JPH0213478B2 - - Google Patents

Info

Publication number
JPH0213478B2
JPH0213478B2 JP60011484A JP1148485A JPH0213478B2 JP H0213478 B2 JPH0213478 B2 JP H0213478B2 JP 60011484 A JP60011484 A JP 60011484A JP 1148485 A JP1148485 A JP 1148485A JP H0213478 B2 JPH0213478 B2 JP H0213478B2
Authority
JP
Japan
Prior art keywords
multilayer wiring
melting point
paste
wiring board
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60011484A
Other languages
Japanese (ja)
Other versions
JPS61170094A (en
Inventor
Fukuzo Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP60011484A priority Critical patent/JPS61170094A/en
Publication of JPS61170094A publication Critical patent/JPS61170094A/en
Publication of JPH0213478B2 publication Critical patent/JPH0213478B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、混成集積回路等に使用されるセラミ
ツク多層配線基板の製造法に関し、特に耐酸化性
導体保護層と厚膜導体層とを1回の酸化焼成で形
成するセラミツク多層配線基板の製造法に関する
ものである。 (従来の技術) 従来の混成集積回路に用いられる多層配線基板
の製造法としては、例えば第2図に示すように、
セラミツクグリーンシート11上にW、Mo等の
高融点金属を主成分とする高融点金属導体ペース
ト層および該導体ペースト層の一部が露出する開
口を有する絶縁ペースト層を複数層重ね合わせ、
最上層の絶縁ペーストの開口中に露出導体ペース
ト上に貴金属例えばW−Ptよりなる耐酸化導体
保護層を形成する導体ペースト層を印刷形成した
罪還元雰囲気で焼成して、高融点金属導体層12
および耐酸化性導体保護層13と絶縁層14を形
成し、さらに耐酸化性導体保護層13上に銀等の
厚膜導体ペースト層を印刷し、例えば空気中620
℃で10分間焼成して厚膜導体層15を形成して多
層配線基板を得ることが、特開昭59−75695号公
報において開示されている。 また、上述した耐酸化性導体保護層として、貴
金属焼結体の間隙中にガラスを均一に介在させた
導電性ガラス層を設けて多層配線基板を得る製造
法も、特願昭58−184420号において知られてい
る。 (発明が解決しようとする問題点) 上述した方法では、厚膜導体層形成時の酸化雰
囲気中での焼成における高融点金属導体層中への
酸素の侵入を、耐酸化性導体保護層により有効に
防止することができるが、これら耐酸化性導体保
護層を形成するために還元雰囲気における独自の
熱処理が必要であつた。 すなわち、貴金属より成る耐酸化性導体保護層
を形成する場合は貴金属より成る導体ペーストを
還元雰囲気下で焼成する必要があると共に、導電
性ガラスより成る耐酸化性導体保護層を形成する
場合でも貴金属とガラスの混合ペーストを還元雰
囲気下で焼成する必要があるため、耐酸化性導体
保護層と厚膜導体層とを形成するのにそれぞれ還
元雰囲気と酸化雰囲気とでの2回の焼成が必要で
あり、作業工程が多くなる欠点があつた。 本発明の目的は上述した不具合を解消して、耐
酸化性導体保護層と厚膜導体層とを1回の焼成で
形成することができ、作業工程を減少して作業能
率を高めることができるセラミツク多層配線基板
の製造法を提供しようとするものである。 (問題点を解決するための手段) 本発明のセラミツク多層配線基板の製造法は、
絶縁層と高融点金属導体層とを複数層交互に重ね
合わせた多層配線基板の露出導体層上に厚膜素子
形成用導体ペーストを配置接続して焼成するセラ
ミツク多層線基板の製造法において、 前記露出導体層上にPb、Biの酸化物の少なく
とも1種以上を合計で20モル%以下含有する低融
点ガラスとAg、Pdより成る貴金属との比率が体
積比で33/67〜67/33の混合物よりなる導電性ペ
ーストを配置し、さらにその上に厚膜素子形成用
ペーストを配置接続して、その後酸化性雰囲気中
で焼成することを特徴とするものである。 (作 用) 本発明は、耐酸化性導体保護層として貴金属と
低融点ガラスとを上述した体積比で含む導電性ペ
ーストを使用すれば、高融点金属導体層を酸化す
ることなく1回の酸化雰囲気中の焼成で耐酸化性
導体保護層と厚膜導体層を形成することができる
ことを見出したことによる。 また、このとき低融点のガラスが必要なのは、
低融点のガラスを使用しないと厚膜導体層形成用
ペーストを酸化雰囲気中、800〜830℃で焼成する
際ガラスの溶融が不充分となり高融点金属導体層
を酸化して導通抵抗が増加するためである。 (実施例) 本発明の詳細を第1図を参照して各工程ごとに
順次説明する。 アルミナ、ベリリア等を主成分とするセラミツ
クグリーンシートを公知のドクターブレード法に
より調製し、混成集積回路基板として必要な寸法
に切断したセラミツクグリーンシート1を準備す
る。 次いで、そのグリーンシート1上にタングステ
ン、モリブデン等の高融点金属、すなわちセラミ
ツクグリーンシート1の焼成温度よりも融点が高
く、かつ電気抵抗の低い金属を主成分とする導体
ペーストと、該導体ペーストの一部が露出する開
口と有するグリーンシート1と同一成分を主原料
とする絶縁ペーストとをスクリーン印刷により交
互に印刷し、図に示すように導体ペーストよりな
る高融点金属導体層2と絶縁ペーストよりなる絶
縁層3を形成する。なお、高融点金属導体層2お
よび絶縁層3の層数は限られたものでなく、用途
に応じた層数とすればよい。 そして、高融点金属導体層2と絶縁層3とを形
成するペーストが印刷されたセラミツクグリーン
シート1を還元雰囲気中で焼成する。焼成条件は
セラミツクグリーンシート1の成分により定めら
れるが、1400〜1800℃、5〜180分である。 次いで、開口露出部2aに露出した高融点金属
導体層2上に貴金属とガラスとを主成分とするペ
ースト層4を印刷により形成し、さらにその上に
厚膜素子形成用の厚膜導体ペースト層5を印刷に
より形成した後酸化雰囲気中で焼成し、本発明の
セラミツク多層配線基板を得る。 なお、上記貴金属とガラスとを主成分とする導
電性ペーストの成分として、ガラスは高融点金属
が酸化して導電性を損なう前に溶融しかつ高融点
金属をコートして外気から完全に遮断するに足る
量を有し、ガラス成分中の酸化物を構成する酸素
が高融点金属をはげしく酸化させない成分である
事が必要であると共に、貴金属は酸素の固溶がわ
ずかで酸素の遮断性があり、導電性に対して充分
な量を含むことが必要である。 さらに上記ガラスペーストの成分としては、焼
成温度や導体露出部の材質にもよるが導体露出部
の著しい酸化の前に溶融することが好ましく、ま
た成分としてもPbO、ZnO、Bi2O3等のW、Mo
等より酸素の結合力の弱い金属酸化物が多い場合
には、これらの成分よりW、Mo等へ酸素が供給
され導体が酸化されることから、PbO、Bi2O3
は20モル%以下が好ましい。 また、酸化雰囲気中での焼成条件は、耐酸化性
導体保護層を構成する導電性ペーストやそれに接
続する素子形成用ペースト等の種類にもよるが、
750〜850℃、5〜20分が適当である。この場合、
導電性ペーストのガラスの融点は700℃以下が好
ましい。そしてさらに、抵抗等の受動素子を厚膜
導体層上に形成したり、その他回路部品を半田付
けあるいはワイヤーボンドし、集積回路を形成す
る。 上述した構成をとつているため、厚膜導体ペー
スト層5を例えば850℃、酸化雰囲気中で焼成し
たとしても、導体露出部の著しい酸化の前にガラ
スが溶融して基板内への酸素の浸入を防止し金属
成分も充分な酸素の遮断性を有するので、導電性
を維持しつつ露出導体層を保護することができ
る。 実施例 セラミツク成分としてアルミナ90重量パーセン
トの他シリカ、マグネシア等の添加物とポリビニ
ールブチラールル等の有機バインダーを混合し、
ドクターブレード法により、厚さ0.8mmのセラミ
ツクグリーンシート1を作成した。 次に、タングステン粉末からなるメタライズ成
分にエチルセルローズを印刷助剤として加えた導
体ペーストと、グリーンシートと同一成分の粉末
にエチルセルローズを印刷助剤として加えた絶縁
ペーストを、グリーンシート上に導体ペーストの
1部を露出させて交互に印刷し、高融点金属導体
層2、絶縁層3を形成する積層体を得た。 次いで、その積層体を露点35℃の水素と窒素の
混合雰囲気中で昇温速度300℃/時間で昇温した
後、1550℃、2時間保持して焼結後、降温速度
600℃/時間で冷却し、多層配線基板を得た。 次いで、第1表および第2表に示す割合に低融
点ガラスと貴金属の混合物にエチルセルロースを
印刷助剤として加えた導電性ペーストを開口露出
部2aの高融点金属導体層2上に重ねて印刷し、
さらにその上に厚膜導体ペーストを印刷形成した
後、酸化性雰囲気中で800℃、10分焼成し、本発
明のセラミツク多層配線基板を得た。 また、貴金属とガラスの体積比が本発明の範囲
外のものを比較例として準備し、本発明例のもの
と同様に、シミ等の外観、初期抵抗、再焼成変化
率を測定し、最終的な判定を行つた。これらの結
果を第1表に示し、表中〇は良品を×は不良品を
表している。なお、第2表には、各試料の貴金属
およびガラスの成分とガラスの融点を示してい
る。
(Industrial Application Field) The present invention relates to a method for manufacturing a ceramic multilayer wiring board used for hybrid integrated circuits, etc., and in particular, a method for forming an oxidation-resistant conductor protective layer and a thick film conductor layer in one oxidation firing process. This invention relates to a method of manufacturing a ceramic multilayer wiring board. (Prior Art) As a conventional method for manufacturing a multilayer wiring board used in a hybrid integrated circuit, for example, as shown in FIG.
A plurality of layers of a high melting point metal conductor paste layer mainly composed of a high melting point metal such as W and Mo and an insulating paste layer having an opening through which a part of the conductor paste layer is exposed are superimposed on a ceramic green sheet 11,
A conductor paste layer that forms an oxidation-resistant conductor protective layer made of a noble metal such as W-Pt is printed on the exposed conductor paste in the opening of the uppermost layer of insulating paste, and is fired in a reducing atmosphere to form the high-melting point metal conductor layer 12.
Then, an oxidation-resistant conductor protective layer 13 and an insulating layer 14 are formed, and a thick film conductor paste layer of silver or the like is printed on the oxidation-resistant conductor protective layer 13, for example, at 620° C. in air.
JP-A-59-75695 discloses that a multilayer wiring board is obtained by baking at 10° C. for 10 minutes to form a thick film conductor layer 15. Furthermore, a manufacturing method for obtaining a multilayer wiring board by providing a conductive glass layer in which glass is uniformly interposed in the gaps between precious metal sintered bodies as the oxidation-resistant conductor protective layer described above is also disclosed in Japanese Patent Application No. 58-184420. It is known in (Problems to be Solved by the Invention) In the method described above, the oxidation-resistant conductor protective layer effectively prevents oxygen from entering the high melting point metal conductor layer during firing in an oxidizing atmosphere during the formation of the thick film conductor layer. However, in order to form these oxidation-resistant conductor protective layers, a unique heat treatment in a reducing atmosphere was required. In other words, when forming an oxidation-resistant conductor protective layer made of noble metal, it is necessary to sinter the conductive paste made of noble metal in a reducing atmosphere, and even when forming an oxidation-resistant conductor protective layer made of conductive glass, noble metal Since it is necessary to sinter the mixed paste of oxide and glass in a reducing atmosphere, two sinterings are required in a reducing atmosphere and an oxidizing atmosphere to form the oxidation-resistant conductor protective layer and the thick film conductor layer, respectively. However, it had the disadvantage of requiring more work steps. An object of the present invention is to solve the above-mentioned problems, to form an oxidation-resistant conductor protective layer and a thick film conductor layer in one firing, to reduce the number of work steps and to increase work efficiency. The present invention aims to provide a method for manufacturing a ceramic multilayer wiring board. (Means for Solving the Problems) The method for manufacturing a ceramic multilayer wiring board of the present invention is as follows:
In the method for manufacturing a ceramic multilayer wiring board, which comprises placing and connecting a conductor paste for forming a thick film element on the exposed conductor layer of a multilayer wiring board in which a plurality of insulating layers and high-melting point metal conductor layers are alternately laminated, and firing the same, The ratio of the low melting point glass containing at least 20 mol % or less of at least one of Pb and Bi oxides and the noble metals consisting of Ag and Pd on the exposed conductor layer is 33/67 to 67/33 by volume. The method is characterized in that a conductive paste made of a mixture is disposed, a thick film element forming paste is further disposed and connected thereon, and then fired in an oxidizing atmosphere. (Function) According to the present invention, if a conductive paste containing a noble metal and a low-melting point glass in the above-mentioned volume ratio is used as an oxidation-resistant conductor protective layer, one oxidation process can be performed without oxidizing the high-melting point metal conductor layer. This is due to the discovery that an oxidation-resistant conductor protective layer and a thick film conductor layer can be formed by firing in an atmosphere. Also, at this time, glass with a low melting point is required because
If low melting point glass is not used, when the thick film conductor layer forming paste is fired at 800 to 830°C in an oxidizing atmosphere, the glass will not melt sufficiently and the high melting point metal conductor layer will oxidize, increasing conduction resistance. It is. (Example) The details of the present invention will be sequentially explained for each step with reference to FIG. A ceramic green sheet containing alumina, beryllia, etc. as a main component is prepared by a known doctor blade method, and a ceramic green sheet 1 is prepared by cutting it into a size required for a hybrid integrated circuit board. Next, on the green sheet 1, a conductive paste whose main component is a high melting point metal such as tungsten or molybdenum, that is, a metal with a melting point higher than the firing temperature of the ceramic green sheet 1 and a low electrical resistance, and the conductive paste are coated. A green sheet 1 having a partially exposed opening and an insulating paste made of the same ingredients are alternately printed by screen printing, and as shown in the figure, a high melting point metal conductor layer 2 made of conductive paste and an insulating paste are printed. An insulating layer 3 is formed. Note that the number of layers of the high melting point metal conductor layer 2 and the insulating layer 3 is not limited, and may be determined according to the purpose. Then, the ceramic green sheet 1 on which the paste forming the high melting point metal conductor layer 2 and the insulating layer 3 is printed is fired in a reducing atmosphere. The firing conditions are determined by the components of the ceramic green sheet 1, and are 1400 to 1800°C and 5 to 180 minutes. Next, a paste layer 4 mainly composed of noble metal and glass is formed by printing on the high melting point metal conductor layer 2 exposed in the exposed opening portion 2a, and a thick film conductor paste layer for forming a thick film element is further applied thereon. 5 is formed by printing and then fired in an oxidizing atmosphere to obtain a ceramic multilayer wiring board of the present invention. In addition, as a component of the conductive paste whose main components are noble metals and glass, glass melts and coats the high melting point metal to completely block it from the outside air before the high melting point metal oxidizes and impairs conductivity. It is necessary that the oxygen constituting the oxide in the glass component is a component that does not severely oxidize the high melting point metal, and the precious metal has a small amount of solid solution of oxygen and has oxygen blocking properties. , it is necessary to contain a sufficient amount for conductivity. Further, as for the components of the glass paste, it is preferable that the glass paste be melted before the exposed conductor is significantly oxidized, although it depends on the firing temperature and the material of the exposed conductor. W, Mo
If there are many metal oxides with weaker oxygen bonding strength than other metal oxides, these components will supply oxygen to W, Mo, etc. and oxidize the conductor, so PbO, Bi 2 O 3 , etc. should be less than 20 mol%. is preferred. Furthermore, the firing conditions in an oxidizing atmosphere depend on the type of conductive paste constituting the oxidation-resistant conductor protective layer and the element forming paste connected thereto.
A temperature of 750 to 850°C for 5 to 20 minutes is appropriate. in this case,
The melting point of the glass in the conductive paste is preferably 700°C or lower. Furthermore, passive elements such as resistors are formed on the thick film conductor layer, and other circuit components are soldered or wire bonded to form an integrated circuit. Because the above-mentioned structure is adopted, even if the thick film conductor paste layer 5 is fired at, for example, 850°C in an oxidizing atmosphere, the glass will melt and oxygen will infiltrate into the substrate before the exposed part of the conductor is significantly oxidized. Since the metal component also has sufficient oxygen barrier properties, it is possible to protect the exposed conductor layer while maintaining conductivity. Example: As a ceramic component, 90% by weight of alumina, additives such as silica and magnesia, and an organic binder such as polyvinyl butyral are mixed,
A ceramic green sheet 1 with a thickness of 0.8 mm was prepared by the doctor blade method. Next, a conductive paste consisting of a metallization component consisting of tungsten powder with ethyl cellulose added as a printing aid, and an insulating paste made of powder of the same composition as the green sheet with ethyl cellulose added as a printing aid, are applied onto the green sheet. A laminate in which a high melting point metal conductor layer 2 and an insulating layer 3 were formed was obtained by printing alternately with a portion of the layer exposed. Next, the laminate was heated at a heating rate of 300°C/hour in a mixed atmosphere of hydrogen and nitrogen with a dew point of 35°C, and then held at 1550°C for 2 hours to sinter, and then the cooling rate was increased.
It was cooled at 600°C/hour to obtain a multilayer wiring board. Next, a conductive paste prepared by adding ethyl cellulose as a printing aid to a mixture of low-melting point glass and noble metal in the proportions shown in Tables 1 and 2 was printed over the high-melting point metal conductor layer 2 in the exposed opening portion 2a. ,
Further, a thick film conductor paste was printed on the paste and then baked at 800°C for 10 minutes in an oxidizing atmosphere to obtain a ceramic multilayer wiring board of the present invention. In addition, a comparative example with a volume ratio of noble metal and glass outside the range of the present invention was prepared, and the appearance of stains, initial resistance, and refiring change rate were measured in the same manner as the inventive example. I made a judgment. These results are shown in Table 1, in which ○ represents a good product and × represents a defective product. In addition, Table 2 shows the components of noble metal and glass of each sample and the melting point of glass.

【表】【table】

【表】 第1表および第2表から明らかなように、低融
点ガラスと貴金属の比率が本発明の範囲内の試料
は高融点金属導体層の酸化による外観上のシミや
抵抗値の劣化がなくまた再焼成変化率も少ないた
め、十分な性能のセラミツク多層配線基板を得る
ことができた。これに対して本発明の範囲外の比
較例では外観上のシミや抵抗値の劣化が生じ、十
分な性能のセラミツク多層配線基板を得ることが
できなかつた。 本発明は上述した実施例にのみ限定されるもの
ではなく、幾多の変形、変更が可能である。例え
ば上述した実施例では、開口露出部2aの露出導
体層2上に直接貴金属と低融点ガラスの耐酸化性
導体保護層を設けたが、開口露出部2aの露出導
体層2上に例えばニツケル等の鉄属めつき層を設
け、その後該めつき上に本発明の耐酸化性導体保
護層を設けても良い。 (発明の効果) 以上詳細に説明したところから明らかなよう
に、本発明のセラミツク多層配線基板の製造法に
よれば、従来行われていた耐酸化性導体保護層形
成のための還元雰囲気下での焼成が不要となり、
耐酸化性導体保護層と厚膜導体層とを1回の酸化
焼成で形成できるため、作業工程を減少して作業
能率を高めることができる。また、露出導体層が
酸化され導電性を損なう前にガラスが溶融し酸素
を遮断しかつ貴金属成分も酸素を遮断するので、
例えば750℃〜850℃の高い温度で厚膜導体形成用
ペーストを焼成でき、多種の厚膜ペーストの適用
が可能となる。
[Table] As is clear from Tables 1 and 2, samples in which the ratio of low melting point glass to precious metal is within the range of the present invention do not suffer from visible stains or deterioration in resistance value due to oxidation of the high melting point metal conductor layer. Moreover, since the re-firing change rate was also small, a ceramic multilayer wiring board with sufficient performance could be obtained. On the other hand, in comparative examples outside the scope of the present invention, stains on the appearance and deterioration of the resistance value occurred, and it was not possible to obtain a ceramic multilayer wiring board with sufficient performance. The present invention is not limited only to the embodiments described above, and numerous modifications and changes are possible. For example, in the above-mentioned embodiment, an oxidation-resistant conductor protective layer made of noble metal and low melting point glass was provided directly on the exposed conductor layer 2 of the exposed opening portion 2a. An iron metal plating layer may be provided, and then the oxidation-resistant conductor protective layer of the present invention may be provided on the plating. (Effects of the Invention) As is clear from the detailed explanation above, according to the method for manufacturing a ceramic multilayer wiring board of the present invention, the process for forming an oxidation-resistant conductor protective layer, which has been conventionally performed, can be performed in a reducing atmosphere. No need to bake
Since the oxidation-resistant conductor protective layer and the thick film conductor layer can be formed by one oxidation firing, the number of work steps can be reduced and work efficiency can be increased. In addition, the glass melts and blocks oxygen before the exposed conductor layer is oxidized and loses its conductivity, and the precious metal components also block oxygen.
For example, the thick film conductor forming paste can be fired at a high temperature of 750°C to 850°C, making it possible to apply a wide variety of thick film pastes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造法によるセラミツク多層
配線基板の一実施例の要部断面図、第2図は従来
のセラミツク多層配線基板の要部断面図である。 1……セラミツクグリーンシート、2……高融
点金属導体層、3……絶縁層、4……導電性ペー
スト層、5……厚膜導体ペースト層。
FIG. 1 is a sectional view of a main part of an embodiment of a ceramic multilayer wiring board produced by the manufacturing method of the present invention, and FIG. 2 is a sectional view of a main part of a conventional ceramic multilayer wiring board. DESCRIPTION OF SYMBOLS 1... Ceramic green sheet, 2... High melting point metal conductor layer, 3... Insulating layer, 4... Conductive paste layer, 5... Thick film conductor paste layer.

Claims (1)

【特許請求の範囲】 1 絶縁層と高融点金属導体層とを複数層交互に
重ね合わせた多層配線基板の露出導体層上に厚膜
素子形成用導体ペーストを配置接続して焼成する
セラミツク多層配線基板の製造法において、 前記露出導体層上にPb、Biの酸化物の少なく
とも1種以上を合計で20モル%以下を含有する低
融点ガラスとAg、Pdより成る貴金属との比率が
体積比で33/67〜67/33の混合物よりなる導電性
ペーストを配置し、さらにその上に厚膜素子形成
用ペーストを配置接続して、その後酸化性雰囲気
中で焼成することを特徴とするセラミツク多層配
線基板の製造法。 2 前記導電性ペーストの配置に先立つて、前記
露出導体層上に鉄属めつきを施す特許請求の範囲
第1項記載のセラミツク多層配線基板の製造法。 3 前記導電性ペーストの配置に先立つて、前記
露出導体層上に鉄属めつきを施す特許請求の範囲
第1項記載のセラミツク多層配線基板の製造法。 4 前記低融点ガラスが、PbOを20モル%以下含
有するものである特許請求の範囲第1項記載のセ
ラミツク多層配線基板の製造法。
[Claims] 1. A ceramic multilayer wiring in which a conductor paste for forming a thick film element is placed and connected on the exposed conductor layer of a multilayer wiring board in which a plurality of insulating layers and high melting point metal conductor layers are alternately stacked and then fired. In the manufacturing method of the substrate, the ratio of the low melting point glass containing at least 20 mol% or less of at least one of Pb and Bi oxides in total to the noble metal consisting of Ag and Pd on the exposed conductor layer is determined by volume. A ceramic multilayer wiring characterized in that a conductive paste made of a mixture of 33/67 to 67/33 is disposed, a paste for forming a thick film element is further disposed and connected thereon, and then fired in an oxidizing atmosphere. Substrate manufacturing method. 2. The method of manufacturing a ceramic multilayer wiring board according to claim 1, wherein iron plating is applied to the exposed conductor layer prior to disposing the conductive paste. 3. The method of manufacturing a ceramic multilayer wiring board according to claim 1, wherein iron metal plating is applied on the exposed conductor layer prior to placing the conductive paste. 4. The method for manufacturing a ceramic multilayer wiring board according to claim 1, wherein the low melting point glass contains 20 mol% or less of PbO.
JP60011484A 1985-01-24 1985-01-24 Manufacture of ceramic multilayer interconnection circuit board Granted JPS61170094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60011484A JPS61170094A (en) 1985-01-24 1985-01-24 Manufacture of ceramic multilayer interconnection circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60011484A JPS61170094A (en) 1985-01-24 1985-01-24 Manufacture of ceramic multilayer interconnection circuit board

Publications (2)

Publication Number Publication Date
JPS61170094A JPS61170094A (en) 1986-07-31
JPH0213478B2 true JPH0213478B2 (en) 1990-04-04

Family

ID=11779323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60011484A Granted JPS61170094A (en) 1985-01-24 1985-01-24 Manufacture of ceramic multilayer interconnection circuit board

Country Status (1)

Country Link
JP (1) JPS61170094A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6782996B1 (en) 2019-07-08 2020-11-11 株式会社ワールドメタル Bonded base material and metal layer

Also Published As

Publication number Publication date
JPS61170094A (en) 1986-07-31

Similar Documents

Publication Publication Date Title
JP3237258B2 (en) Ceramic multilayer wiring board
KR100812077B1 (en) Electronic component and manufacturing method thereof
JPH0728128B2 (en) Ceramic multilayer wiring board and manufacturing method thereof
KR900004379B1 (en) Multilayer ceramic substrate and method of making the same
US5120473A (en) Metallizing composition for use with ceramics
JPH0213478B2 (en)
JPH0348415A (en) Paste composition and manufacture of laminated ceramic capacitor
JP2727651B2 (en) Ceramic substrate
JPS61275161A (en) Low temperature burnt multilayer ceramic substrate
JPH0213479B2 (en)
JPS6318356B2 (en)
JPS6318357B2 (en)
JP3197147B2 (en) Method for manufacturing multilayer ceramic substrate
JPS6253960B2 (en)
JPH0521935A (en) Circuit board
JPS63301405A (en) Manufacture of low temperature baking type conductive paste and circuit board
JPH0588557B2 (en)
JP2842710B2 (en) Circuit board
JPS6077187A (en) Ceramic electronic part and manufacture
JP2738603B2 (en) Circuit board
JPH0321109B2 (en)
JPH0253951B2 (en)
JPS63295491A (en) Metallizing composition
JPH0691319B2 (en) Method for manufacturing low temperature fired ceramics substrate
JPH11186001A (en) Resistance material and ceramic multilayered part using the same