JPS63177950A - Method for casting ferritic stainless steel - Google Patents

Method for casting ferritic stainless steel

Info

Publication number
JPS63177950A
JPS63177950A JP1093087A JP1093087A JPS63177950A JP S63177950 A JPS63177950 A JP S63177950A JP 1093087 A JP1093087 A JP 1093087A JP 1093087 A JP1093087 A JP 1093087A JP S63177950 A JPS63177950 A JP S63177950A
Authority
JP
Japan
Prior art keywords
mold
slab
cooling
temp
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1093087A
Other languages
Japanese (ja)
Other versions
JPH07112595B2 (en
Inventor
Tokiaki Nagamichi
常昭 長道
Hiroyuki Ichihashi
市橋 弘行
Yoshiki Gunji
郡司 好喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62010930A priority Critical patent/JPH07112595B2/en
Publication of JPS63177950A publication Critical patent/JPS63177950A/en
Publication of JPH07112595B2 publication Critical patent/JPH07112595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To stably mass-produce a continuously cast slab having fine recrystallized structure, which the surface defect is not developed at the time of deep draw working by cooling the surface layer of cast slab formed in both end opening mold at >=10 deg.C/sec cooling velocity from the temp. range of solidus line or higher. CONSTITUTION:Temp. detecting sensor 3 and nozzle holes 4 for injecting coolant on the inner wall face 2 at the lower part of mold 1, and introducing holes 6 for sucking the coolant in the upper part of inner wall face 2 at the lower part of mold, are arranged. When the molten steel 7 is cast into the mold 1, the extremely thin solidified shell 9 formed by heat-conducting action of the upper part of inner wall face 5, is immediately descended to the position of lower part of inner wall face 2. And, by the coolant injecting from the nozzle holes 4 for injecting the coolant and circulating to the introducing holes 6 for sucking, the surface layer part is cooled at >=10 deg.C/sec cooling velocity from the temp. range of solidus line or higher. Adjustment of the cooling velocity is executed under confirming by the temp. detecting sensors 3 and the high cooling velocity at the high temp. range can be stably secured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、加工の際に“肌荒れ性ロービング現象”等
の表面欠陥を生じることのない鋼板を安定して製造し得
る、表面性状の良好なフェライト系ステンレス鋼鋳片の
鋳造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a steel sheet with good surface properties that allows stable production of steel sheets that do not cause surface defects such as "rough roving phenomenon" during processing. The present invention relates to a method for casting ferritic stainless steel slabs.

〈従来技術とその問題点〉 従来から、連続鋳造鋳片を圧延して製造されたフェライ
ト系ステンレス鋼板を深絞り加工すると、圧延方向に沿
って“ロービングと呼ばれる肌荒れ性の表面起伏が頻繁
に生じることが指摘されており、製品の外観を損ねるこ
とからこの“ロービングの発生は大きな問題となってい
た。
<Prior art and its problems> Conventionally, when deep-drawing a ferritic stainless steel sheet manufactured by rolling a continuously cast slab, rough surface undulations called "roving" frequently occur along the rolling direction. It has been pointed out that this "roving" has become a major problem because it impairs the appearance of the product.

ところで、ロービングの発生原因については、一般に「
連続鋳造時に生成した粗大な柱状晶組織が圧延工程でも
十分に破壊されず、しかも集合組織が残存してしまう上
、この粗大粒や集合組織は熱間圧延中に再結晶し難くて
組織が微細化しないので塑性変形に異方性や不均一性が
現われることにある」と考えられている。また、フェラ
イト系ステンレス鋼の中で5US430鋼は熱間圧延中
にフェライト(α)とオーステナイト(γ)の2相組織
に分離するものであるが、鋳造組織のαが粗大であれば
、これから分離生成したこれら2相も当然に粗大となっ
て上述のような不都合を招くものと考えられていた。
By the way, the cause of roving is generally explained as follows.
The coarse columnar crystal structure generated during continuous casting is not sufficiently destroyed during the rolling process, and the texture remains, and the coarse grains and texture are difficult to recrystallize during hot rolling, resulting in a fine structure. It is thought that this is because anisotropy and non-uniformity appear in plastic deformation because the plastic deformation does not change. Furthermore, among ferritic stainless steels, 5US430 steel separates into a two-phase structure of ferrite (α) and austenite (γ) during hot rolling, but if α in the casting structure is coarse, it will separate from this. It was thought that these two phases produced would naturally become coarse and cause the above-mentioned inconveniences.

そこで、ロービング現象等の表面欠陥の発生を低減する
ためには結晶粒を微細化することが最も有効であるとさ
れ、従来、熱間圧延以降の圧延工程で、高歪を蓄積して
微細な再結晶組織を得るために“温間圧延法”や“異形
ロール圧延法”などの採用が試みられていた。
Therefore, it is considered that the most effective way to reduce the occurrence of surface defects such as roving phenomena is to refine the crystal grains. In order to obtain a recrystallized structure, attempts were made to employ methods such as ``warm rolling'' and ``deformed roll rolling''.

しかしながら、連続鋳造鋳片の結晶粒は粗大であるため
通常の 熱間圧延−焼鈍一冷間圧延一焼鈍 なる工程のみでは、例え“温間圧延法”や“異形ロール
圧延法”を採り入れたとしても再結晶が不十分で結晶粒
が微細化せず、上記工程に更に冷間圧延と焼鈍とを加え
た 熱間圧延−焼鈍一冷間圧延一焼鈍一冷間圧延一焼鈍 なる工程を採用することすらあったが、これは大幅なコ
ストアンプにつながるものであり決して好ましい手段と
は言えなかった。
However, since the crystal grains of continuously cast slabs are coarse, it is impossible to perform only the normal hot rolling-annealing-cold-rolling-annealing process, even if "warm rolling method" or "deformed roll rolling method" is adopted. However, recrystallization is insufficient and grains are not refined, so a process of hot rolling - annealing - cold rolling - annealing - cold rolling - annealing is adopted, which further adds cold rolling and annealing to the above steps. However, this led to a significant increase in costs and was by no means a desirable method.

このため、連続鋳造鋳片の結晶粒をより簡便に微細化す
べく、Ti等の合金元素を添加して結晶核生成を促進し
たり、低温鋳造や鋳型内電磁攪拌等を実施すること等も
提唱されたが、これらの手段により鋳片内部は比較的微
細な等軸晶粒とはなるものの、鋳片表層部は依然として
粗大な柱状晶となるのを如何ともし難く、これらから得
られた鋼板はやはり深絞り加工時に肌荒れ性ロービング
現象等の表面欠陥を生じる傾向を示したのである。
Therefore, in order to more easily refine the crystal grains of continuously cast slabs, it has been proposed to add alloying elements such as Ti to promote crystal nucleation, and to implement low-temperature casting and electromagnetic stirring within the mold. However, although these methods resulted in relatively fine equiaxed crystal grains inside the slab, it was difficult to prevent the surface layer of the slab from becoming coarse columnar crystals. It also showed a tendency to produce surface defects such as rough roving phenomenon during deep drawing.

〈問題点を解決するための手段〉 本発明者等は、上述のような観点から、深絞り加工時に
肌荒れ性ロービング現象等の表面欠陥を生じることのな
いフェライト系ステンレス鋼鋼板を安定して製造すべく
、特に「鋼の再結晶粒径は圧延前の初期粒径が小さいほ
ど微細になる」との事実を踏まえた上で、“圧延前のフ
ェライト系ステンレス鋼連続鋳造鋳片表層部”の組織微
細化が深絞り加工時の表面欠陥発生防止に不可欠である
との認識の下に、表層部に微細な鋳造組織を有するフェ
ライト系ステンレス鋼連続鋳造鋳片を鋳造時に実現する
手段について様々な角度から実験・研究を行った結果、
次に示すような知見を得たのである。即ち、 (a)  フェライト系ステンレス鋼鋳片のフェライト
粒径は固相線温度(フェライト単相化温度:Tα)直後
から急激に粗大化し始めるものであり、この現象が鋳片
表層部組織機細化の妨げとなっていること。
<Means for Solving the Problems> From the above-mentioned viewpoint, the present inventors have developed a method for stably producing ferritic stainless steel sheets that do not produce surface defects such as rough roving during deep drawing. In order to achieve this, in particular, taking into account the fact that ``the recrystallized grain size of steel becomes finer as the initial grain size before rolling becomes smaller,'' Recognizing that microstructural refinement is essential for preventing surface defects during deep drawing, various methods have been developed to achieve continuous casting of ferritic stainless steel slabs with a fine cast structure in the surface layer during casting. As a result of conducting experiments and research from various angles,
The following findings were obtained. That is, (a) The ferrite grain size of a ferritic stainless steel slab begins to coarsen rapidly immediately after the solidus temperature (ferrite single phase temperature: Tα), and this phenomenon causes the microstructure of the surface layer of the slab to become coarser. What is hindering the development of

第1図は、5US430鋼を溶解してから冷却速度:1
.5°C/seeで冷却するとともに、その途中から水
焼入れして組織を固定したものについて、該水焼入れ温
度とα粒径との関係を示したグラフであり、図中の矢印
は固相線温度(α単相化温度:Tα)である。この第1
図からも、温度がTαを下回った直後からα粒が急激に
粗大化しはじめることが明らかである。
Figure 1 shows the cooling rate after melting 5US430 steel: 1
.. This is a graph showing the relationship between the water quenching temperature and the α grain size for samples that were cooled at 5°C/see and water quenched midway through to fix the structure, and the arrow in the figure indicates the solidus line. temperature (α single-phase temperature: Tα). This first
It is clear from the figure that the α grains begin to coarsen rapidly immediately after the temperature drops below Tα.

(b)ところが、固相線温度(α単相化温度:Tα)以
降の冷却速度を特定値以上に大きくする手段を講じると
、前記α粒径の粗大化が有効に防止できること。
(b) However, if a means is taken to increase the cooling rate after the solidus temperature (α single-phase temperature: Tα) to a specific value or more, the coarsening of the α particle size can be effectively prevented.

第2図は、50種類のフェライト系ステンレス鋼溶鋼を
冷却凝固する際にTα以降の冷却速度を種々に変え、1
000℃に到達した後急冷してその組織を固定したもの
のα粒径を、前記冷却速度で整理して表わしたグラフで
ある。この第2図からも、Tα以降の冷却速度を10℃
/sec以上に大きくしてやれば、α粒の粗大化を防止
できることがわかる。
Figure 2 shows that when cooling and solidifying 50 types of molten ferritic stainless steel, the cooling rate after Tα was varied, and 1
2 is a graph showing the α grain size of samples whose structure was fixed by rapid cooling after reaching 000° C., organized by the cooling rate. From this figure 2, we can also see that the cooling rate after Tα is 10°C.
It can be seen that if it is made larger than /sec, coarsening of α grains can be prevented.

(C)また、凝固・冷却中にγ相が析出する5OS43
0泪のようなフェライト径ステンレス鋼では、圧延時の
再結晶フェライトの核発生場所としてT界面が重要な役
割を果たしており、γ相がα粒内に分散しておればビン
止め効果によりフェライトの粒成長を抑制するだけでな
く、圧延時に優先方位のない微細再結晶粒が得られるこ
とになるので、Tα以降の冷却速度増大対策の他に、「
(α+γ)2相域での徐冷を施すこと」も良好性状を得
る上で好ましいこと。
(C) Also, 5OS43 in which γ phase precipitates during solidification and cooling
In stainless steel with a ferrite diameter such as 0, the T interface plays an important role as a nucleation site for recrystallized ferrite during rolling, and if the γ phase is dispersed within the α grains, the ferrite is blocked due to the bottling effect. In addition to suppressing grain growth, fine recrystallized grains with no preferred orientation can be obtained during rolling, so in addition to measures to increase the cooling rate after Tα,
It is also preferable to perform slow cooling in the (α+γ) two-phase region in order to obtain good properties.

第3図は、SUS 430鋼について冷却速度がγ相の
析出状態に及ぼす影響について調べた結果を示す顕微鏡
写真図であり、第3図(a)は5US430鋼を溶融後
冷却速度2℃/secで冷却したとき(α+γ域を徐冷
したとき)の組織を、そして第3図(1)lは5US4
30鋼を溶融後冷却速度12℃/secで冷却したとき
(α+γ域を急冷したとき)の組織をそれぞれ示してい
る。この第3図からは、α+γ域を徐冷したもの〔第3
図(a)〕はγ相がα粒界のみならず粒内にも多数析出
しているのに対し、α+γ域を急冷したもの〔第3図(
b))で示したものでは粒界にしか析出していないこと
が確認できる。このように、α+γ2相域で除冷すると
て相がα粒内にも析出するため、圧延工程において微細
再結晶組織になりやすい。
Figure 3 is a micrograph showing the results of an investigation into the effect of cooling rate on the precipitation state of the γ phase for SUS 430 steel. Figure 3 (1) l is 5US4.
The structure of No. 30 steel is shown when it is cooled at a cooling rate of 12° C./sec after melting (when the α+γ region is rapidly cooled). From this figure 3, the α + γ region is slowly cooled [3
Figure (a)] shows that a large number of γ phases precipitate not only at the α grain boundaries but also within the grains, whereas the α+γ region is rapidly cooled [Figure 3 (
In the case shown in b)), it can be confirmed that precipitation occurs only at grain boundaries. In this way, when slowly cooling in the α+γ2 phase region, the phase is also precipitated within the α grains, which tends to result in a fine recrystallized structure in the rolling process.

(d)  このようなことから、連続鋳造時に鋳型内で
鋳片表層の極く薄い部分が形成された瞬間から該鋳片表
層部の殆んどの部分が固相線温度(α単相化温度:Tα
)以上の温度にある間に冷却速度:10℃/sec以上
で表層部を急冷処理すると、フェライト径ステンレス鋼
鋳片表層部の鋳造組織が微細化され、これにより圧延後
の鋼板のフェライト粒も微細化することとなって、肌荒
れ性ロービング現象等の表面欠陥の発生が極力抑えられ
てしまうこと。また、フェライト系ステンレス鋼の中で
も5US430鋼のように凝固・冷却中にγ相が析出す
るものでは、α+γ2相域を10℃1sec未満の冷却
速度で徐冷してα粒内での1粒の析出を促進しても、や
はり圧延工程において微細再結晶粒が生じやすくなり肌
荒れ性ロービング現象等の表面欠陥を発生し難いフェラ
イト系ステンレス鋼鋼板製造素材とすることができるこ
と。
(d) For this reason, from the moment the very thin surface layer of the slab is formed in the mold during continuous casting, most of the surface layer of the slab reaches the solidus temperature (α single phase temperature :Tα
) When the surface layer is rapidly cooled at a cooling rate of 10°C/sec or higher while the temperature is above 10°C, the cast structure of the surface layer of the stainless steel slab with a ferrite diameter becomes finer, and the ferrite grains of the steel plate after rolling are also refined. Due to the miniaturization, the occurrence of surface defects such as rough roving phenomenon is suppressed as much as possible. In addition, among ferritic stainless steels, such as 5US430 steel, in which the γ phase precipitates during solidification and cooling, the α + γ two phase region is slowly cooled at a cooling rate of less than 1 sec at 10°C to separate one grain within the α grain. Even if precipitation is promoted, fine recrystallized grains are likely to occur during the rolling process and surface defects such as rough roving phenomena are less likely to occur as a ferritic stainless steel sheet manufacturing material.

(e)  ところで、垂直型又は湾曲型連続鋳造機に使
用されている通常の鋳型(長さ700〜900nかそれ
以上)では、溶融メニスカス近傍でこそ凝固シェルと鋳
型壁とが溶融パウダーを介して密着した状態の凝固が進
行し十分な冷却速度が確保されるものの、それより下方
になると溶鋼の凝固収縮と鋳片の温度降下に伴う収縮と
で鋳片は鋳型壁面から離れ、鋳型の抜熱作用を損なうエ
アーギャップを生じるようになり著しい冷却遅れが生じ
るので、上記のような早い時期での高冷却速度の確保は
不可能であるという問題があり、また、寸法の短い鋳型
を使用して鋳型内は極薄い鋳片表面凝固層のみを形成し
、鋳型下端から早めに引き抜いた鋳片に冷却媒体を吹き
付けることで高温度域での冷却速度を高めるという手段
を試みると、鋳片のブレークアウトが起きる危険が極め
て高かったが、連続鋳造用鋳型として第4図に示される
ように鋳型1の下部内壁面2に鋳片表層部温度測定用の
検温センサー3と冷却媒体吹き込み用ノズル孔4とを配
設し、かつ該下部内壁面2の上方に冷却媒体吸引用導通
孔6を設けることにより下部内壁面に達した鋳片表層部
の温度が先に述べた適正な範囲(Tα以上からの急冷効
果が期待できる範囲)であるか否かを検温センサー3に
て検知するとともに、適正温度域にある鋳片表層部を1
0°C/sec以上の冷却速度で冷却できるように検温
センサー3を通じて冷却媒体吹き込み用ノズル孔4から
の冷却媒体吹き込み量を調整し得るようにし、かつ、吹
き込まれた冷却媒体が鋳型1の上部内壁面5と溶鋼7の
メニスカス8との間に間隙を作ってそこから上方に吹き
抜け、メニスカス8近傍の冷却を不安定化するのを冷却
媒体吸引用導通孔6からのスムーズな排出により確実に
防止できるようにしたものを使用すると(なお、第4図
において符号9は凝固シェルを、符号10は冷却水通路
を、そして符号11は冷却水スプレーノズルをそれぞれ
示す)鋳片ブレークアウトによる危険を確実に回避しつ
つ鋳込まれた溶鋼の温度での高い冷却速度を容易に確保
することが可能となり、鋳片表層部をTα以上の温度か
ら10℃/sec以上の冷却速度で冷却すると言う条件
を安定して達成できるようになること。
(e) By the way, in a normal mold (700 to 900 nm or more in length) used in a vertical or curved continuous casting machine, the solidified shell and the mold wall are connected through the molten powder in the vicinity of the molten meniscus. Although solidification progresses in a close contact state and a sufficient cooling rate is secured, below this point, the slab separates from the mold wall due to solidification shrinkage of the molten steel and shrinkage due to the temperature drop of the slab, causing heat to be removed from the mold. There is a problem in that it is impossible to secure a high cooling rate at an early stage as described above, as an air gap is created that impairs the operation, resulting in a significant cooling delay. In the mold, only an extremely thin solidified layer is formed on the surface of the slab, and when a cooling medium is sprayed onto the slab pulled out early from the bottom of the mold to increase the cooling rate in the high temperature range, the slab breaks. Although there was an extremely high risk of outflow, as shown in Fig. 4, the continuous casting mold is equipped with a temperature sensor 3 for measuring the temperature of the surface layer of the slab and a nozzle hole 4 for blowing coolant on the lower inner wall surface 2 of the mold 1. and by providing a cooling medium suction passage hole 6 above the lower inner wall surface 2, the temperature of the surface layer of the slab reaching the lower inner wall surface can be controlled within the appropriate range mentioned above (from Tα or above). The temperature sensor 3 detects whether the temperature is within the range in which a rapid cooling effect can be expected.
The amount of coolant blown from the nozzle hole 4 for blowing the coolant can be adjusted through the temperature sensor 3 so that cooling can be performed at a cooling rate of 0°C/sec or more, and the blown coolant flows into the upper part of the mold 1. A gap is created between the inner wall surface 5 and the meniscus 8 of the molten steel 7 and the molten steel 7 blows upward from there, destabilizing the cooling in the vicinity of the meniscus 8, which is ensured by smooth discharge from the cooling medium suction passage hole 6. If a product that can prevent the breakout is used (in Fig. 4, numeral 9 indicates the solidified shell, numeral 10 indicates the cooling water passage, and numeral 11 indicates the cooling water spray nozzle), there is a risk of slab breakout. It is possible to easily secure a high cooling rate at the temperature of the cast molten steel while reliably avoiding the condition that the surface layer of the slab is cooled from a temperature of Tα or higher at a cooling rate of 10°C/sec or higher. To be able to achieve this stably.

即ち、第4図において、鋳型1中に溶鋼7が鋳込まれる
と先ず鋳型の上部内壁面5の抜熱作用によって極薄い凝
固シェルが成形されるが、この上部内壁面5の長さを例
えば400龍程度(メニスカス下の長さ:300m程度
)と極く短くしておくと、鋳片の凝固シェルが形成され
たばかりの部分は直ちに下部内壁面2の位置にまで降下
されることとなり、冷却媒体吹き込み用ノズル孔4から
吹き込まれて冷却媒体吸引用導通孔6へと還流する冷却
媒体(例えばHeガス等)によって効率良く冷却される
ので、従来の両端開放鋳型におけるような“凝固や冷却
による収縮のために凝固シェル面が鋳型内、壁面から離
れて両面間に空気層を形成し、これによって冷却遅れを
生じる”という不都合をきたすことがなく、しかも、検
温センサー3により急冷開始鋳片の表層部温度を正確に
確認することができる上、冷却速度の調整も容易となり
、従って鋳片表層部の高温度域における高い冷却速度が
安定に確保されるのである。
That is, in FIG. 4, when molten steel 7 is poured into a mold 1, an extremely thin solidified shell is first formed by the heat removal action of the upper inner wall surface 5 of the mold. If the length is kept extremely short, about 400m (length below the meniscus: about 300m), the part of the slab where the solidified shell has just been formed will be immediately lowered to the position of the lower inner wall surface 2, and will be cooled. The cooling medium (such as He gas) that is blown from the medium injection nozzle hole 4 and returned to the cooling medium suction passage hole 6 is efficiently cooled, so it is not possible to use "solidification or cooling" as in conventional molds with both ends open. The solidified shell surface separates from the wall surface in the mold due to shrinkage, forming an air layer between both surfaces, which causes a delay in cooling.Furthermore, the temperature sensor 3 allows the temperature sensor 3 to quickly cool the slab. In addition to being able to accurately check the temperature of the surface layer, it is also easy to adjust the cooling rate, thereby stably ensuring a high cooling rate in the high temperature range of the surface layer of the slab.

また、このような鋳型であれば所望厚の凝固シェルが形
成されるまでの鋳片部分を鋳型内に止めておくことがで
きるので、ブレークアウトによる危険が生じることもな
い。なお、冷却媒体としては、Heガス等の冷却ガスの
ほか、これらと水との混合ガス等を採用することもでき
る。
Furthermore, with such a mold, the slab can be kept in the mold until a solidified shell of the desired thickness is formed, so there is no risk of breakout. Note that as the cooling medium, in addition to cooling gas such as He gas, a mixed gas of these gases and water, etc. can also be employed.

この発明は、上記知見に基づいて「フェライト粒の粗大
化を抑制することによってその後の圧延工程において微
細な再結晶粒の生成を容易化し、肌荒れ性ロービング現
象等の表面欠陥を生じないフェライト系ステンレス鋼鋼
板を安定して製造し得る連続鋳造鋳片の提供」を目的と
してなされたものであり、 「溶鋼からフェライト系ステンレス鋼の連続鋳造鋳片を
製造するに際して、両端開放鋳型内で形成される鋳片表
層部を固相線温度(Tα)以上の温度域から10℃/s
ec以上の冷却速度で冷却することにより、α粒の粗大
化を防止して後の圧延工程において微細再結晶組織が得
られやすい連続鋳造鋳片を安定して量産し得るようにし
、以ってフェライト系ステンレス鋼鋼板における深絞り
加工時の表面欠陥(肌荒れ性ロービング現象等)発生防
止を可能とした点」 に特徴を有するものである。
Based on the above findings, this invention has developed a ferritic stainless steel that facilitates the generation of fine recrystallized grains in the subsequent rolling process by suppressing the coarsening of ferrite grains, and that does not cause surface defects such as rough roving. It was created with the aim of "providing continuous cast slabs that can stably produce steel plates", and "when producing continuous cast slabs of ferritic stainless steel from molten steel, it is possible to produce continuously cast slabs of ferritic stainless steel that are formed in a mold with both ends open. The surface layer of the slab is heated at 10℃/s from the temperature range above the solidus temperature (Tα).
By cooling at a cooling rate of ec or higher, it is possible to prevent the coarsening of α grains and to stably mass-produce continuous cast slabs in which a fine recrystallized structure is easily obtained in the subsequent rolling process. It is characterized by the ability to prevent the occurrence of surface defects (such as rough roving phenomenon) during deep drawing of ferritic stainless steel sheets.

ここで、「鋳片表層部」とは、鋳片の表面から多くとも
20mm程度までを指すものである。
Here, the "slab surface layer" refers to the area up to about 20 mm from the surface of the slab at most.

なおこの発明において、溶鋼から形成される鋳片表層部
の冷却条件を、特に「固相線温度(フェライト単相化温
度:Tα)以上の温度域から10’C/sec以上の冷
却速度で冷却する」と限定した理由を以下に説明する。
In this invention, the cooling conditions for the surface layer of the slab formed from molten steel are particularly set at a cooling rate of 10'C/sec or more from a temperature range of at least the solidus temperature (ferrite single-phase temperature: Tα). The reason for this limitation is explained below.

即ち、先に第1図を示して説明したように、鋳型内で凝
固を始めて形成された鋳片表層部の温度がTα以下にな
るとα粒の粗大化傾向が著しく顕著化するが、このとき
に該鋳片表層部を10℃/sec以上の速い冷却速度で
冷却するとα粒の粗大化が抑制されるからである。そし
て、この際の冷却速度が10℃/sec未満であるとα
粒の粗大化抑制効果が不十分となり、圧延工程で微細な
再結晶粒になり難く、これから製造された鋼板は深絞り
加工時に肌荒れ性ロービング現象等の表面欠陥が発生し
易くなる。なお、第2図は、先にも説明したように鋳片
表層部の温度がTαを切ってからの冷却速度とα粒径と
の関係を示した線図であるが、この第2図からも、「前
記冷却速度が10℃/sec以上であれば十分な7粒粗
大化抑制効果を得られるのに対して、該冷却速度が10
℃/sec未満であると鋳片表層部のα粒が粗大化傾向
を見せ、圧延工程で微細な再結晶組織とならず、深絞り
加工時に表面欠陥の多発を招くようになる」ことは明ら
かである。
That is, as explained earlier with reference to Fig. 1, when the temperature of the surface layer of the slab formed by solidification in the mold becomes below Tα, the tendency of coarsening of the α grains becomes remarkable. This is because if the surface layer of the slab is cooled at a fast cooling rate of 10° C./sec or more, coarsening of α grains is suppressed. If the cooling rate at this time is less than 10°C/sec, α
The effect of suppressing grain coarsening is insufficient, and it is difficult to form fine recrystallized grains in the rolling process, and steel sheets manufactured from this are susceptible to surface defects such as rough roving during deep drawing. As explained earlier, Fig. 2 is a diagram showing the relationship between the cooling rate and the α grain size after the temperature of the surface layer of the slab reaches Tα. ``If the cooling rate is 10°C/sec or more, a sufficient effect of suppressing grain coarsening can be obtained; however, if the cooling rate is 10°C/sec or more,
It is clear that if the temperature is less than ℃/sec, the α grains in the surface layer of the slab will tend to become coarser, and a fine recrystallized structure will not form during the rolling process, leading to frequent surface defects during deep drawing. It is.

また、従来の垂直型又は湾曲型連続鋳造機の鋳型では高
温度域における鋳片表層部の冷却速度を10℃/sec
以上とすることは不可能であるが、第4図に示す如き、
内壁部に鋳片表層部の温度を測定できるセンサーと冷却
媒体噴出ノズル(センサーの間に設置され、冷却媒体噴
出の調整が可能)をそれぞれ複数個備えた両端開放鋳型
の長さを短くするとともに、出口での鋳片表層部温度が
Tα以上となるように鋳片の引き抜き速度を調整した上
で鋳型直下で鋳片に冷却媒体を吹きつける方法を採用す
る等の手段により、前記冷却速度の確保は十分に可能と
なることも先に述べた通りである。
In addition, in the mold of a conventional vertical or curved continuous casting machine, the cooling rate of the surface layer of the slab in the high temperature range is 10°C/sec.
Although it is impossible to do more than that, as shown in Figure 4,
In addition to shortening the length of the mold, which is open at both ends, the inner wall is equipped with multiple sensors that can measure the temperature of the surface layer of the slab and multiple cooling medium jetting nozzles (installed between the sensors, allowing adjustment of the cooling medium jetting). The cooling rate can be adjusted by adjusting the drawing speed of the slab so that the temperature of the surface layer of the slab at the outlet is Tα or higher, and then spraying a cooling medium onto the slab directly under the mold. As mentioned earlier, it is quite possible to secure this.

なお、この場合に低温鋳造と鋳型内電攪を併用しながら
連続鋳造を行うと鋳片内部にも微細な等軸晶粒を生成す
ることができ、ロービング現象の発生を安定して抑制す
ることが可能となる。
In this case, if continuous casting is performed in combination with low-temperature casting and electric stirring in the mold, fine equiaxed crystal grains can be generated inside the slab, and the occurrence of the roving phenomenon can be stably suppressed. becomes possible.

次に、この発明を実施例により比較例と対比しながら具
体的に説明する。
Next, the present invention will be specifically explained using examples and comparing with comparative examples.

〈実施例〉 圧延時にロービング現象等の表面欠陥が生じゃすい5t
lS430A1キルド鋼(重量割合でC: 0.07%
、 Si : 0.62%、 Mn : 0.46%、
  P :  0.029%、S: 0.001%、 
Cr : 16.11%、 Ni : 0.18%、 
Mo : 0.01%、  Ti : 0.007%、
  A A : 0.082%、  N :o、oti
5%)を溶解し、実用の湾曲型連続鋳造機(湾曲半径:
12.5m、)により断面寸法が250鰭X1200+
+nのスラブを次の2つの条件で鋳造して従来圧延法(
熱間圧延−焼鈍一冷間圧延一焼鈍)とロービング対策圧
延法(熱間圧延−焼鈍一冷間圧延一焼鈍一冷間圧延一焼
鈍)とをそれぞれ別個に行い、得られた鋼板について肌
荒れ性ロービング現象等の表面欠陥の発生状況を観察し
た。
<Example> 5t with surface defects such as roving phenomenon during rolling
lS430A1 killed steel (C by weight percentage: 0.07%
, Si: 0.62%, Mn: 0.46%,
P: 0.029%, S: 0.001%,
Cr: 16.11%, Ni: 0.18%,
Mo: 0.01%, Ti: 0.007%,
AA: 0.082%, N: o, oti
5%), and a practical curved continuous casting machine (curving radius:
12.5m,) makes the cross-sectional dimensions 250 fins x 1200+
+n slabs were cast under the following two conditions and rolled using the conventional rolling method (
Hot rolling - annealing - cold rolling - annealing) and roving prevention rolling method (hot rolling - annealing - cold rolling - annealing - cold rolling - annealing) were carried out separately, and the surface roughness of the obtained steel sheet was evaluated. The occurrence of surface defects such as roving phenomenon was observed.

■ 本発明法に従った条件(本発明例)第4図で示され
るような、内壁部に鋳片表層部の温度を測定できるセン
サーと冷却媒体噴出ノズルとをそれぞれ複数個備えた両
端開放鋳型(形状と寸法は第1表に示す)を使用し、鋳
片表層部の温度がTαに近いことを怒知したセンサーよ
りも上部位置にあるノズルからの冷却媒体噴出量を多く
することにより該鋳片表層部の冷却速度を10’C/s
ec以上に調整する。
■ Conditions according to the method of the present invention (example of the present invention) A mold with both ends open, as shown in Fig. 4, equipped with a plurality of sensors capable of measuring the temperature of the surface layer of the slab and a plurality of coolant jet nozzles on the inner wall. (The shape and dimensions are shown in Table 1), and by increasing the amount of cooling medium ejected from the nozzle located above the sensor that detects that the temperature of the surface layer of the slab is close to Tα. The cooling rate of the surface layer of the slab was set to 10'C/s.
Adjust to ec or higher.

■ 従来通りの条件(比較例) 従来通りの両端開放鋳型を使用し、鋳型を出た第   
1   表 後の鋳片に対しては通常の水スプレー冷却を実施する。
■ Conventional conditions (comparative example) Using a conventional mold with both ends open, the first
1. Cool the cast slab after it has been surfaced by regular water spray cooling.

なお、この時の鋳片表層部の冷却速度をαデンドライト
のアーム間隔により確認したが、表面から20mの位置
における冷却速度は、本発明例では10℃/sec以上
であったのに対し、比較例では10°C/sec未満で
あった。
The cooling rate of the surface layer of the slab at this time was confirmed by the arm spacing of the α dendrites, and the cooling rate at a position 20 m from the surface was 10°C/sec or more in the example of the present invention, whereas in the comparative example In the example, it was less than 10°C/sec.

本発明例と比較例に示す条件とで鋳造した鋳片を前記“
従来圧延法”と“ロービング対策圧延法”にて圧延した
時のロービング現象の発生状況を目視評価した時のロー
ビンググレードを第5図に示す。本発明法によって鋳造
した鋳片のロービンググレードは従来圧延法でもAであ
るのに対し、比較法によって鋳造した鋳片のロービング
グレードはロービング対策圧延法でもB′であり、本発
明法で鋳造することにより、肌荒れ性ロービング現象が
著しく抑制されていることがわかる。
The slabs cast under the conditions shown in the inventive example and the comparative example were
Fig. 5 shows the roving grades obtained by visual evaluation of the occurrence of roving phenomenon when rolled using the ``conventional rolling method'' and the ``roving countermeasure rolling method''.The roving grade of the slab cast by the method of the present invention is The roving grade of the slab cast by the comparative method was B' even by the roving countermeasure rolling method, whereas the rolling method gave A, and by casting with the method of the present invention, the rough surface roving phenomenon was significantly suppressed. I understand that.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、冷却途中の5US430鋼を種々の温度にて
水焼入れして組織を固定した際の、水焼入れ温度とα粒
径との関係を示すグラフ、第2図は、フェライト系ステ
ンレス鋼の固相線温度(α単相化温度)以降の冷却速度
とフェライト(α)粒径との関係を示すグラフ、 第3図は、5US430鋼の凝固後の組織に及ぼす冷却
速度の影響を示す金属組織の顕微鏡写真図であり、第3
図(alは冷却速度2℃/secで冷却した時の金属組
織を、そして第3図fblは冷却速度12’C/see
で冷却した時の金属組織をそれぞれ示す、第4図は、本
発明の方法を実施するのに好適な鋳型を使用した連続鋳
造の状況を示す模式図、第5図は、本発明法と比較法と
により鋳造した鋳片を従来圧延法とロービング対策圧延
法にて圧延した時のロービンググレードを比較したグラ
フである。 図面において、 1・・・鋳型、    2・・・下部内壁面、3・・・
検温センサー、5・・・上部内壁面、4・・・冷却媒体
吹き込み用ノズル孔、6・・・冷却媒体吸引用導通孔、 7・・・溶鋼、     8・・・メニスカス、9・・
・凝固シェル、 10・・・冷却水通路、11・・・冷
却水スプレーノズル。
Figure 1 is a graph showing the relationship between water quenching temperature and α grain size when 5US430 steel during cooling is water quenched at various temperatures to fix the structure. Figure 2 is a graph showing the relationship between water quenching temperature and α grain size. A graph showing the relationship between the cooling rate and ferrite (α) grain size after the solidus temperature (α single-phase temperature) of It is a micrograph diagram of the metal structure, and the third
Figure (al is the metal structure when cooled at a cooling rate of 2°C/sec, and Figure 3fbl is the metallographic structure when cooled at a cooling rate of 12'C/sec.
Fig. 4 is a schematic diagram showing a continuous casting situation using a mold suitable for carrying out the method of the present invention, and Fig. 5 is a comparison with the method of the present invention. 2 is a graph comparing the roving grade when a cast slab cast by the method is rolled by the conventional rolling method and the roving countermeasure rolling method. In the drawings, 1... Mold, 2... Lower inner wall surface, 3...
Temperature sensor, 5... Upper inner wall surface, 4... Nozzle hole for cooling medium injection, 6... Continuity hole for cooling medium suction, 7... Molten steel, 8... Meniscus, 9...
- Solidified shell, 10... Cooling water passage, 11... Cooling water spray nozzle.

Claims (1)

【特許請求の範囲】[Claims] 溶鋼からフェライト系ステンレス鋼の連続鋳造鋳片を製
造するに際して、両端開放鋳型内で形成される鋳片表層
部を固相線温度以上の温度域から10℃/sec以上の
冷却速度で冷却することを特徴とする、フェライト系ス
テンレス鋼の連続鋳造方法。
When manufacturing continuously cast slabs of ferritic stainless steel from molten steel, the surface layer of the slab formed in a mold with both ends open is cooled from a temperature range above the solidus temperature at a cooling rate of 10 ° C / sec or more. A method for continuous casting of ferritic stainless steel.
JP62010930A 1987-01-20 1987-01-20 Casting method for ferritic stainless steel Expired - Lifetime JPH07112595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62010930A JPH07112595B2 (en) 1987-01-20 1987-01-20 Casting method for ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62010930A JPH07112595B2 (en) 1987-01-20 1987-01-20 Casting method for ferritic stainless steel

Publications (2)

Publication Number Publication Date
JPS63177950A true JPS63177950A (en) 1988-07-22
JPH07112595B2 JPH07112595B2 (en) 1995-12-06

Family

ID=11763951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62010930A Expired - Lifetime JPH07112595B2 (en) 1987-01-20 1987-01-20 Casting method for ferritic stainless steel

Country Status (1)

Country Link
JP (1) JPH07112595B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133529A (en) * 1988-07-08 1990-05-22 Nippon Steel Corp Production of cr-ni stainless steel sheet having excellent surface quality and material quality
JPH02267225A (en) * 1989-04-05 1990-11-01 Nippon Steel Corp Production of cr-ni stainless steel sheet excellent in surface quality

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224715A (en) * 1984-04-23 1985-11-09 Nippon Steel Corp Manufacture of hot rolled thin steel strip

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224715A (en) * 1984-04-23 1985-11-09 Nippon Steel Corp Manufacture of hot rolled thin steel strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133529A (en) * 1988-07-08 1990-05-22 Nippon Steel Corp Production of cr-ni stainless steel sheet having excellent surface quality and material quality
JPH02267225A (en) * 1989-04-05 1990-11-01 Nippon Steel Corp Production of cr-ni stainless steel sheet excellent in surface quality
JPH0796684B2 (en) * 1989-04-05 1995-10-18 新日本製鐵株式会社 Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality

Also Published As

Publication number Publication date
JPH07112595B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
TWI587946B (en) Continuous casting mold and steel continuous casting method
US8813827B2 (en) In-situ homogenization of DC cast metals with additional quench
WO2020030040A1 (en) Production of twin-roll cast and hot rolled steel strip
KR100224487B1 (en) Continuous casting method for austenitic stainless steel
JP4924104B2 (en) Method for producing high Ni content steel slab
JPH0424413B2 (en)
JPS63177950A (en) Method for casting ferritic stainless steel
JPH0947854A (en) Method for restraining surface crack of cast slab
JP2001138019A (en) Continuous casting method
JP2005095968A (en) Continuous casting method for steel
JP3588411B2 (en) Stainless steel continuous casting method
JP2001087846A (en) Continuous casting method of steel slab and continuous casting device
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JPH05200514A (en) Continuous casting method
JP3039369B2 (en) Method for producing Ni-containing steel
CN107427907A (en) Use the manufacture method of the ingot casting of continuous casting machine
JPH0424414B2 (en)
JP2518618B2 (en) Mold for continuous casting of steel
JPS6363559A (en) Prevention for hot cracking in continuously cast slab
JP3377340B2 (en) Continuous casting method
JPH0890182A (en) Method for continuously casting wide and thin cast slab
JPH0857584A (en) Production of stainless steel cast slab having good surface quality and workability
JPH06592A (en) Method for casting nb-containing ferritic stainless steel by twin roll continuous casting method
JPS63183766A (en) Method for continuously casting two-phase stainless steel cast slab
JPS61195742A (en) Continuous casting device for steel

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term