JPS6318332B2 - - Google Patents

Info

Publication number
JPS6318332B2
JPS6318332B2 JP54080929A JP8092979A JPS6318332B2 JP S6318332 B2 JPS6318332 B2 JP S6318332B2 JP 54080929 A JP54080929 A JP 54080929A JP 8092979 A JP8092979 A JP 8092979A JP S6318332 B2 JPS6318332 B2 JP S6318332B2
Authority
JP
Japan
Prior art keywords
molybdenum
molybdenum film
nitrogen gas
film
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54080929A
Other languages
Japanese (ja)
Other versions
JPS566433A (en
Inventor
Atsumasa Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8092979A priority Critical patent/JPS566433A/en
Publication of JPS566433A publication Critical patent/JPS566433A/en
Publication of JPS6318332B2 publication Critical patent/JPS6318332B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置、特に集積回路の導電体と
して用いられるモリブデン膜の成長方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing molybdenum films used as conductors in semiconductor devices, particularly integrated circuits.

最近シリコンゲートMOSに代つてモリブデン
等の耐熱金属をゲートに使用したMOSが脚光を
浴びている。モリブデン膜は多結晶シリコンに比
較して電気抵抗が約100分の1になる利点が注目
されているのであるが、多結晶シリコンの場合抵
抗素子を形成するにはその多結晶シリコンをその
まま用いる事に依つて比較的小面積で所望の抵抗
値の素子が得られるのに対し、モリブデンの場合
はその電気抵抗が低いので高抵抗値の素子を小面
積で得る事は困難とされている。
Recently, MOSs using heat-resistant metals such as molybdenum for gates have been attracting attention as an alternative to silicon gate MOSs. Molybdenum films are attracting attention because they have an electrical resistance that is approximately 1/100 times lower than that of polycrystalline silicon, but in the case of polycrystalline silicon, the polycrystalline silicon can be used as is to form a resistance element. By using molybdenum, an element with a desired resistance value can be obtained in a relatively small area, whereas in the case of molybdenum, it is difficult to obtain an element with a high resistance value in a small area because its electrical resistance is low.

本発明はこのような難点に鑑みて為されたもの
であつて、高い電気抵抗値を示すモリブデン膜を
得る方法を提供するものである。以下の説明に於
てはNチヤンネル型のMOS構造の集積回路を例
に挙げるが、斯る構造に限る事なく、Pチヤンネ
ル型MOS、C−MOS、或いはバイポーラ型集積
回路にも適用し得る事は自明である。
The present invention has been made in view of these difficulties and provides a method for obtaining a molybdenum film exhibiting a high electrical resistance value. In the following explanation, an integrated circuit with an N-channel MOS structure will be used as an example, but the invention is not limited to this structure and can also be applied to P-channel MOS, C-MOS, or bipolar integrated circuits. is self-evident.

第1図は本発明の第1の工程を示し、1はP型
のシリコン基板で、該基板1に対して1〜1.5μの
厚みのフイールド酸化膜2を選択酸化法に依つて
成長させると共にMOSトランジスタを形成すべ
き箇所の活性領域にゲート酸化膜3を形成してい
る。
FIG. 1 shows the first step of the present invention, in which 1 is a P-type silicon substrate, on which a field oxide film 2 with a thickness of 1 to 1.5 μm is grown by selective oxidation. A gate oxide film 3 is formed in the active region where a MOS transistor is to be formed.

次に第2図に示す如く、高抵抗素子を形成すべ
きフイールド酸化膜2上に高比抵抗を示すモリブ
デン膜から成る抵抗体4を形成する。この抵抗体
4の形成方法に本発明の主たる特徴がある。即ち
一般にモリブデンの気相成長法は五塩化モリブデ
ン(Mocl5)を水素ガスにて還元してモリブデン
膜を成長させるのであるが、この還元ガス中に数
%の窒素ガスを混入する事に依つてその成長モリ
ブデン膜の比抵抗は非常に高いものとなる。この
時の成長速度はシリコン基板1を約650℃に加熱
した状態では70〜120Å/1秒であつた。窒素ガ
スを混入しない通常の成長雰囲気に依つて成長し
た3000Åの厚みのモリブデン膜の比抵抗は0.2
Ω/□程度であるが、窒素ガスを数%混入する事
に依つて比抵抗は数KΩ/□と成る。この比抵抗
が急激に増大する原因は一切不明であるが、窒素
ガスの混入の度合に依つてその抵抗値の制御があ
る程度可能である事が実験的に確かめられてい
る。またこのように窒素ガスを混入した還元ガス
中で成長したモリブデン膜のエツチングレイトが
窒素ガスの混入のないものに比して2桁程度遅い
事も見い出されている。即ちエツチヤントとして
燐酸と硝酸と酢酸との混酸を用いた場合、水素ガ
スのみでの成長モリブデン膜のエツチングレイト
は、約200Å/秒であるのに対し、窒素ガス混入
の場合は数Å/秒と成つてしまう。このエツチン
グレイトの変化のメカニズムに就いてもその原因
は現在のところ不明である。尚、第2図で示した
抵抗体4は基板1全面にモリブデン膜を成長させ
た後、必要箇所のみを残存させる選択エツチング
を施す事に依つて得られる。
Next, as shown in FIG. 2, a resistor 4 made of a molybdenum film exhibiting a high specific resistance is formed on the field oxide film 2 in which a high resistance element is to be formed. The main feature of the present invention lies in the method of forming this resistor 4. In general, the vapor phase growth method for molybdenum involves reducing molybdenum pentachloride (Mocl 5 ) with hydrogen gas to grow a molybdenum film. The specific resistance of the grown molybdenum film becomes extremely high. The growth rate at this time was 70 to 120 Å/second when the silicon substrate 1 was heated to about 650°C. The resistivity of a 3000 Å thick molybdenum film grown in a normal growth atmosphere without nitrogen gas is 0.2.
The resistivity is approximately Ω/□, but by mixing several percent nitrogen gas, the specific resistance becomes several KΩ/□. Although the cause of this rapid increase in specific resistance is not entirely clear, it has been experimentally confirmed that the resistance value can be controlled to some extent depending on the degree of nitrogen gas mixing. It has also been found that the etching rate of a molybdenum film grown in a reducing gas mixed with nitrogen gas is about two orders of magnitude slower than that of a film without nitrogen gas mixed in. That is, when a mixed acid of phosphoric acid, nitric acid, and acetic acid is used as an etchant, the etching rate of a molybdenum film grown with hydrogen gas alone is approximately 200 Å/sec, whereas when nitrogen gas is mixed, the etching rate is several Å/sec. It will become. The mechanism behind this change in etching rate is currently unknown. The resistor 4 shown in FIG. 2 can be obtained by growing a molybdenum film on the entire surface of the substrate 1 and then performing selective etching to leave only the necessary parts.

引き続いて第3図に示す如く、ゲート酸化膜3
上にモリブデンゲート5を、またフイールド酸化
膜2上にフイールド相互配線6を低抵抗のモリブ
デン膜に依つて形成する。この時成長させるモリ
ブデン膜は当然の事ながら窒素ガスを混入しない
水素ガスのみで還元したもので、先の場合と同様
に基板1全面に成長させた後、必要箇所のみを選
択的に残存させるエツチングに依つてゲート5並
びに配線6を得ている。尚、この選択エツチング
の際に先に形成した抵抗体(4)はエツチング雰囲気
に曝されるが、上述した如く、抵抗体4のエツチ
ングレイトがゲート5や配線6のそれに比して2
桁程度低いので、問題とはならない。
Subsequently, as shown in FIG.
A molybdenum gate 5 is formed thereon, and field interconnections 6 are formed on the field oxide film 2 using a low-resistance molybdenum film. The molybdenum film grown at this time is, of course, reduced using only hydrogen gas with no nitrogen gas mixed in. After growing on the entire surface of the substrate 1 as in the previous case, etching is performed to selectively leave only the necessary areas. The gate 5 and wiring 6 are obtained by this method. Incidentally, during this selective etching, the resistor (4) formed earlier is exposed to the etching atmosphere, but as mentioned above, the etching rate of the resistor 4 is 2 times higher than that of the gate 5 and the wiring 6.
It's an order of magnitude lower, so it's not a problem.

最後に第4図に示す如く、N型のソース、ドレ
イン7,7用の拡散源とモリブデン−アルミニウ
ム相互二重配線の層間絶縁膜を兼用したPSG8
を被着した後、加熱拡散し、然る後このPSG8
にスルーホールを穿つて上層アルミニウム配線9
…を形成してNチヤンネルMOS集積回路を完成
する。
Finally, as shown in Figure 4, PSG 8 serves as a diffusion source for N-type sources and drains 7, 7, and as an interlayer insulating film for molybdenum-aluminum mutual double wiring.
After applying PSG8, it is heated and diffused, and then this PSG8
Drill a through hole in the upper layer aluminum wiring 9
... to complete an N-channel MOS integrated circuit.

本発明は以上の説明から明らかな如く、五塩化
モリブデンの水素ガスに依る還元に際して該水素
ガス中に数%の窒素ガスを混入しているので、成
長モリブデン膜の比抵抗が非常に高いものとな
り、集積回路に必要とする内部抵抗素子を容易
に、しかも少面積で得る事が出来、極めて有効で
ある。また、このモリブデン膜はエツチングレイ
トが遅いので、このモリブデン膜からなる抵抗体
に続いて窒素ガスを混入させない気相成長及びエ
ツチングにて別のモリブデン膜からなる導電体を
形成するに際し、抵抗体までもがさらにエツチン
グされてしまうことを防止し得る。従つて抵抗体
に抵抗値の変化が生ずる恐れはない。
As is clear from the above description, in the present invention, when molybdenum pentachloride is reduced with hydrogen gas, several percent of nitrogen gas is mixed into the hydrogen gas, so the specific resistance of the grown molybdenum film is extremely high. , the internal resistance elements required for integrated circuits can be easily obtained in a small area, and are extremely effective. In addition, since this molybdenum film has a slow etching rate, when forming a conductor made of another molybdenum film by vapor phase growth and etching without mixing nitrogen gas, it is difficult to reach the resistor. Further etching can be prevented. Therefore, there is no possibility that the resistance value of the resistor will change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明方法を利用した
MOS集積回路の製法を工程順に示した断面図で
あつて、4は抵抗体、5はモリブデンゲート、6
はフイールド相互配線、を夫々示している。
Figures 1 to 4 show the results obtained using the method of the present invention.
It is a cross-sectional view showing the manufacturing method of a MOS integrated circuit in the order of steps, in which 4 is a resistor, 5 is a molybdenum gate, and 6 is a
indicate field interconnections, respectively.

Claims (1)

【特許請求の範囲】 1 半導体装置の絶縁体上に形成するモリブデン
膜の成長方法に於て、 五塩化モリブデンを水素ガスを用いて還元する
に際し、該水素ガスに数%の窒素ガスを混入させ
る気相成長法に依つて、窒素ガスを混入させない
場合と比べて高比抵抗且つ遅いエツチングレイト
特性を有する第1のモリブデン膜を得、該第1の
モリブデン膜をエツチングして絶縁体上に特定形
状の抵抗体を形成し、 次いで、五塩化モリブデンを窒素ガスの混入の
ない水素ガスを用いて還元する気相成長法に依つ
て、絶縁体及び上記第1のモリブデン上に第2の
モリブデン膜を得、該第2のモリブデン膜をエツ
チングすることにより遅いエツチングレイト特性
を有するモリブデンからなる上記抵抗体を残存せ
しめて絶縁体上に所望形状の導電体を形成する事
を特徴としたモリブデン膜の成長方法。
[Claims] 1. In a method for growing a molybdenum film formed on an insulator of a semiconductor device, when molybdenum pentachloride is reduced using hydrogen gas, several percent of nitrogen gas is mixed into the hydrogen gas. A first molybdenum film having high specific resistance and slow etching rate characteristics compared to the case where nitrogen gas is not mixed is obtained by a vapor phase growth method, and the first molybdenum film is etched to specify the etching rate on the insulator. A second molybdenum film is formed on the insulator and the first molybdenum by a vapor phase growth method in which molybdenum pentachloride is reduced using hydrogen gas without mixing with nitrogen gas. and etching the second molybdenum film to leave the resistor made of molybdenum having a slow etching rate characteristic to form a conductor of a desired shape on the insulator. How to grow.
JP8092979A 1979-06-26 1979-06-26 Growth of molybdenum film Granted JPS566433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8092979A JPS566433A (en) 1979-06-26 1979-06-26 Growth of molybdenum film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8092979A JPS566433A (en) 1979-06-26 1979-06-26 Growth of molybdenum film

Publications (2)

Publication Number Publication Date
JPS566433A JPS566433A (en) 1981-01-23
JPS6318332B2 true JPS6318332B2 (en) 1988-04-18

Family

ID=13732120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8092979A Granted JPS566433A (en) 1979-06-26 1979-06-26 Growth of molybdenum film

Country Status (1)

Country Link
JP (1) JPS566433A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517156A (en) * 1974-06-10 1976-01-21 Gen Foods Corp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517156A (en) * 1974-06-10 1976-01-21 Gen Foods Corp

Also Published As

Publication number Publication date
JPS566433A (en) 1981-01-23

Similar Documents

Publication Publication Date Title
JPH088224B2 (en) Method of forming contact and internal connection line of integrated circuit
JPS6173370A (en) Semiconductor device and method of producing same
JPH0456325A (en) Manufacture of semiconductor device
US4816425A (en) Polycide process for integrated circuits
JPH0750276A (en) Method for manufacture of low-resistance contact in junction between regions of different conductivity types
JPS61134055A (en) Manufacture of semiconductor device
JPS6213819B2 (en)
JPS6252963A (en) Manufacture of bipolar transistor
US5212150A (en) Oxide superconducting lead for interconnecting device component with a semiconductor substrate via at least one buffer layer
JPS6318332B2 (en)
JPS5852843A (en) Manufacture of semiconductor integrated circuit device
JPS59197162A (en) Semiconductor device
JP3156001B2 (en) Method for manufacturing semiconductor device
JPS59161060A (en) Method of producing semiconductor device
US5227361A (en) Oxide superconducting lead for interconnecting device component with a semiconductor substrate via at least one buffer layer
JPH0756866B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS6376424A (en) Manufacture of semiconductor device
JPS6134255B2 (en)
JPS6157709B2 (en)
JP2822382B2 (en) Semiconductor device and manufacturing method thereof
JPS60216579A (en) Manufacture of semiconductor device
JPH0222544B2 (en)
JPS607126A (en) Manufacture of semiconductor device
JPS5826177B2 (en) Manufacturing method of semiconductor device
JPS6115589B2 (en)