JPS6318357B2 - - Google Patents

Info

Publication number
JPS6318357B2
JPS6318357B2 JP17827984A JP17827984A JPS6318357B2 JP S6318357 B2 JPS6318357 B2 JP S6318357B2 JP 17827984 A JP17827984 A JP 17827984A JP 17827984 A JP17827984 A JP 17827984A JP S6318357 B2 JPS6318357 B2 JP S6318357B2
Authority
JP
Japan
Prior art keywords
layer
oxidation
conductor
conductor layer
resistant protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17827984A
Other languages
Japanese (ja)
Other versions
JPS6158296A (en
Inventor
Fukuzo Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP17827984A priority Critical patent/JPS6158296A/en
Publication of JPS6158296A publication Critical patent/JPS6158296A/en
Publication of JPS6318357B2 publication Critical patent/JPS6318357B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、混成集積回路部品に使用されるセラ
ミツク多層配線基板に関するものである。 (従来の技術) 従来、混成集積回路に用いられる多層配線基板
としては、例えば第5図に示すように、セラミツ
クグリーンシート21上にタングステン、モリブ
デン等の高融点金属を主成分とする高融点金属導
体ペースト層および導体ペースト層の一部が露出
する開口23を有する絶縁ペースト層を複数層重
ね合わせ、最上層の開口23中に導体ペースト層
と同一のペースト層を印刷形成した後、還元雰囲
気中で焼成して高融点金属導体層22と絶縁層2
4を形成し、さらに金属導体層22上にニツケル
等の鉄属メツキ層25を施しさらに金−銀の合金
層よりなる耐酸化保護層をスクリーン印刷した後
溶融しさらにその上に銀等の厚膜導体ペースト層
を印刷し、酸化雰囲気中約850℃で焼成して、鉄
属メツキ層25、耐酸化保護層26及び厚膜導体
層27を形成してセラミツク多層配線基板を得る
ことが知られていた。 また、例えば第6図に示すように、最上層の開
口23中に露出した高融点金属導体層22上に直
接ニツケル等の鉄属メツキ層25と金−銀の合金
よりなる耐酸化保護層26を設ける例も知られて
いた。 (発明が解決しようとする問題点) 上述した構造のセラミツク多層配線基板では、
高融点金属導体層上に耐酸化保護層を設けない基
板に比べ高融点金属導体層への酸素の侵入を防止
できるが、厚膜導体層を作る厚膜ペーストの種類
により耐酸化保護層のニツケル層の酸化防止機能
や、導体露出部外周絶縁層の導体酸化防止機能が
損われる欠点があつた。 すなわち、第5図および第6図に示す従来例と
も厚膜ペーストとしてPd/Agの比が小さい銀ペ
ーストを使用している場合、厚膜導体層に酸素の
遮断効果がないばかりか耐酸化保護層の金−銀合
金が厚膜ペーストと反応して金/銀の比が小さく
なり酸素遮断性の量が減少し、鉄属めつき層への
酸素の侵入を有効に防止できなくなる欠点があつ
た。また、第5図に示す例では厚膜ペースト中の
ガラス成分中のタングステン、モリブデンより酸
素との結合力が弱い鉛、亜鉛等の金属酸化物の量
が多い場合、導体露出部外周絶縁層より導体の酸
化が起こる欠点もあつた。 本発明の目的は上述した不具合を解消し、厚膜
ペーストの種類にかかわらず基板内部への酸素侵
入を防ぎ、安定した導電性を得ることができるセ
ラミツク多層配線基板を提供しようとするもので
ある。 (問題点を解決するための手段) 本発明のセラミツク多層配線基板は、セラミツ
クからなる絶縁層と高融点金属を主成分とする導
体層とが交互に積層されたセラミツク基板の導体
露出部に耐酸化保護層を形成し、その上に酸化雰
囲気中で焼結される厚膜導体層が形成されたセラ
ミツク多層配線基板において、耐酸化保護層と厚
膜導体層間にAgとPdを主成分とする貴金属粉末
で、Pdの量が貴金属成分中において10モル%以
上からなる補助導体層を設けることを特徴とする
ものである。 (作用) 本発明の詳細を第1図および第2図を参照して
各工程ごとに順次説明する。 まず、アルミナ、ベリリア等を主成分とするセ
ラミツクグリーンシートを公知のドクターブレー
ド法等により調製し、混成集積回路基板として必
要な寸法に切断したセラミツクグリーンシート1
を準備する。 次いで、そのグリーンシート1上に、タングス
テン、モリブデン等の高融点金属すなわちセラミ
ツクグリーンシート1の焼成温度よりも融点が高
くかつ電気抵抗の低い金属を主成分とする導体ペ
ーストと、該導体ペーストの一部が露出する開口
を有するグリーンシート1と同一成分を主原料と
する絶縁ペーストとを、スクリーン印刷により交
互に印刷し、図1,2に示すように導体ペースト
よりなる高融点金属導体層2と絶縁ペーストより
なる絶縁層3を形成する。なお、高融点金属導体
層2および絶縁層3の層数は限られたものではな
く、用途に応じた層数とすれば良い。 そして、導体層2と絶縁層3とを形成するペー
ストが印刷されたセラミツクグリーンシート1を
還元雰囲気で焼成する。焼成条件は、セラミツク
グリーンシート1の組成、導体ペーストの成分よ
り定められるが、1400〜1800℃、5〜180分焼成
するものである。 焼成後、露出した高融点金属導体層2上に、ニ
ツケル等の鉄属メツキ層4を形成する。鉄属メツ
キをするのは、貴金属との濡れ性の向上を図るた
めである。鉄属メツキ層4の厚みは、1〜5μが
適当である。鉄属メツキ層4を形成する方法は、
電解、無電解のどちらのメツキ方法でもよく、電
極の取り出しの可否により選択される。鉄属メツ
キ層4を形成した後、鉄属メツキ層4と高融点金
属導体層2との密着強度を向上させるため、 800〜1200℃、5〜30分還元雰囲気中で熱処理
してもよい。 次いで、金と銀とを含むペーストを、鉄属メツ
キ層4上にスクリーン印刷し、金と銀との合金よ
りなる耐酸化保護層5を形成するペースト層を鉄
属メツキ層4上に形成する。耐酸化保護層5の厚
みは、厚膜導体層の焼成温度により異なるが、15
〜45μが適当である。 次いで、耐酸化保護層5を形成するペースト層
が形成されたセラミツク配線基板を、1000〜1100
℃の非酸化性雰囲気中で加熱処理して、ペースト
層を溶融するとともに合金化し、金・銀溶融合金
よりなる耐酸化保護層5を形成する。溶融温度は
1000℃以上であるが、鉄属メツキの合金よりなる
耐酸化保護層への拡散を抑えるためにも、1100℃
以下の溶融温度が好ましい。溶融時間も長すぎる
と鉄属メツキ4の耐酸化保護層5への拡散が大き
くなるので、溶融時間は5〜30分が適当である。 さらに、熱処理されたセラミツク基板の耐酸化
保護層5および絶縁層3上に、金属成分は銀とパ
ラジユウムを主成分とし、パラジユウムが10モル
%以上であり、ガラスを含む場合ガラス成分は酸
化鉛と酸化亜鉛の合計が50重量%以下とした補助
導体ペーストと、銀等を主成分とする厚膜導体ペ
ーストとにより、所要の回路パターンを印刷す
る。次いで、印刷物を酸化雰囲気で焼成して、補
助導体層6と厚膜導体層7を形成し、本発明のセ
ラミツク多層配線基板を得る。なお焼成条件とし
ては、厚膜ペーストの成分によるが、800〜850
℃、5〜20分で十分である。その後、抵抗等の受
動素子を厚膜導体層7上に形成したり、その他回
路部品リードを、厚膜導体層7上にワイヤボンド
あるいは半田付けすることにより集積回路を形成
する。 (実施例) 以下、実施例につき第3図および第4図を参照
して説明する。 セラミツク成分として、アルミナ90重量パーセ
ントの他、シリカ、マグネシア等の添加物とポリ
ビニールブチラール等の有機バインダーを混合
し、ドクターブレード法により厚み0.8mmのセラ
ミツクグリーンシート1を作成した。 次に、タングステン粉末98重量パーセント、シ
リカ2重量パーセントのメタライズ成分にエチル
セルロースを印刷助剤として加えた導体ペースト
と、グリーンシートと同一組成の粉末にエチルセ
ルロースを印刷助剤として加えた絶縁ペーストと
を、グリーンシート1上に導体ペーストの一部を
露出させて交互に印刷して、導体層2および絶縁
層3を形成する積層体を得た。 次いで、その積層体を露点35℃の水素と窒素の
混合雰囲気中で、昇温速度300℃/時間で昇温し
た後、1550℃で2時間保持後、降温速度600℃/
時間で焼結した。 そして、得られたセラミツク配線基板上に露出
した高融点金属導体層2上に、硼化水素浴系の無
電解メツキにより3μのニツケルよりなる鉄属メ
ツキ層4を形成した。 次に、ニツケルメツキしたセラミツク基板を水
素雰囲気中、950℃で5分間熱処理後、金25モル
%、銀75モル%の金および銀粉末にアクリル系バ
インダーを印刷助剤として加えたペーストを以つ
て、印刷厚みが約30μになるように鉄属メツキ層
4上にスクリーン印刷し、水素雰囲気中1000〜
1100℃でそれぞれの組成ペーストの融点にあわせ
て溶融するとともに合金化し、金と銀との合金よ
りなる高融点金属導体層5を形成した。 さらに、高融点金属導体層5上に第1表に示す
成分の厚膜補助導体ペーストをスクリーン印刷し
た後さらに厚膜導体ペースト(昭栄化学D−
4022)をスクリーン印刷し、空気中850℃で10分
間焼成し、第3,4図に示すように、高融点金属
導体層2上に各々鉄属メツキ層4および耐酸化保
護層5をはさんで補助導体層6、厚膜導体層7が
設けられた本発明のセラミツク多層配線基板を得
た。 このようにして得られたセラミツク多層配線基
板について酸化焼成後の導電性の劣化を比較する
ため厚膜導体層7間の電気抵抗を測定し、さらに
耐酸化保護層外周の導体層の酸化を観察した。そ
れらの結果を第1表に示す。
(Industrial Application Field) The present invention relates to a ceramic multilayer wiring board used for hybrid integrated circuit components. (Prior Art) Conventionally, as shown in FIG. 5, a multilayer wiring board used in a hybrid integrated circuit has a ceramic green sheet 21 coated with a high melting point metal mainly composed of a high melting point metal such as tungsten or molybdenum. A conductor paste layer and a plurality of insulating paste layers each having an opening 23 through which a part of the conductor paste layer is exposed are stacked together, a paste layer identical to the conductor paste layer is printed in the opening 23 of the top layer, and then the paste layer is placed in a reducing atmosphere. to form a high melting point metal conductor layer 22 and an insulating layer 2.
4 is formed, an iron metal plating layer 25 made of nickel or the like is applied on the metal conductor layer 22, and an oxidation-resistant protective layer made of a gold-silver alloy layer is screen printed, then melted, and then a thick layer of silver or the like is applied on top of that. It is known that a ceramic multilayer wiring board is obtained by printing a film conductor paste layer and firing it at about 850° C. in an oxidizing atmosphere to form an iron metal plating layer 25, an oxidation-resistant protective layer 26 and a thick film conductor layer 27. was. Further, as shown in FIG. 6, for example, an iron metal plating layer 25 such as nickel and an oxidation-resistant protective layer 26 made of a gold-silver alloy are directly placed on the high melting point metal conductor layer 22 exposed in the opening 23 of the uppermost layer. There were also known examples of providing . (Problems to be solved by the invention) In the ceramic multilayer wiring board having the above structure,
Compared to a board that does not have an oxidation-resistant protective layer on the high-melting-point metal conductor layer, oxygen can be prevented from entering the high-melting-point metal conductor layer, but depending on the type of thick film paste used to make the thick film conductor layer, the oxidation-resistant protective layer There was a drawback that the oxidation prevention function of the layer and the conductor oxidation prevention function of the outer peripheral insulating layer of the exposed conductor part were impaired. In other words, in both the conventional examples shown in Figures 5 and 6, when silver paste with a small Pd/Ag ratio is used as the thick film paste, the thick film conductor layer not only has no oxygen blocking effect but also lacks oxidation protection. The drawback is that the gold-silver alloy in the layer reacts with the thick film paste, reducing the gold/silver ratio and reducing the amount of oxygen barrier, making it impossible to effectively prevent oxygen from entering the iron metal plating layer. Ta. In addition, in the example shown in Figure 5, if there is a large amount of metal oxides such as lead and zinc, which have a weaker bonding force with oxygen than tungsten and molybdenum in the glass component of the thick film paste, Another drawback was that the conductor oxidized. The purpose of the present invention is to eliminate the above-mentioned problems and provide a ceramic multilayer wiring board that can prevent oxygen from entering the board and provide stable conductivity regardless of the type of thick film paste. . (Means for Solving the Problems) The ceramic multilayer wiring board of the present invention has acid-resistant exposed conductor parts of a ceramic board in which insulating layers made of ceramic and conductor layers mainly composed of a high-melting point metal are laminated alternately. In a ceramic multilayer wiring board on which a oxidation-resistant protective layer is formed and a thick-film conductor layer that is sintered in an oxidizing atmosphere is formed, Ag and Pd are the main components between the oxidation-resistant protective layer and the thick-film conductor layer. It is a noble metal powder and is characterized by providing an auxiliary conductor layer in which the amount of Pd in the noble metal component is 10 mol% or more. (Function) The details of the present invention will be explained one by one for each step with reference to FIGS. 1 and 2. First, a ceramic green sheet 1 containing alumina, beryllia, etc. as the main components was prepared by a known doctor blade method, etc., and cut into the dimensions required for a hybrid integrated circuit board.
Prepare. Next, on the green sheet 1, a conductor paste whose main component is a high-melting point metal such as tungsten or molybdenum, that is, a metal with a melting point higher than the firing temperature of the ceramic green sheet 1 and a metal with a lower electric resistance, and a part of the conductor paste are applied. A green sheet 1 having an opening that exposes a portion of the green sheet and an insulating paste mainly made of the same ingredients are alternately printed by screen printing to form a high melting point metal conductor layer 2 made of conductor paste as shown in FIGS. 1 and 2. An insulating layer 3 made of insulating paste is formed. Note that the number of layers of the high melting point metal conductor layer 2 and the insulating layer 3 is not limited, and may be determined according to the purpose. Then, the ceramic green sheet 1 on which the paste forming the conductive layer 2 and the insulating layer 3 is printed is fired in a reducing atmosphere. The firing conditions are determined based on the composition of the ceramic green sheet 1 and the components of the conductor paste, and the firing is performed at 1400 to 1800°C for 5 to 180 minutes. After firing, an iron metal plating layer 4 such as nickel is formed on the exposed high melting point metal conductor layer 2. The purpose of plating with iron metal is to improve wettability with precious metals. The thickness of the iron metal plating layer 4 is suitably 1 to 5 microns. The method for forming the iron plating layer 4 is as follows:
Either electrolytic or electroless plating method may be used, and the selection is made depending on whether or not the electrode can be taken out. After forming the iron metal plating layer 4, heat treatment may be performed in a reducing atmosphere at 800 to 1200°C for 5 to 30 minutes in order to improve the adhesion strength between the iron metal plating layer 4 and the high melting point metal conductor layer 2. Next, a paste containing gold and silver is screen printed on the iron metal plating layer 4 to form a paste layer on the iron metal plating layer 4 that forms the oxidation-resistant protective layer 5 made of an alloy of gold and silver. . The thickness of the oxidation-resistant protective layer 5 varies depending on the firing temperature of the thick film conductor layer, but is approximately 15
~45μ is appropriate. Next, the ceramic wiring board on which the paste layer forming the oxidation-resistant protective layer 5 was formed was heated at 1000 to 1100
A heat treatment is performed in a non-oxidizing atmosphere at a temperature of 0.degree. C. to melt and alloy the paste layer, thereby forming an oxidation-resistant protective layer 5 made of a gold-silver molten alloy. The melting temperature is
The temperature is 1000℃ or higher, but in order to suppress diffusion into the oxidation-resistant protective layer made of an alloy of iron plating, the temperature is 1100℃.
The following melting temperatures are preferred: If the melting time is too long, the diffusion of the iron metal plating 4 into the oxidation-resistant protective layer 5 will increase, so a melting time of 5 to 30 minutes is appropriate. Further, on the oxidation-resistant protective layer 5 and the insulating layer 3 of the heat-treated ceramic substrate, the metal component is mainly composed of silver and palladium, and if palladium is 10 mol % or more, and glass is included, the glass component is lead oxide. A desired circuit pattern is printed using an auxiliary conductor paste containing 50% by weight or less of zinc oxide in total and a thick film conductor paste whose main component is silver or the like. Next, the printed matter is fired in an oxidizing atmosphere to form an auxiliary conductor layer 6 and a thick film conductor layer 7, thereby obtaining the ceramic multilayer wiring board of the present invention. The firing conditions depend on the components of the thick film paste, but the firing conditions are 800 to 850.
°C for 5 to 20 minutes is sufficient. Thereafter, passive elements such as resistors are formed on the thick film conductor layer 7, and other circuit component leads are wire bonded or soldered on the thick film conductor layer 7 to form an integrated circuit. (Example) Hereinafter, an example will be described with reference to FIGS. 3 and 4. A ceramic green sheet 1 having a thickness of 0.8 mm was prepared by mixing 90% by weight of alumina, additives such as silica and magnesia, and an organic binder such as polyvinyl butyral as ceramic components using a doctor blade method. Next, a conductive paste was prepared by adding ethyl cellulose as a printing aid to the metallizing components of 98% by weight of tungsten powder and 2% by weight of silica, and an insulating paste was prepared by adding ethylcellulose to the powder having the same composition as the green sheet as a printing aid. A part of the conductor paste was exposed and alternately printed on the green sheet 1 to obtain a laminate in which a conductor layer 2 and an insulating layer 3 were formed. Next, the laminate was heated at a heating rate of 300°C/hour in a mixed atmosphere of hydrogen and nitrogen with a dew point of 35°C, held at 1550°C for 2 hours, and then cooled at a cooling rate of 600°C/hour.
Sintered in time. Then, on the high melting point metal conductor layer 2 exposed on the obtained ceramic wiring board, an iron metal plating layer 4 made of nickel with a thickness of 3 μm was formed by electroless plating in a hydrogen boride bath. Next, the nickel-plated ceramic substrate was heat-treated at 950°C for 5 minutes in a hydrogen atmosphere, and then a paste made of gold and silver powder containing 25 mol% gold and 75 mol% silver with an acrylic binder added as a printing aid was used. Screen printing is performed on the iron metal plating layer 4 so that the printing thickness is approximately 30μ, and then
The pastes were melted and alloyed at 1100° C. according to the melting point of each composition paste to form a high melting point metal conductor layer 5 made of an alloy of gold and silver. Furthermore, after screen printing a thick film auxiliary conductor paste having the components shown in Table 1 on the high melting point metal conductor layer 5, a thick film conductor paste (Shoei Chemical D-
4022) was screen printed and baked at 850°C for 10 minutes in the air, and as shown in Figures 3 and 4, an iron plating layer 4 and an oxidation-resistant protective layer 5 were placed on the high melting point metal conductor layer 2, respectively. Thus, a ceramic multilayer wiring board of the present invention provided with an auxiliary conductor layer 6 and a thick film conductor layer 7 was obtained. In order to compare the deterioration of conductivity after oxidation firing of the ceramic multilayer wiring board thus obtained, the electrical resistance between the thick film conductor layers 7 was measured, and the oxidation of the conductor layer around the oxidation-resistant protective layer was also observed. did. The results are shown in Table 1.

【表】【table】

【表】 第1表から明らかなように、導通抵抗が低く、
導体層の酸化のない判定が〇の試料は、補助導体
ペースト中の金属成分においてパラジユウム量が
7.5重量%(10モル%)以上で、かつ補助導体ペ
ースト中のガラス成分において酸化鉛と酸化亜鉛
の合計量が50重量%以下であることがわかる。 本発明は上述した実施例にのみ限定されるもの
ではなく、幾多の変形、変更が可能である。例え
ば上述した実施例では、基板の構造を第3,4図
に示した例としたが、耐酸化保護層と厚膜導体層
の間に補助導体層が存在すればどのような基板で
も同様の効果が得られる。 (発明の効果) 以上詳細に説明したところから明らかなよう
に、本発明のセラミツク多層配線基板によれば、
補助導体層を耐酸化保護層と厚膜導体層との間に
形成することにより、厚膜導体を形成する厚膜ペ
ーストの種類にかかわらず高融点金属導体層内部
への酸素の侵入を防ぐことができるため、多種の
ペーストの形成が可能となり多方面の分野で使用
することができる。 さらに、補助導体層中の金属成分としてパラジ
ユウムを一定量以上含有するので耐酸化保護層の
酸素遮断効果の劣化が少なく、ガラス成分として
酸化鉛と酸化亜鉛の量が一定量以下であるので導
体露出部の外周の酸化がなく、安定した導電性を
有するセラミツク多層配線基板を得ることができ
る。
[Table] As is clear from Table 1, the conduction resistance is low,
Samples with a judgment of 〇 for no oxidation of the conductor layer have a high palladium content in the metal components in the auxiliary conductor paste.
It can be seen that the total amount of lead oxide and zinc oxide is 7.5% by weight (10% by mole) or more, and the total amount of lead oxide and zinc oxide in the glass component in the auxiliary conductor paste is 50% by weight or less. The present invention is not limited only to the embodiments described above, and numerous modifications and changes are possible. For example, in the above-mentioned embodiment, the structure of the substrate was used as an example as shown in FIGS. 3 and 4, but any type of substrate can be used as long as there is an auxiliary conductor layer between the oxidation-resistant protective layer and the thick film conductor layer. Effects can be obtained. (Effects of the Invention) As is clear from the detailed explanation above, according to the ceramic multilayer wiring board of the present invention,
By forming the auxiliary conductor layer between the oxidation-resistant protective layer and the thick film conductor layer, oxygen can be prevented from penetrating into the high melting point metal conductor layer regardless of the type of thick film paste used to form the thick film conductor. This makes it possible to form a wide variety of pastes, which can be used in a wide variety of fields. Furthermore, since the auxiliary conductor layer contains more than a certain amount of palladium as a metal component, there is little deterioration of the oxygen blocking effect of the oxidation-resistant protective layer, and the amount of lead oxide and zinc oxide as glass components is less than a certain amount, so the conductor is exposed. It is possible to obtain a ceramic multilayer wiring board that is free from oxidation on the outer periphery of the parts and has stable conductivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明によるセラミツク多層
配線基板の一実施例の要部断面図、第3図、第4
図は本発明によるセラミツク多層配線基板の他の
実施例の要部断面図、第5図、第6図は従来のセ
ラミツク多層配線基板の要部断面図である。 1,21……セラミツクグリーンシート、2,
22……高融点金属導体層、3,24……絶縁
層、4,25……鉄属メツキ層、5,26……耐
酸化保護層、6……補助導体層、7,27……厚
膜導体層、23……開口。
1 and 2 are sectional views of essential parts of an embodiment of the ceramic multilayer wiring board according to the present invention, and FIGS.
The figure is a sectional view of a main part of another embodiment of a ceramic multilayer wiring board according to the present invention, and FIGS. 5 and 6 are sectional views of main parts of a conventional ceramic multilayer wiring board. 1,21...ceramic green sheet, 2,
22... High melting point metal conductor layer, 3, 24... Insulating layer, 4, 25... Iron metal plating layer, 5, 26... Oxidation-resistant protective layer, 6... Auxiliary conductor layer, 7, 27... Thickness Membrane conductor layer, 23...opening.

Claims (1)

【特許請求の範囲】 1 セラミツクからなる絶縁層と高融点金属を主
成分とする導体層とが交互に積層されたセラミツ
ク基板の導体露出部に耐酸化保護層を形成し、そ
の上に酸化雰囲気中で焼結される厚膜導体層が形
成されたセラミツク多層配線基板において、 耐酸化保護層と厚膜導体層間にAgとPdを主成
分とする貴金属粉末で、Pdの量が貴金属成分中
において10モル%以上からなる補助導体層を設け
ることを特徴とするセラミツク多層配線基板。 2 補助導体層中にガラスを含む場合はガラス成
分が、酸化鉛と酸化亜鉛の合量が50重量%以下で
ある特許請求の範囲第1項記載のセラミツク多層
配線基板。
[Scope of Claims] 1. An oxidation-resistant protective layer is formed on the exposed conductor portion of a ceramic substrate in which an insulating layer made of ceramic and a conductor layer mainly composed of a high-melting point metal are laminated alternately, and an oxidation-resistant protective layer is formed on the exposed conductor part, and an oxidation-resistant protective layer is formed on the exposed part of the conductor. In a ceramic multilayer wiring board on which a thick film conductor layer is formed, which is sintered inside, a noble metal powder containing Ag and Pd as main components is used between the oxidation-resistant protective layer and the thick film conductor layer, and the amount of Pd in the noble metal component is A ceramic multilayer wiring board characterized by providing an auxiliary conductor layer consisting of 10 mol% or more. 2. The ceramic multilayer wiring board according to claim 1, wherein when the auxiliary conductor layer contains glass, the total amount of lead oxide and zinc oxide in the glass component is 50% by weight or less.
JP17827984A 1984-08-29 1984-08-29 Ceramic multilayer circuit board Granted JPS6158296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17827984A JPS6158296A (en) 1984-08-29 1984-08-29 Ceramic multilayer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17827984A JPS6158296A (en) 1984-08-29 1984-08-29 Ceramic multilayer circuit board

Publications (2)

Publication Number Publication Date
JPS6158296A JPS6158296A (en) 1986-03-25
JPS6318357B2 true JPS6318357B2 (en) 1988-04-18

Family

ID=16045688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17827984A Granted JPS6158296A (en) 1984-08-29 1984-08-29 Ceramic multilayer circuit board

Country Status (1)

Country Link
JP (1) JPS6158296A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821781B2 (en) * 1989-04-07 1996-03-04 日本電装株式会社 Ceramic multilayer wiring board and manufacturing method thereof
JPH0756913B2 (en) * 1990-09-18 1995-06-14 日本碍子株式会社 Method for manufacturing ceramic multilayer wiring board
JPH04127495A (en) * 1990-09-18 1992-04-28 Ngk Insulators Ltd Ceramic multilayer wiring board and manufacture thereof
JP6782996B1 (en) 2019-07-08 2020-11-11 株式会社ワールドメタル Bonded base material and metal layer

Also Published As

Publication number Publication date
JPS6158296A (en) 1986-03-25

Similar Documents

Publication Publication Date Title
JP3331083B2 (en) Low temperature firing ceramic circuit board
JPH0569319B2 (en)
JPS6342879B2 (en)
US5928568A (en) Thick film circuit having conductor composition with coated metallic particles
JPS6318357B2 (en)
JPS6166303A (en) Conductive paste for thick film
JP2816742B2 (en) Circuit board
JPS6346595B2 (en)
JPH05221686A (en) Conductive paste composition and wiring substrate
JPS6318356B2 (en)
JP2842711B2 (en) Circuit board
JPS6253960B2 (en)
JP2665557B2 (en) Bonded structure of ceramic body and external terminals
JPS6077491A (en) Ceramic multilayer circuit board and method of producing same
JPH0614596B2 (en) Manufacturing method of ceramic multilayer wiring board
JP3556377B2 (en) Wiring board
JP2000223821A (en) Ceramic wiring board
JP2738600B2 (en) Circuit board
JPH0213952B2 (en)
JPH0691318B2 (en) Ceramic multilayer wiring board
JP2842710B2 (en) Circuit board
JPS6077187A (en) Ceramic electronic part and manufacture
JPH0213478B2 (en)
JPH01251695A (en) Manufacture of ceramic multilayer interconnection board
JP2001068830A (en) Circuit board