (en) Manufacturing method of round billet slab by continuous casting