JPS6363559A - Prevention for hot cracking in continuously cast slab - Google Patents

Prevention for hot cracking in continuously cast slab

Info

Publication number
JPS6363559A
JPS6363559A JP20507586A JP20507586A JPS6363559A JP S6363559 A JPS6363559 A JP S6363559A JP 20507586 A JP20507586 A JP 20507586A JP 20507586 A JP20507586 A JP 20507586A JP S6363559 A JPS6363559 A JP S6363559A
Authority
JP
Japan
Prior art keywords
slab
steel
cooling
austenite
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20507586A
Other languages
Japanese (ja)
Inventor
Tokiaki Nagamichi
常昭 長道
Yasuhiro Maehara
泰裕 前原
Kunio Yasumoto
安元 邦夫
Takashi Kanazawa
敬 金沢
Hiroshi Tomono
友野 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20507586A priority Critical patent/JPS6363559A/en
Publication of JPS6363559A publication Critical patent/JPS6363559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To restrain surface defect and to stably obtain hog working steel having good surface characteristic by cooling the surface layer part in cast slab at the specific cooling speed after forming the surface layer part in the cast slab from molten steel in a mold having both end opening. CONSTITUTION:At the time of continuously casting the steel, the both end opening type mold providing plural sensors 3 measuring temps. of the surface layer part of cast slab and plural injection nozzle 4 for coolant at the inner wall part is used. After forming the surface layer part in the cast slab from the molten steel, it is cooled at >=10 deg.C/sec cooling speed from the austenitizing single phase temp. or more. In this way, the surface defect is eliminated and the continuously cast slab having low sensibility for surface cracking without effect to any steel kind is stably mass-produced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、連続鋳造によって製造された鋳ハを熱間圧
延する際に生じがちな、オーステナイト粒界に沿って伝
播する表面疵を抑制し、表面性状の良好な熱間加工鋼材
を安定して製造する方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention suppresses surface flaws that propagate along austenite grain boundaries, which tend to occur when hot rolling cast iron produced by continuous casting. , relates to a method for stably producing hot-worked steel materials with good surface properties.

〈背景技術〉 近年、鉄鋼の製造に当たっては、車直型若しくは湾曲型
の連続鋳造機を使用した連続鋳造1−稈が不可欠なもの
となっているが、このような連続鋳造法によってブルー
ムやスラブ等の鋳片を製造しようとすると、その鋳造の
途中で鋳片に加わる熱応力や曲げ応力によって表面疵(
表面割れ)が発生し、これを熱間直送圧延(連続鋳造で
得た鋳片を加熱することなく直ちに実施する圧延)又は
ホットチャージ圧延(連続鋳造で得た鋳片を室温にまで
冷却することなく再加熱して実施する圧延)しようとす
ると、前記表面疵がそのまま圧延工程にまで持ち来たさ
れて割れ疵が一層助長されると言う不都合があり、また
連続鋳造鋳片に通常の熱間加工(一旦常温にまで冷却し
た鋳片を再加熱して行う熱間鍛造や熱間圧延)を施す場
合でも表面h↑Eを発4rL易いと言う問題が目立ち、
表面性状の良好な熱間加工鋼材を製造する上で大きな障
害となっていた。
<Background technology> In recent years, continuous casting using straight or curved continuous casting machines has become indispensable in the production of steel. When attempting to manufacture slabs such as steel slabs, surface flaws (
Surface cracks) occur, which can be removed by hot direct rolling (rolling performed immediately without heating the slab obtained by continuous casting) or hot charge rolling (rolling the slab obtained by continuous casting to be cooled to room temperature). If the rolling process is carried out without reheating (rolling without reheating), there is the inconvenience that the surface flaws will be carried over into the rolling process and the cracks will be further exacerbated. Even when processing (hot forging or hot rolling performed by reheating a slab once cooled to room temperature), there is a noticeable problem that surface h↑E is easily generated.
This has been a major obstacle in producing hot-worked steel materials with good surface properties.

ところで、上述のような表面疵の発生状況を調査してみ
るといずれもオーステナイト(γ)粒界の割れを伴って
起きることが観察されることから、従来、前記表面疵の
発生原因の1つとして「鋳片の凝固・冷却中にオーステ
ナイト(T)粒界へ析出又は偏析する炭化物や窒化物(
NbC1^nN等)、(Mn、Fe)S等の硫化物、並
びにPやS等の不純物元素が結晶粒界の脆弱化を招く−
1ことが挙げられるようになり、表面疵(割れ)の発生
頻度は、上記の如き析出物や偏析を生しさせる元素の含
有量に大きく影響されることが知られるようになってき
た。
By the way, when we investigate the occurrence of the above-mentioned surface flaws, we find that they occur together with cracking of austenite (γ) grain boundaries. ``Carbides and nitrides that precipitate or segregate to austenite (T) grain boundaries during solidification and cooling of slabs (
Sulfides such as NbC1^nN), (Mn, Fe)S, and impurity elements such as P and S cause weakening of grain boundaries.
It has become known that the frequency of occurrence of surface flaws (cracks) is greatly influenced by the content of the elements that cause the above-mentioned precipitates and segregation.

そこで、このような元素の含有量を制御することによっ
て鋳片の表面疵防止を図る試みもなされたが、この場合
には、製品の品質(特性)確保やコスト面で限界がある
上、化学成分の調整基準が今一つ明確でなく、従って化
学成分の調整のみでは十分に満足できる効果を挙げ得な
かったのである。
Therefore, attempts have been made to prevent surface defects in slabs by controlling the content of these elements, but in this case, there are limitations in terms of ensuring product quality (characteristics) and cost, and chemical The standards for adjusting the ingredients were not very clear, and therefore, adjusting the chemical ingredients alone was not enough to achieve a satisfactory effect.

一方、かかる鋳片表面疵の発生頻度は、第1図で示され
るように鋳片のC含有量に大きく依存すると言う事実も
あるが、その原因は未だに不明であり、これに対する何
らの方策も見つからないこともあって、結局はこのよう
なC含有用領域を避けて操業が行われることすらあった
On the other hand, it is a fact that the frequency of occurrence of such surface defects on slabs is largely dependent on the C content of slabs, as shown in Figure 1, but the cause is still unknown and no countermeasures have been taken. In some cases, they were not found, and in the end, operations were even carried out avoiding such C-containing areas.

しかしながら、第1図にみられるような表面疵発生頻度
が急激に高くなる領域は必ずしも一定していないで、鋼
種によってもバラツキがあり、特に低合金鋼の場合には
C含有量から推し量れないような思いがけない成分組成
領域で表面きず発生頻度が極端に高くなることが多く、
しばしば、操業上極めて不都合な結果を招く事態がもた
らされていたのである。
However, as shown in Figure 1, the region where the frequency of surface flaw occurrence increases rapidly is not necessarily constant and varies depending on the steel type, and especially in the case of low alloy steel, it is difficult to infer from the C content. Surface flaws often occur at an extremely high frequency in unexpected component composition regions that are unlikely to occur.
This often led to situations that had extremely inconvenient operational consequences.

従って、従来一般に実施されている表面疵防止対策は、
オシレーションマークを浅<シたり、凝固シェルに作用
する熱応力を軽減したりするために鋳片の冷却速度を小
さくすると言った不十分なものでしかなかった。
Therefore, the surface flaw prevention measures commonly implemented in the past are as follows:
In order to make the oscillation marks shallower and to reduce the thermal stress acting on the solidified shell, the cooling rate of the slab was reduced, which was insufficient.

このようなことから、鋼の連続鋳造や、これに次いで実
施される熱間圧延において鋳片表面に割れ疵が発生する
のを確実に防止し、表面性状の良好な熱間加工鋼材を工
業的に量産し得る手段の出現が強く望まれているのが現
状であった。
For this reason, it is necessary to reliably prevent cracks from occurring on the surface of the slab during continuous casting of steel and subsequent hot rolling, and to produce hot-processed steel materials with good surface properties for industrial use. At present, there is a strong desire for the emergence of a means for mass production.

く研究によって明らかとなった事項〉 本発明者等は、上述のような観点から、連続鋳造によっ
て製造される鋼鋳片の鋳造途中におりる表面疵発生や、
連続鋳造鋳片を熱間加」°する際に起こりがちな表面疵
の発生を確実に防11−する実施容易な手段を見出すべ
く、そのためには、第1図で示したような特定C含有量
領域近傍での表面疵発生頻度急増の原因解明が不可欠で
あるとの考えの下に種々の実験・研究を重ねたところ、
次に示すような知見を得たのである。即ち、 (a)  連続鋳造鋳片の結晶粒界割れは、従来言われ
ていたように、結晶粒界に析出又は偏析する炭化物、窒
化物、硫化物或いは不純物等に係る元素の含有量に影響
されることもさることながら、これらの析出や偏析密度
を左右するオーステナイト(γ)粒の粒度に大きく影響
され、凝固・冷却中のオーステナイト(γ)粒の粗大化
は鋳片の粒界割れを著しく助長すること。
From the above-mentioned viewpoints, the present inventors have investigated the occurrence of surface flaws during casting of steel slabs manufactured by continuous casting,
In order to find an easy-to-implement means to reliably prevent the occurrence of surface defects that tend to occur when continuously cast slabs are hot-heated, it is necessary to Based on the belief that it is essential to elucidate the cause of the rapid increase in the frequency of surface defects near the surface area, we have conducted various experiments and research.
The following findings were obtained. That is, (a) Grain boundary cracking in continuously cast slabs is caused by the effect on the content of elements such as carbides, nitrides, sulfides, or impurities that precipitate or segregate at grain boundaries, as has been said in the past. In addition to this, the grain size of austenite (γ) grains, which influences the precipitation and segregation density, is greatly affected, and the coarsening of austenite (γ) grains during solidification and cooling can lead to intergranular cracking in slabs. To significantly facilitate.

(bl  凝固・冷却中の炭素鋼鋳片のオーステナイト
(T)粒粗大化の程度はそのC含有量の変化によって大
きく変わり、それもC含有量との中なる比例的関係を維
持しながら変化するわけではなく、第2図で示されるよ
うに、前述した表面疵を発生し易いC含有量領域で急激
に著しくなると言う挙動を示すこと(因に、第2図はF
e−C系鋼の凝固・冷却中に冷却速度を5℃/secと
したときの、C含有量とオーステナイト粒径との関係を
示す曲線である)。
(bl) The degree of austenite (T) grain coarsening in a carbon steel slab during solidification and cooling varies greatly depending on changes in its C content, and it also changes while maintaining a moderately proportional relationship with the C content. Rather, as shown in Fig. 2, the behavior becomes suddenly more pronounced in the C content region where surface flaws are likely to occur (in addition, Fig. 2 shows the behavior of F
This is a curve showing the relationship between C content and austenite grain size when the cooling rate is 5° C./sec during solidification and cooling of e-C steel.

fc)  これらの結果と、「凝固・冷却中のオーステ
ナイト(γ)粒の粗大化は、オーステナイト単相となっ
てから急激に起こり、しかも温度が高いほどその傾向が
著しい」と言う実験による確認事項とからみて、凝固・
冷却中の炭素鋼鋳片は、同一冷却条件下であると、必然
的に、第3図で示されるFe−C系平衡状態図からも明
らかな“オーステナイト単相化温度が最も高い組成のも
の”、即ら“包晶点組成(Fe−C系では0.18重量
%C)のもの”が最も粗大なオーステナイト(T)粒を
呈するようになり(因に、第3図中の破線は第2図で示
したオーステナイト粒粗大化挙動を表わす)、従って熱
間割れ感受性もこの付近のものが急激に高くなると結論
されること。
fc) These results and the experimental confirmation that ``the coarsening of austenite (γ) grains during solidification and cooling occurs rapidly after becoming austenite single phase, and the higher the temperature, the more remarkable this tendency is.'' In view of this, coagulation and
Under the same cooling conditions, a carbon steel slab being cooled will inevitably have a composition with the highest austenite single-phase temperature, which is clear from the Fe-C system equilibrium phase diagram shown in Figure 3. ”, that is, “those with a peritectic point composition (0.18% C by weight for Fe-C systems)” exhibit the coarsest austenite (T) grains (by the way, the broken line in (This shows the austenite grain coarsening behavior shown in Figure 2), and it can therefore be concluded that the hot cracking susceptibility also increases rapidly near this area.

fd)  ところで、第2図で示されるオーステナイト
(T)粒径粗大化挙動と第1図で示される鋳片表面疵発
生頻度傾向とは必ずしも合致し7ていない。
fd) By the way, the austenite (T) grain size coarsening behavior shown in FIG. 2 does not necessarily match the tendency of frequency of occurrence of defects on the slab surface shown in FIG. 1.

しかしながら、これは、第2図が純粋なFe−C系での
実験結果であるのに対して第1図は実用鋼1の場合のデ
ータであると言う相違に起因するものであり、C以外の
含有元素(合金元素等)の影響によって包晶点がずれて
いるからに他ならないこと。
However, this is due to the difference that Figure 2 shows the experimental results for pure Fe-C system, while Figure 1 shows the data for practical steel 1. This is simply because the peritectic point is shifted due to the influence of the contained elements (alloy elements, etc.).

(e)シかも、鋼中に含有されるC以外の元素の種類に
よっては、鋼の熱間割れ感受性が一層鋭敏化し、鋳片表
面疵の増大を招く恐れがあること。
(e) Also, depending on the type of elements other than C contained in the steel, the hot cracking sensitivity of the steel may become even more sensitive, leading to an increase in flaws on the surface of the slab.

(f)  従って、鋳片の熱間割れ感受性をi+F価す
る場合には、C含有量のみでなく、合金元素の影響をも
含めたC当量(Cp )を指標にする必要があること。
(f) Therefore, when estimating the hot cracking susceptibility of a slab to i+F, it is necessary to use not only the C content but also the C equivalent (Cp), which includes the influence of alloying elements, as an index.

(gl  状態図的な検討から鋼の包晶点に影響を及ぼ
すと考えられる元素として、C,、Mn、 Ni、Co
及びNが挙げられ、C当量(Cp)は次代で整理される
こと(なお、以下、成分割合を表わず%は車量%とする
)。即ち、 (h)  状態図的検討によって得られた上記式は実際
と良く合致しており、これに基づいて鋳片の熱間割れ感
受性を極めて的確に評価できること。
(gl From the phase diagram study, elements that are thought to affect the peritectic point of steel include C, Mn, Ni, and Co.
and N, and the C equivalent (Cp) will be organized in the next generation (in the following, the component ratio will not be expressed and % will be the vehicle volume %). That is, (h) the above formula obtained by phase diagram examination agrees well with reality, and based on this, the hot cracking susceptibility of the slab can be evaluated very accurately.

第4図は、これを確認するために本発明者等が実施した
実験結果を示すものであり、第1表に示される成分組成
内の合計50種類の鋼から採取した小片をアルミするつ
ぼ中で再溶解した後、冷却速度:5℃/secで冷却し
、そのオーステナイト粒径を測定して上記式で算出され
るCp値により整理したグラフである。
Figure 4 shows the results of an experiment carried out by the inventors to confirm this, in which small pieces collected from a total of 50 types of steel within the composition shown in Table 1 were made into aluminum pots. This is a graph in which the austenite grain size was measured after remelting at a cooling rate of 5° C./sec and organized by the Cp value calculated by the above formula.

この第4図からも明らかなように、オーステナイト(γ
)粒径はCp値で良く整理され、Cp値が0.18で最
大値をとることがわかる。
As is clear from this Figure 4, austenite (γ
) It can be seen that the particle size is well organized by Cp value and takes the maximum value at Cp value of 0.18.

(1)上記の如くにオーステナイ) (T)粒径がCp
(aに左右される理由は、オーステナイト単相化温度(
Tγ)がCp値の変化に追随して同様傾向で変化し、該
値により決定されるからであり、例えばCp4Fiが特
定の4Ft(0,18、即ち包晶点)のときにオーステ
ナイト(γ)粒径が最大値となるのは、該Cp値のとき
にオーステナイト単相化温度(TT)が最も高くなって
冷却過程でのオーステナイト(γ)粒成長期間も最長と
なり、本11人化の機会が十分に与えられるからである
こと。
(1) Austenite as described above) (T) Grain size is Cp
(The reason it depends on a is the austenite single phase temperature (
This is because Tγ) changes with the same tendency as the Cp value changes, and is determined by this value. For example, when Cp4Fi is a specific 4Ft (0, 18, i.e., peritectic point), austenite (γ) The reason why the grain size reaches its maximum value is that when the Cp value is reached, the austenite single phase temperature (TT) is the highest and the austenite (γ) grain growth period during the cooling process is also the longest. This is because they are given enough.

このことは、先に示した第3図からも11?測されるこ
とではあるが、次に示す第5図を参照されたい。
This can also be seen from Figure 3 shown above. Please refer to FIG. 5 shown below.

第5図は、第1表に示される成分組成内の合計70種類
の鋼から採取した小片を゛アルミするつぼ中で再溶解し
た後、冷却速度二0.1℃/sec、 2.0”C/s
ec及び10℃/secで冷却し、そのオーステナイト
単相化温度(TT)を測定して前記式で算出されるcp
値により整理したグラフであるが、この第5図からも明
らかな如く、冷却速度が0.1’C/sec以下ではオ
ーステナイト1il−相比温度(TT)はCp値によっ
て良く整理されて次式のように表され、Cp値が0.1
8で最大値をとることが分かる。
Figure 5 shows that small pieces collected from a total of 70 types of steel with the composition shown in Table 1 were remelted in an aluminum crucible, and then cooled at a cooling rate of 20.1°C/sec, 2.0°C. C/s
cp calculated by the above formula by cooling at ec and 10°C/sec and measuring the austenite single phase temperature (TT).
This is a graph organized by values, but as is clear from this Figure 5, when the cooling rate is less than 0.1'C/sec, the austenite 1il-phase ratio temperature (TT) is well organized by Cp value, and is expressed by the following formula: It is expressed as follows, and the Cp value is 0.1
It can be seen that the maximum value is reached at 8.

T7=AC+1十B (Jl  また一方、同一組成鋼を凝固・冷却した場合
の鋳片のオーステナイト(γ)粒径は、Cp値(即ちT
γ”)に影響されることもさるごとなから高温領域での
冷却速度に大きく左右され、特にオーステナイト単相化
温度(′「γ)から約1000℃に至るまでの温度領域
における冷却速度によ−。
T7=AC+10B (Jl On the other hand, the austenite (γ) grain size of the slab when steel with the same composition is solidified and cooled is the Cp value (i.e. T
γ") is greatly influenced by the cooling rate in the high temperature range, especially the cooling rate in the temperature range from the austenite single phase temperature ('"γ) to approximately 1000℃. −.

てほぼ決定されてしまうこと。It has almost been decided.

第6図は、各種C含有量の炭素鋼を溶解してから冷却速
度: 0.28℃/secで冷却するとともに、その途
中から水焼入れして組織を固定したものについて、該水
焼入れ温度とオーステナイI(r)粒径との関係をプロ
ットしたグラフである。また、第7図はTr面前後組織
の一例であり、0.15%C−1,48%Mn鋼を0.
1℃/secで冷却した場合の顕微鏡組織を示したもの
であって、第7図(a)は1470’C(Tγ→−5℃
)から水焼入れしたもの、そして第7図(b)は146
0℃(TT−5℃)から水焼入れしたものをそれぞれ示
しているが、この図からはTr面直後ら1粒が急激に粗
大化し始めることが分かる。更に、第6図及び第7図か
ら、急冷がオーステナイト(r)粒成長に大きく影響す
るのは極く高い温度域、特にオーステナイト単相化温度
(TT)から1000℃までの温度域に限られ、それよ
りも低い温度域では急冷の影響はそれほど顕著でなくな
ることが明らかである。
Figure 6 shows the water quenching temperature and temperature of carbon steels with various C contents that were melted and then cooled at a cooling rate of 0.28°C/sec, and then water quenched midway through to fix the structure. It is a graph plotting the relationship between austenite I(r) and particle size. Moreover, FIG. 7 is an example of the structure before and after the Tr plane, and shows 0.15% C-1, 48% Mn steel.
Fig. 7(a) shows the microscopic structure when cooled at 1°C/sec at 1470'C (Tγ→-5°C
) and water quenched from ), and Fig. 7(b) is 146
The graphs show the results of water quenching from 0°C (TT-5°C), and it can be seen from this figure that one grain begins to rapidly coarsen immediately after the Tr surface. Furthermore, from Figures 6 and 7, it is clear that quenching has a large effect on austenite (r) grain growth only in extremely high temperature ranges, especially in the temperature range from the austenite single phase temperature (TT) to 1000°C. , it is clear that the effect of rapid cooling becomes less pronounced in the lower temperature range.

加えて第8図を参照されたい。第8図は、第1表に示さ
れる成分組成内の合計30種の鋼についてオーステナイ
ト単相化温度(Tr)以降の冷却速度を種々に変え、1
000℃に到達後急冷してその組織を固定したもののオ
ーステナイト(r)粒径を前記冷却速度で整理して表し
たグラフである。この第8図からは、オーステナイト単
相化温度(TT)が最も高くてオーステナイト粒が粗大
化し易い包晶組成ccp =0.11+)の鋼であった
としても、オーステナイト単相化温度(TT)以降の冷
却速度を大きくしてやればオーステナイ1−(r)粒の
粗大化を防止できることが分かる。
In addition, please refer to FIG. Figure 8 shows a total of 30 types of steel within the composition shown in Table 1, with various cooling rates after the austenite single phase temperature (Tr).
2 is a graph showing the austenite (r) grain size of a sample whose structure is fixed by rapid cooling after reaching 000° C., organized by the cooling rate. From this Figure 8, even if the steel has a peritectic composition (ccp = 0.11+) where the austenite single phase temperature (TT) is the highest and the austenite grains tend to coarsen, the austenite single phase temperature (TT) It can be seen that if the subsequent cooling rate is increased, coarsening of the austenite 1-(r) grains can be prevented.

(kl  ところで、連続鋳造途中の鋳片の表面割れ傾
向や、連続鋳造に引き続いて行われる熱間直送圧延又は
ホットチャージ圧延での鋼片の表面割れ傾向は、連続鋳
造鋼片表層部(表面から3 van程度、多くとも10
 mW )の割れ感受性によって決まってくること。
(kl) By the way, the surface cracking tendency of a slab during continuous casting, or the tendency of surface cracking of a slab during hot direct rolling or hot charge rolling that is performed subsequent to continuous casting, is 3 vans, at most 10
It is determined by the cracking susceptibility (mW).

(11従って、包晶組成付近の鋳片であってもオーステ
ナイト単相化温度(TT)以降の表層部冷却速度を大き
くすると、該表層部におけるオーステナイト粒の粗大化
が抑制されてφ位体積当たりの結晶粒界面積の大きい細
結晶粒組織が得られるようになり、このため結晶粒界に
集まる析出物や偏析の密度が低くなって割れ感受性が緩
和されるとともに靭性も高くなるので、前記表面割れの
恐れが払拭されてしまうこと。
(11 Therefore, even for slabs with a peritectic composition, if the cooling rate of the surface layer after the austenite single phase temperature (TT) is increased, the coarsening of austenite grains in the surface layer is suppressed, and the A fine grain structure with a large grain boundary area can be obtained, which lowers the density of precipitates and segregation that gather at grain boundaries, reducing cracking susceptibility and increasing toughness. The fear of cracking is eliminated.

(ml  このようなことから、連続鋳造によって製造
される鋳片の鋳造途中における表面TM(割れ)発生や
、連続鋳造鋳片を熱間圧延する際の表面疵(割れ)発生
傾向の強い鋼種を前記式(Cp値を算出する式)によっ
て簡単・確実に予測することが可能であり、また、これ
らの鋼種についても、鋳片の表層部がTr以上の温度で
ある間に表層部の冷却速度:10℃/sec以上で急冷
処理することにより表面疵発生を安定して抑えることが
可能であること。
(ml) For these reasons, steel types with a strong tendency to generate surface TM (cracks) during the casting process of slabs produced by continuous casting, and surface flaws (cracks) when continuously cast slabs are hot rolled. It is possible to easily and reliably predict using the above formula (formula for calculating the Cp value), and also for these steel types, it is possible to calculate the cooling rate of the surface layer while the surface layer of the slab is at a temperature of Tr or higher. : It is possible to stably suppress the occurrence of surface flaws by rapid cooling treatment at 10° C./sec or more.

(nl  ところで、垂直型又は湾曲型連続鋳造機に使
用されている通常の鋳型(長さが700〜900璽爾か
それ以−ト)では、溶鋼メニスカス近傍でこそ凝固シェ
ルと鋳型壁とが溶融パウダーを介して密着した状態の凝
固が進行し十分な冷却速度が確保されるものの、それよ
り下方になると溶鋼の凝固収縮と鋳片の温度降下に伴う
収縮とで鋳片は鋳型壁面から離れ鋳型の抜熱作用を損な
うエアーギヤノブを生じるようになって著しい冷却遅れ
が生じるので、[1記のような早い時期での高冷却速度
の確保は不可能であると言う問題があり、また、寸法の
短い鋳型を使用して鋳型内は極く薄い鋳片表面凝固層の
みを形成し、鋳型下端から早めに引き抜いた鋳片に冷却
媒体を吹き付けることで高温度域での冷却速度を高める
と言う手段を試みると鋳片のブレークアウトが起きる危
険が極めて高かったが、鋼の連続鋳造用両端開放鋳型と
して、第9図に示されるように鋳型1の上部内壁面2に
鋳片表層部温度測定用の検温センナ−3と冷却媒体吹き
込み用ノズル孔4とを配設し、かつ該上部内壁面2の上
方に冷却媒体吸引用導通孔6を設けることにより下部内
壁面に達した鋳片表層部の温度が先に述べた適正な範囲
(“1゛γ”以1−の急冷効果が期待できる範囲)であ
るか否かを検温センサー3にて検知するとともに、適正
温度域にある鋳片表層部を10℃/sec以上の冷却速
度で冷却できるように検温センサー3を通じて冷却媒体
吹き込み用ノズル孔4からの冷却媒体吹き込み噌を調節
し得るようにし、かつ、吹き込まれた冷却媒体が鋳型l
の上部内壁面5と溶鋼7のメニスカス8との間に間隙を
作ってそこからl−力に吹き抜け、メニスカス8近傍の
冷却を不安定化するのを冷却媒体吸引用導通孔6からの
スムーズな排出により確実に防止できるようにしたもの
を使用すると(なお、第9図において符号9は凝固シェ
ルを、符号10は冷却水通路を、そして符号11は冷却
水スプレーノズルをそれぞれ示す)鋳片ブレークアウト
による危険を確実に回避しつつ鋳込まれた溶鋼の高温で
の高い冷却速度を容易に確保することが可能となり、鋳
片表層部をT1以上の温度から10℃/sec以−ヒの
冷却速度で冷却すると言う条件を安定して達成できるよ
うになること。
(nl) By the way, in a normal mold (length: 700 to 900 mm or more) used in a vertical or curved continuous casting machine, the solidified shell and mold wall melt only near the molten steel meniscus. Although solidification progresses in close contact with the powder and a sufficient cooling rate is ensured, below this point the slab separates from the mold wall due to the solidification shrinkage of the molten steel and the shrinkage of the slab due to the temperature drop. The problem is that it is impossible to secure a high cooling rate at an early stage as described in 1. A method of increasing the cooling rate in high temperature ranges by using a short mold to form only an extremely thin solidified layer on the surface of the slab inside the mold, and by spraying a cooling medium onto the slab that is pulled out early from the bottom of the mold. However, as a mold with both ends open for continuous casting of steel, a mold was installed on the upper inner wall surface 2 of the mold 1 for measuring the temperature of the surface layer of the slab, as shown in Figure 9. By providing a temperature measuring sensor 3 and a cooling medium injection nozzle hole 4, and providing a cooling medium suction passage hole 6 above the upper inner wall surface 2, the temperature of the surface layer of the slab reaching the lower inner wall surface is reduced. The temperature sensor 3 detects whether or not the temperature is within the appropriate range mentioned above (the range in which a rapid cooling effect of 1-1 or less can be expected), and the surface layer of the slab is detected in the appropriate temperature range. The cooling medium blowing from the cooling medium blowing nozzle hole 4 can be adjusted through the temperature measurement sensor 3 so that the mold can be cooled at a cooling rate of 10° C./sec or more, and the cooling medium blown into the mold l
A gap is created between the upper inner wall surface 5 of the molten steel 7 and the meniscus 8 of the molten steel 7, and the l-force blows through from there, destabilizing the cooling in the vicinity of the meniscus 8. If a device that can be reliably prevented by discharge is used (in Fig. 9, numeral 9 indicates the solidified shell, numeral 10 indicates the cooling water passage, and numeral 11 indicates the cooling water spray nozzle), the slab break. It is now possible to easily maintain a high cooling rate of the cast molten steel at high temperatures while reliably avoiding the risk of outflow, and the surface layer of the slab can be cooled at a rate of 10°C/sec or more from a temperature of T1 or higher. To be able to stably achieve the conditions of rapid cooling.

即し、第9図において、鋳型1中に溶鋼7が鋳込まれと
まず鋳型の上部内壁面5の抜熱作用によって極く薄い凝
固シェルが形成されるが、この上部内壁面5の長さを例
えば 500fl程度(メニスカス下の長さ:300m
程度)と極く短かくしてお(と、鋳片の凝固シェルが形
成されたばかりの部分は直ちに下部内壁面2の位置にま
で降下されることとなり、冷却媒体吹き込み用ノズル孔
4から吹き込まれて冷却媒体吸引用導通孔6へと還 C 流する冷却媒体(例えばHeガス等)によって効率良く
冷却されるので、従来の両端開放鋳型におけるような、
“凝固や冷却による収縮のために凝固シェル面が鋳型内
壁面から離れて両面間に空気層を形成し、これによって
冷却遅れを生じる°と言う不都合を来たすことがなく、
しかも、検温センサー3により急冷開始鋳片の表層部温
度を正値に確認することができる上、冷却速度の調整も
容易となり、従って鋳片表層部の高温度域における高い
冷却速度が安定に確保されるのである。また、このよう
な鋳型であれば所望厚の凝固シェルが形成されるまでの
鋳片部分を鋳型内に止めておくことができるので、ブレ
ークアマシトによる危険が牛しることもない。なお、冷
却媒体吹き込み用ノズル孔4から吹き込む冷却媒体とし
−ζは、11(・ガス等の冷却ガスのほか、これらと水
との?Ii合ガス等を採用することもできる。
That is, in FIG. 9, when molten steel 7 is poured into the mold 1, an extremely thin solidified shell is first formed by the heat removal action of the upper inner wall surface 5 of the mold, but the length of this upper inner wall surface 5 is For example, about 500 fl (length below the meniscus: 300 m)
The part of the slab where the solidified shell has just been formed is immediately lowered to the lower inner wall surface 2, and is cooled by being blown from the cooling medium injection nozzle hole 4. Since the cooling medium (for example, He gas, etc.) flowing back into the medium suction passage hole 6 efficiently cools the mold, it is possible to
“The solidified shell surface separates from the mold inner wall surface due to contraction due to solidification and cooling, forming an air layer between both surfaces, which causes cooling delays.
Furthermore, the temperature sensor 3 allows the surface temperature of the slab to be confirmed as a positive value at the start of rapid cooling, and the cooling rate can be easily adjusted, thus stably ensuring a high cooling rate in the high temperature range of the slab surface. It will be done. Furthermore, with such a mold, the slab can be kept in the mold until a solidified shell of the desired thickness is formed, so there is no risk of breakage. Note that the cooling medium blown in from the cooling medium injection nozzle hole 4 may be a cooling gas such as 11(.gas) or a mixture gas of these and water.

この発明は、上記知見に基づいてなされたものであり、 鋼の連続鋳造に際し、両端開放鋳型内で溶鋼から鋳片表
層部を形成した後、該鋳片表層部をオーステナイト単相
化温度以上から10℃/sec以上の冷却速度で冷却す
ることにより、表面疵がなくしかも表面割れ感受性の低
い連続鋳造鋳片を鋼種に影響されることなく安定して量
産し得るようにし、以て連続鋳造鋳片の熱間直送圧延又
はホントチャージ圧延時の熱間割れを抑制して表面疵の
発生を防止するのをも可能とした点、 に特徴を有するものである。
This invention was made based on the above knowledge, and after forming the surface layer of a slab from molten steel in a mold with both ends open during continuous casting of steel, the surface layer of the slab is heated to a temperature higher than the austenite single-phase temperature. By cooling at a cooling rate of 10°C/sec or higher, continuous casting slabs with no surface flaws and low susceptibility to surface cracking can be stably mass-produced without being affected by the steel type. The present invention is characterized in that it is also possible to suppress hot cracking during hot direct rolling or real charge rolling of a piece, thereby preventing the occurrence of surface flaws.

ここで、「鋳片表層部」とは、鋳片の表面から311程
度、多くともIon程度までを指すものである。
Here, the "slab surface layer" refers to the area from the surface of the slab to about 311, at most about Ion.

そして、この発明の方法は鋼種を問わずに適用できるこ
とは勿論であるが、得られる効果の点からすればC:0
.7%以下、Mn:3%以下、Ni:3%以下、Cu:
2%以下及びN:0.5%以下で、更に必要によりCr
:3%以下、Nb : 0.5%以下、■二0.5%以
下、Ti : 0.5%以下、へj!:Q、1%以下及
びSi:3%以下のうちの1種以上をも含み、かつ、式 で算出されるCaO値が0.6を下回る低合金鋼(通常
の不可避不純物が含まれていても何ら影響を受けない)
を対象としたときに特に著しい。
It goes without saying that the method of this invention can be applied to any type of steel, but in terms of the effect obtained, C: 0
.. 7% or less, Mn: 3% or less, Ni: 3% or less, Cu:
2% or less and N: 0.5% or less, and further Cr if necessary.
: 3% or less, Nb: 0.5% or less, ■2 0.5% or less, Ti: 0.5% or less, hej! Low alloy steel that also contains one or more of the following: Q, 1% or less and Si: 3% or less, and whose CaO value calculated by the formula is less than 0.6 (contains normal unavoidable impurities) is not affected in any way)
This is especially noticeable when targeting

なお、この発明において、溶鋼から形成された直後の鋳
片表層部の冷却条件を、特に[オーステナイト単相化温
度以上から10℃/sac、以上の冷却速度で冷却する
」と限定した理由を以下に説明する。
In addition, in this invention, the reason why the cooling conditions for the surface layer of the slab immediately after it is formed from molten steel is specifically limited to [cooling at a cooling rate of 10 ° C / sac or more from the austenite single phase temperature or higher] is as follows. Explain.

即ち、先に指摘した第6〜7図からも明らかなように、
鋳型内で凝固を始めて形成された鋳片表層部の温度がT
γ以下になるとγ粒の粗大化傾向が著しく顕著化するが
、このときに該鋳片表層部を特定の速い冷却速度で冷却
するとオーステリーイト(γ)粒の粗大化が抑制され、
鋳片表面疵の発生を十分に抑えることができる。ところ
が、この際の冷却速度が10℃/sec未満であるとオ
ーステナイ1−D)粒の粗大化抑制効果が不十分となり
、割れ感受性の低い鋳片を安定して得ることができなく
なる。従って、溶鋼から凝固・形成された直後の鋳片表
層部の冷却条件は、[オーステナイト単相化温度以上か
ら10℃/sec以上の冷却速度で冷却する」と定めた
。なお、第8図は、先にも説明したように鋳片表層部の
温度がTγを切ってからの冷却速度とオーステナイト(
T)粒との関係を示した線図であるが、この第8図から
も、前記冷却速度が10℃/sec以上であれば十分な
オーステナイト粒粗大化抑制効果を得られるのに対して
、該冷却速度が10℃/sec未満であると鋳片表層部
のオーステナイト粒が粗大化傾向を見せ、オーステナイ
ト粒界破壊を伴う鋳片表面疵の多発を招くようになるこ
とが明らかである。
In other words, as is clear from Figures 6 and 7 mentioned earlier,
The temperature of the surface layer of the slab formed after solidification in the mold is T.
When the temperature is below γ, the tendency of γ grains to become coarse becomes remarkable, but at this time, if the surface layer of the slab is cooled at a specific high cooling rate, the coarsening of austerite (γ) grains is suppressed,
The occurrence of surface defects on the slab can be sufficiently suppressed. However, if the cooling rate at this time is less than 10° C./sec, the effect of suppressing the coarsening of austenite 1-D grains will be insufficient, making it impossible to stably obtain slabs with low cracking susceptibility. Therefore, the cooling conditions for the surface layer of the slab immediately after it has been solidified and formed from molten steel are determined as [cooling at a cooling rate of 10° C./sec or higher from the austenite single-phase temperature or higher]. As explained earlier, Figure 8 shows the relationship between the cooling rate and the austenite (
T) This is a diagram showing the relationship with grains, and from this FIG. 8, it is clear that if the cooling rate is 10°C/sec or more, a sufficient effect of suppressing austenite grain coarsening can be obtained; It is clear that when the cooling rate is less than 10° C./sec, the austenite grains in the surface layer of the slab tend to become coarser, leading to frequent occurrence of defects on the slab surface accompanied by austenite grain boundary fracture.

また、先にも述べたように従来の垂直型又は湾曲型連続
鋳造機の鋳型では高温度域における鋳片表層部の冷却速
度を10℃/sec以上とすることは不可能であるが、
第9図に示す如き、内壁部に鋳片表層部の温度を測定で
きるセンサーと冷却媒体噴出ノズル(センサーの間に配
置され、冷却媒体噴出の調整が可能)をそれぞれ複数個
備えた両端開放鋳型を使用するか、或いは、両端開放鋳
型の長さを短かくすると共に、出口での鋳片表層部温度
がTr以トとなるように鋳片の引き抜き速度を調整した
上で鋳型直下で鋳片に冷却媒体を吹き付ける方法を採用
する等の手段により、前記冷却速度の確保は十分に可能
となる。
Furthermore, as mentioned earlier, with the molds of conventional vertical or curved continuous casting machines, it is impossible to achieve a cooling rate of 10°C/sec or higher for the surface layer of the slab in the high temperature range.
As shown in Figure 9, a mold with open ends is equipped with a plurality of sensors on the inner wall that can measure the temperature of the surface layer of the slab and a plurality of cooling medium jetting nozzles (placed between the sensors, allowing adjustment of the cooling medium jetting). Alternatively, shorten the length of the mold with both ends open, and adjust the drawing speed of the slab so that the surface temperature of the slab at the outlet is below Tr, and then pull the slab directly under the mold. By adopting a method of spraying a cooling medium on the cooling medium, etc., it is possible to sufficiently secure the cooling rate.

次に、この発明を実施例により比較例と対比しながら具
体的に説明する。
Next, the present invention will be specifically explained using examples and comparing with comparative examples.

〈実施例〉 実施例 1 第2表に示されるところの、熱間圧延時に割れを生じ易
い成分組成であるA鋼を溶解し、実用の湾曲型連続鋳造
機(湾曲半径:12.5m)によって断面寸法が250
mX1200■lのスラブを次の2つの条件で製造し、
その表面疵発生状況を観察した。
<Examples> Example 1 Steel A, which has a composition that is prone to cracking during hot rolling, as shown in Table 2, was melted and cast using a practical curved continuous casting machine (curving radius: 12.5 m). Cross-sectional dimension is 250
A slab of m×1200 μl was manufactured under the following two conditions,
The occurrence of surface defects was observed.

■ 本発明の方法に従った条件(本発明例)第9図で示
されるような、内壁部に鋳片表層部の温度を測定できる
センサーと冷却媒体噴出ノズルとをそれぞれ複数個備え
た両端開放鋳型(形状と寸法は第3表に示す)を使用し
、鋳片表層部の第   3   表 温度がTrに近いことを感知したセンサーよりも上部位
置にあるノズルからの冷却媒体噴出量を多くすることに
よって該鋳片表層部の冷却速度を10’C/sec以上
に調整する。
■ Conditions according to the method of the present invention (example of the present invention) As shown in Fig. 9, the inner wall is equipped with a plurality of sensors capable of measuring the temperature of the surface layer of the slab and a plurality of coolant jetting nozzles, and both ends are open. Using a mold (the shape and dimensions are shown in Table 3), increase the amount of cooling medium ejected from the nozzle located above the sensor that detects that the temperature of the surface layer of the slab is close to Tr. By this, the cooling rate of the surface layer of the slab is adjusted to 10'C/sec or more.

■ 従来法通りの条件(比較例) 従来通りの両端開放鋳型を使用し、鋳型を出た後の鋳片
に対しては通常の水スプレー冷却を実施する。
■Conventional method conditions (comparative example) A conventional mold with both ends open is used, and the slab is cooled by regular water spray after it leaves the mold.

なお、このときの鋳片表面の冷却速度をδ−デンドライ
トのアーム間隔により確認したが、その結果を第10図
に示す。
The cooling rate of the slab surface at this time was confirmed by the arm spacing of the δ-dendrites, and the results are shown in FIG.

さて、鋳片表面疵の目視評価は表面温度二850℃でス
ラブ矯正点を通過した後の鋳片について実施したが、本
発明法によって得られたスラブは表面疵の発生が全く認
められなかったのに対して、比較法では表面疵の多発が
観察された。
Visual evaluation of surface defects on the slab was conducted on the slab after passing through the slab straightening point at a surface temperature of 2,850°C, and no surface defects were observed in the slab obtained by the method of the present invention. In contrast, with the comparative method, multiple surface defects were observed.

実施例 2 第2表に示されるところの、連続鋳造鋳片には表面疵が
発生しにくいもののその後の熱間圧廷時に割れを生じ易
い成分組成である13鋼を溶解し、実施例1における条
件と同様の本発明法と比較法とで連続鋳造して断面寸法
が250mX1200−1のスラブを製造した。
Example 2 Steel No. 13, which is shown in Table 2 and whose composition does not easily cause surface flaws in continuously cast slabs but is likely to crack during subsequent hot rolling, was melted and Continuous casting was carried out using the method of the present invention and the comparative method under the same conditions as described above to produce a slab with a cross-sectional dimension of 250 m x 1200-1.

この時の鋳片表面の冷却速度を、得られたスラブから採
取した試料のδ−デンドライトのアーム間隔によって確
認したが、その結果は第11図に示す通りであり、また
表面温度:950℃でスラブ矯正点を通過した鋳片につ
いて表面性状の観察を行ったが、何れのスラブにも表面
疵は認められなかった。
The cooling rate of the slab surface at this time was confirmed by the arm spacing of the δ-dendrites of the sample taken from the obtained slab, and the results are as shown in Figure 11. Also, the surface temperature: 950℃ The surface properties of the slabs that had passed through the slab straightening point were observed, but no surface flaws were observed on any of the slabs.

続いて、前記スラブ矯正点を通過した鋳片を切断し、約
900℃の温度にてそのまま125mm厚にまで5パス
での圧延を実施したところ、本発明法によって得られた
スラブには疵の発生が全く認められなかったのに対して
、比較法によるスラブには割れ疵が多発することが観察
された。
Subsequently, the slab that had passed through the slab straightening point was cut and rolled in 5 passes at a temperature of about 900°C to a thickness of 125 mm. As a result, the slab obtained by the method of the present invention had no defects. While no cracks were observed, it was observed that cracks occurred frequently in the slab prepared by the comparative method.

以上に説明した如く、この発明によれば、連続鋳造途中
や、これに続く熱間直送圧延又はホットチャージ圧延中
に割れ疵を発生し易い鋼種を用いても、それらのトラブ
ルを生じることなく所望製品の製造を実施することが可
能となるなど、産業上極めて有用な効果がもたらされる
のである。
As explained above, according to the present invention, even if a steel type that is likely to generate cracks during continuous casting or during subsequent hot direct rolling or hot charge rolling is used, desired results can be achieved without causing these troubles. This brings about extremely useful effects industrially, such as making it possible to manufacture products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、C含有量と鋳片表面疵発仕W度との関係を示
すグラフ、 第2図は、Fe−C系鋼のC含有量とオーステナイト粒
径との関係を示すグラフ、 第3図は、Fe−C系平衡状態図、 第4図は、綱のCp値とオーステナイト粒径との関係を
示すグラフ、 第5図は、鋼のCp値とオーステナイl相化温度(Tr
)との関係を示すグラフ、 第6図は、冷却途中の各種C含有量の炭素鋼を種々の温
度にて水焼入れして組織を固定した際の、水焼入れ温度
とオーステナイト粒径との関係を示すグラフ、 第7図は、オーステナイト単相化温度(’l’r)の前
後における組織変化を比較した顕微鏡写真図であり、第
7図(a)は1470℃(Tr+5℃)から水焼入れし
た状態を、そして第7図(blは1460℃(Tγ−5
℃)から水焼入れした状態をそれぞれ示すもの、 第8図は、鋼のオーステナイト単相化温度以降の冷却速
度とオーステナイト粒径との関係を示すグラフ、 第9図は、本発明の方法を実施するのに好適な鋳型を使
用した連続鋳造の状況を示す模式図、第10図並びに第
11図は、それぞれ実施例1及び2において得られた鋳
片の、鋳片表面からの距離と冷却速度との関係を示した
グラフである。 図面において、 1・・・鋳型、       2・・・下部内壁面、3
・・・検温センサー、 4・・・冷却媒体吹き込み用ノズル孔、5・・・上部内
壁面、 6・・・冷却媒体吸引用導通孔、 7・・・溶鋼、       8・・・メニスカス、9
・・・凝固シェル、   10・・・冷却水通路、11
・・・冷却水スプレーノズル。
Fig. 1 is a graph showing the relationship between C content and slab surface flaw initiation W degree; Fig. 2 is a graph showing the relationship between C content and austenite grain size of Fe-C steel; Figure 3 is a Fe-C system equilibrium phase diagram, Figure 4 is a graph showing the relationship between Cp value of steel and austenite grain size, and Figure 5 is a graph showing the relationship between Cp value of steel and austenite l phase temperature (Tr
), Figure 6 shows the relationship between water quenching temperature and austenite grain size when carbon steels with various C contents are water quenched at various temperatures during cooling to fix the structure. Figure 7 is a micrograph comparing the structural changes before and after the austenite single-phase temperature ('l'r), and Figure 7 (a) is a graph showing the change in structure after water quenching from 1470°C (Tr + 5°C). Figure 7 (bl is 1460℃ (Tγ-5
8 is a graph showing the relationship between the cooling rate and austenite grain size after the austenite single-phase temperature of the steel, and FIG. 9 is a graph showing the relationship between the austenite grain size and the cooling rate after the austenite single-phase temperature of steel. Figures 10 and 11, which are schematic diagrams showing continuous casting using a mold suitable for casting, show the distance from the slab surface and the cooling rate of the slabs obtained in Examples 1 and 2, respectively. This is a graph showing the relationship between In the drawings: 1... Mold, 2... Lower inner wall surface, 3
... Temperature sensor, 4 ... Nozzle hole for blowing cooling medium, 5 ... Upper inner wall surface, 6 ... Conduction hole for cooling medium suction, 7 ... Molten steel, 8 ... Meniscus, 9
... Solidified shell, 10 ... Cooling water passage, 11
...cooling water spray nozzle.

Claims (1)

【特許請求の範囲】[Claims] 両端開放鋳型内で溶鋼から鋳片表層部を形成した後、該
鋳片表層部をオーステナイト単相化温度以上から10℃
/sec以上の冷却速度で冷却することを特徴とする、
連続鋳造鋼片の熱間割れ防止方法。
After forming the surface layer of a slab from molten steel in a mold with both ends open, the surface layer of the slab is heated to a temperature higher than the austenite single-phase temperature by 10°C.
Cooling is performed at a cooling rate of /sec or more,
Method for preventing hot cracking in continuously cast steel billets.
JP20507586A 1986-09-02 1986-09-02 Prevention for hot cracking in continuously cast slab Pending JPS6363559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20507586A JPS6363559A (en) 1986-09-02 1986-09-02 Prevention for hot cracking in continuously cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20507586A JPS6363559A (en) 1986-09-02 1986-09-02 Prevention for hot cracking in continuously cast slab

Publications (1)

Publication Number Publication Date
JPS6363559A true JPS6363559A (en) 1988-03-19

Family

ID=16501009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20507586A Pending JPS6363559A (en) 1986-09-02 1986-09-02 Prevention for hot cracking in continuously cast slab

Country Status (1)

Country Link
JP (1) JPS6363559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133529A (en) * 1988-07-08 1990-05-22 Nippon Steel Corp Production of cr-ni stainless steel sheet having excellent surface quality and material quality
US8939194B2 (en) 2008-07-15 2015-01-27 Nippon Steel & Sumitomo Metal Corporation Continuous cast slab and producing method therefor
JP2015182110A (en) * 2014-03-25 2015-10-22 新日鐵住金株式会社 Continuous casting piece for thick steel plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133529A (en) * 1988-07-08 1990-05-22 Nippon Steel Corp Production of cr-ni stainless steel sheet having excellent surface quality and material quality
US8939194B2 (en) 2008-07-15 2015-01-27 Nippon Steel & Sumitomo Metal Corporation Continuous cast slab and producing method therefor
JP2015182110A (en) * 2014-03-25 2015-10-22 新日鐵住金株式会社 Continuous casting piece for thick steel plate

Similar Documents

Publication Publication Date Title
KR100224487B1 (en) Continuous casting method for austenitic stainless steel
JP2002086252A (en) Continous casting method
JPS6363559A (en) Prevention for hot cracking in continuously cast slab
JP2928382B2 (en) Continuous casting method of ultra low carbon aluminum killed steel
JP2001138019A (en) Continuous casting method
JP2518618B2 (en) Mold for continuous casting of steel
JP3952580B2 (en) Online quality judgment method and equipment for surface quality of slabs and steel slabs in continuous casting and ingot rolling
JP6413644B2 (en) Steel continuous casting method and continuous cast slab
JPS61195745A (en) Mold for continuous casting of steel
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JP3039369B2 (en) Method for producing Ni-containing steel
JP3259270B2 (en) Continuous casting method
JP2944476B2 (en) Continuous forging method that prevents surface cracks in slabs
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP3402291B2 (en) Continuously cast slab, method for continuously casting the same, and method for producing a thick steel plate
JPS63192537A (en) Continuous casting method for austenitic stainless steel cast slab
JPS61193758A (en) Production of hot worked steel material having good surface characteristic
JPS61195742A (en) Continuous casting device for steel
JPS63177950A (en) Method for casting ferritic stainless steel
JPS62156056A (en) Continuous casting method for low alloy steel
JPH0324297B2 (en)
JP3283746B2 (en) Continuous casting mold
JP2002361372A (en) CASTING METHOD FOR HIGH Cr-CONTAINING STEEL
JP4612271B2 (en) Continuous casting method of ultra-low carbon steel
JPS61195746A (en) Mold for continuous casting