JPS6318332B2 - - Google Patents
Info
- Publication number
- JPS6318332B2 JPS6318332B2 JP54080929A JP8092979A JPS6318332B2 JP S6318332 B2 JPS6318332 B2 JP S6318332B2 JP 54080929 A JP54080929 A JP 54080929A JP 8092979 A JP8092979 A JP 8092979A JP S6318332 B2 JPS6318332 B2 JP S6318332B2
- Authority
- JP
- Japan
- Prior art keywords
- molybdenum
- molybdenum film
- nitrogen gas
- film
- insulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052750 molybdenum Inorganic materials 0.000 claims description 28
- 239000011733 molybdenum Substances 0.000 claims description 28
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 27
- 238000005530 etching Methods 0.000 claims description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- GICWIDZXWJGTCI-UHFFFAOYSA-I molybdenum pentachloride Chemical compound Cl[Mo](Cl)(Cl)(Cl)Cl GICWIDZXWJGTCI-UHFFFAOYSA-I 0.000 claims description 4
- 238000001947 vapour-phase growth Methods 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 2
- 239000012212 insulator Substances 0.000 claims 4
- 239000000758 substrate Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 101000617723 Homo sapiens Pregnancy-specific beta-1-glycoprotein 8 Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 102100022018 Pregnancy-specific beta-1-glycoprotein 8 Human genes 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- ZXTFQUMXDQLMBY-UHFFFAOYSA-N alumane;molybdenum Chemical compound [AlH3].[Mo] ZXTFQUMXDQLMBY-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000002751 molybdenum Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical Vapour Deposition (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Description
【発明の詳細な説明】
本発明は半導体装置、特に集積回路の導電体と
して用いられるモリブデン膜の成長方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing molybdenum films used as conductors in semiconductor devices, particularly integrated circuits.
最近シリコンゲートMOSに代つてモリブデン
等の耐熱金属をゲートに使用したMOSが脚光を
浴びている。モリブデン膜は多結晶シリコンに比
較して電気抵抗が約100分の1になる利点が注目
されているのであるが、多結晶シリコンの場合抵
抗素子を形成するにはその多結晶シリコンをその
まま用いる事に依つて比較的小面積で所望の抵抗
値の素子が得られるのに対し、モリブデンの場合
はその電気抵抗が低いので高抵抗値の素子を小面
積で得る事は困難とされている。 Recently, MOSs using heat-resistant metals such as molybdenum for gates have been attracting attention as an alternative to silicon gate MOSs. Molybdenum films are attracting attention because they have an electrical resistance that is approximately 1/100 times lower than that of polycrystalline silicon, but in the case of polycrystalline silicon, the polycrystalline silicon can be used as is to form a resistance element. By using molybdenum, an element with a desired resistance value can be obtained in a relatively small area, whereas in the case of molybdenum, it is difficult to obtain an element with a high resistance value in a small area because its electrical resistance is low.
本発明はこのような難点に鑑みて為されたもの
であつて、高い電気抵抗値を示すモリブデン膜を
得る方法を提供するものである。以下の説明に於
てはNチヤンネル型のMOS構造の集積回路を例
に挙げるが、斯る構造に限る事なく、Pチヤンネ
ル型MOS、C−MOS、或いはバイポーラ型集積
回路にも適用し得る事は自明である。 The present invention has been made in view of these difficulties and provides a method for obtaining a molybdenum film exhibiting a high electrical resistance value. In the following explanation, an integrated circuit with an N-channel MOS structure will be used as an example, but the invention is not limited to this structure and can also be applied to P-channel MOS, C-MOS, or bipolar integrated circuits. is self-evident.
第1図は本発明の第1の工程を示し、1はP型
のシリコン基板で、該基板1に対して1〜1.5μの
厚みのフイールド酸化膜2を選択酸化法に依つて
成長させると共にMOSトランジスタを形成すべ
き箇所の活性領域にゲート酸化膜3を形成してい
る。 FIG. 1 shows the first step of the present invention, in which 1 is a P-type silicon substrate, on which a field oxide film 2 with a thickness of 1 to 1.5 μm is grown by selective oxidation. A gate oxide film 3 is formed in the active region where a MOS transistor is to be formed.
次に第2図に示す如く、高抵抗素子を形成すべ
きフイールド酸化膜2上に高比抵抗を示すモリブ
デン膜から成る抵抗体4を形成する。この抵抗体
4の形成方法に本発明の主たる特徴がある。即ち
一般にモリブデンの気相成長法は五塩化モリブデ
ン(Mocl5)を水素ガスにて還元してモリブデン
膜を成長させるのであるが、この還元ガス中に数
%の窒素ガスを混入する事に依つてその成長モリ
ブデン膜の比抵抗は非常に高いものとなる。この
時の成長速度はシリコン基板1を約650℃に加熱
した状態では70〜120Å/1秒であつた。窒素ガ
スを混入しない通常の成長雰囲気に依つて成長し
た3000Åの厚みのモリブデン膜の比抵抗は0.2
Ω/□程度であるが、窒素ガスを数%混入する事
に依つて比抵抗は数KΩ/□と成る。この比抵抗
が急激に増大する原因は一切不明であるが、窒素
ガスの混入の度合に依つてその抵抗値の制御があ
る程度可能である事が実験的に確かめられてい
る。またこのように窒素ガスを混入した還元ガス
中で成長したモリブデン膜のエツチングレイトが
窒素ガスの混入のないものに比して2桁程度遅い
事も見い出されている。即ちエツチヤントとして
燐酸と硝酸と酢酸との混酸を用いた場合、水素ガ
スのみでの成長モリブデン膜のエツチングレイト
は、約200Å/秒であるのに対し、窒素ガス混入
の場合は数Å/秒と成つてしまう。このエツチン
グレイトの変化のメカニズムに就いてもその原因
は現在のところ不明である。尚、第2図で示した
抵抗体4は基板1全面にモリブデン膜を成長させ
た後、必要箇所のみを残存させる選択エツチング
を施す事に依つて得られる。 Next, as shown in FIG. 2, a resistor 4 made of a molybdenum film exhibiting a high specific resistance is formed on the field oxide film 2 in which a high resistance element is to be formed. The main feature of the present invention lies in the method of forming this resistor 4. In general, the vapor phase growth method for molybdenum involves reducing molybdenum pentachloride (Mocl 5 ) with hydrogen gas to grow a molybdenum film. The specific resistance of the grown molybdenum film becomes extremely high. The growth rate at this time was 70 to 120 Å/second when the silicon substrate 1 was heated to about 650°C. The resistivity of a 3000 Å thick molybdenum film grown in a normal growth atmosphere without nitrogen gas is 0.2.
The resistivity is approximately Ω/□, but by mixing several percent nitrogen gas, the specific resistance becomes several KΩ/□. Although the cause of this rapid increase in specific resistance is not entirely clear, it has been experimentally confirmed that the resistance value can be controlled to some extent depending on the degree of nitrogen gas mixing. It has also been found that the etching rate of a molybdenum film grown in a reducing gas mixed with nitrogen gas is about two orders of magnitude slower than that of a film without nitrogen gas mixed in. That is, when a mixed acid of phosphoric acid, nitric acid, and acetic acid is used as an etchant, the etching rate of a molybdenum film grown with hydrogen gas alone is approximately 200 Å/sec, whereas when nitrogen gas is mixed, the etching rate is several Å/sec. It will become. The mechanism behind this change in etching rate is currently unknown. The resistor 4 shown in FIG. 2 can be obtained by growing a molybdenum film on the entire surface of the substrate 1 and then performing selective etching to leave only the necessary parts.
引き続いて第3図に示す如く、ゲート酸化膜3
上にモリブデンゲート5を、またフイールド酸化
膜2上にフイールド相互配線6を低抵抗のモリブ
デン膜に依つて形成する。この時成長させるモリ
ブデン膜は当然の事ながら窒素ガスを混入しない
水素ガスのみで還元したもので、先の場合と同様
に基板1全面に成長させた後、必要箇所のみを選
択的に残存させるエツチングに依つてゲート5並
びに配線6を得ている。尚、この選択エツチング
の際に先に形成した抵抗体(4)はエツチング雰囲気
に曝されるが、上述した如く、抵抗体4のエツチ
ングレイトがゲート5や配線6のそれに比して2
桁程度低いので、問題とはならない。 Subsequently, as shown in FIG.
A molybdenum gate 5 is formed thereon, and field interconnections 6 are formed on the field oxide film 2 using a low-resistance molybdenum film. The molybdenum film grown at this time is, of course, reduced using only hydrogen gas with no nitrogen gas mixed in. After growing on the entire surface of the substrate 1 as in the previous case, etching is performed to selectively leave only the necessary areas. The gate 5 and wiring 6 are obtained by this method. Incidentally, during this selective etching, the resistor (4) formed earlier is exposed to the etching atmosphere, but as mentioned above, the etching rate of the resistor 4 is 2 times higher than that of the gate 5 and the wiring 6.
It's an order of magnitude lower, so it's not a problem.
最後に第4図に示す如く、N型のソース、ドレ
イン7,7用の拡散源とモリブデン−アルミニウ
ム相互二重配線の層間絶縁膜を兼用したPSG8
を被着した後、加熱拡散し、然る後このPSG8
にスルーホールを穿つて上層アルミニウム配線9
…を形成してNチヤンネルMOS集積回路を完成
する。 Finally, as shown in Figure 4, PSG 8 serves as a diffusion source for N-type sources and drains 7, 7, and as an interlayer insulating film for molybdenum-aluminum mutual double wiring.
After applying PSG8, it is heated and diffused, and then this PSG8
Drill a through hole in the upper layer aluminum wiring 9
... to complete an N-channel MOS integrated circuit.
本発明は以上の説明から明らかな如く、五塩化
モリブデンの水素ガスに依る還元に際して該水素
ガス中に数%の窒素ガスを混入しているので、成
長モリブデン膜の比抵抗が非常に高いものとな
り、集積回路に必要とする内部抵抗素子を容易
に、しかも少面積で得る事が出来、極めて有効で
ある。また、このモリブデン膜はエツチングレイ
トが遅いので、このモリブデン膜からなる抵抗体
に続いて窒素ガスを混入させない気相成長及びエ
ツチングにて別のモリブデン膜からなる導電体を
形成するに際し、抵抗体までもがさらにエツチン
グされてしまうことを防止し得る。従つて抵抗体
に抵抗値の変化が生ずる恐れはない。 As is clear from the above description, in the present invention, when molybdenum pentachloride is reduced with hydrogen gas, several percent of nitrogen gas is mixed into the hydrogen gas, so the specific resistance of the grown molybdenum film is extremely high. , the internal resistance elements required for integrated circuits can be easily obtained in a small area, and are extremely effective. In addition, since this molybdenum film has a slow etching rate, when forming a conductor made of another molybdenum film by vapor phase growth and etching without mixing nitrogen gas, it is difficult to reach the resistor. Further etching can be prevented. Therefore, there is no possibility that the resistance value of the resistor will change.
第1図乃至第4図は本発明方法を利用した
MOS集積回路の製法を工程順に示した断面図で
あつて、4は抵抗体、5はモリブデンゲート、6
はフイールド相互配線、を夫々示している。
Figures 1 to 4 show the results obtained using the method of the present invention.
It is a cross-sectional view showing the manufacturing method of a MOS integrated circuit in the order of steps, in which 4 is a resistor, 5 is a molybdenum gate, and 6 is a
indicate field interconnections, respectively.
Claims (1)
膜の成長方法に於て、 五塩化モリブデンを水素ガスを用いて還元する
に際し、該水素ガスに数%の窒素ガスを混入させ
る気相成長法に依つて、窒素ガスを混入させない
場合と比べて高比抵抗且つ遅いエツチングレイト
特性を有する第1のモリブデン膜を得、該第1の
モリブデン膜をエツチングして絶縁体上に特定形
状の抵抗体を形成し、 次いで、五塩化モリブデンを窒素ガスの混入の
ない水素ガスを用いて還元する気相成長法に依つ
て、絶縁体及び上記第1のモリブデン上に第2の
モリブデン膜を得、該第2のモリブデン膜をエツ
チングすることにより遅いエツチングレイト特性
を有するモリブデンからなる上記抵抗体を残存せ
しめて絶縁体上に所望形状の導電体を形成する事
を特徴としたモリブデン膜の成長方法。[Claims] 1. In a method for growing a molybdenum film formed on an insulator of a semiconductor device, when molybdenum pentachloride is reduced using hydrogen gas, several percent of nitrogen gas is mixed into the hydrogen gas. A first molybdenum film having high specific resistance and slow etching rate characteristics compared to the case where nitrogen gas is not mixed is obtained by a vapor phase growth method, and the first molybdenum film is etched to specify the etching rate on the insulator. A second molybdenum film is formed on the insulator and the first molybdenum by a vapor phase growth method in which molybdenum pentachloride is reduced using hydrogen gas without mixing with nitrogen gas. and etching the second molybdenum film to leave the resistor made of molybdenum having a slow etching rate characteristic to form a conductor of a desired shape on the insulator. How to grow.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8092979A JPS566433A (en) | 1979-06-26 | 1979-06-26 | Growth of molybdenum film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8092979A JPS566433A (en) | 1979-06-26 | 1979-06-26 | Growth of molybdenum film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS566433A JPS566433A (en) | 1981-01-23 |
JPS6318332B2 true JPS6318332B2 (en) | 1988-04-18 |
Family
ID=13732120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8092979A Granted JPS566433A (en) | 1979-06-26 | 1979-06-26 | Growth of molybdenum film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS566433A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS517156A (en) * | 1974-06-10 | 1976-01-21 | Gen Foods Corp |
-
1979
- 1979-06-26 JP JP8092979A patent/JPS566433A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS517156A (en) * | 1974-06-10 | 1976-01-21 | Gen Foods Corp |
Also Published As
Publication number | Publication date |
---|---|
JPS566433A (en) | 1981-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH088224B2 (en) | Method of forming contact and internal connection line of integrated circuit | |
JPS6173370A (en) | Semiconductor device and method of producing same | |
JPH0456325A (en) | Manufacture of semiconductor device | |
US4816425A (en) | Polycide process for integrated circuits | |
JPH0750276A (en) | Method for manufacture of low-resistance contact in junction between regions of different conductivity types | |
JPS61134055A (en) | Manufacture of semiconductor device | |
JPS6213819B2 (en) | ||
JPS6252963A (en) | Manufacture of bipolar transistor | |
US5212150A (en) | Oxide superconducting lead for interconnecting device component with a semiconductor substrate via at least one buffer layer | |
JPS6318332B2 (en) | ||
JPS5852843A (en) | Manufacture of semiconductor integrated circuit device | |
JPS59197162A (en) | Semiconductor device | |
JP3156001B2 (en) | Method for manufacturing semiconductor device | |
JPS59161060A (en) | Method of producing semiconductor device | |
US5227361A (en) | Oxide superconducting lead for interconnecting device component with a semiconductor substrate via at least one buffer layer | |
JPH0756866B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JPS6376424A (en) | Manufacture of semiconductor device | |
JPS6134255B2 (en) | ||
JPS6157709B2 (en) | ||
JP2822382B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS60216579A (en) | Manufacture of semiconductor device | |
JPH0222544B2 (en) | ||
JPS607126A (en) | Manufacture of semiconductor device | |
JPS5826177B2 (en) | Manufacturing method of semiconductor device | |
JPS6115589B2 (en) |