JPS63181473A - Thin-film transistor - Google Patents

Thin-film transistor

Info

Publication number
JPS63181473A
JPS63181473A JP1378687A JP1378687A JPS63181473A JP S63181473 A JPS63181473 A JP S63181473A JP 1378687 A JP1378687 A JP 1378687A JP 1378687 A JP1378687 A JP 1378687A JP S63181473 A JPS63181473 A JP S63181473A
Authority
JP
Japan
Prior art keywords
amorphous silicon
active layer
silicon carbide
film transistor
xcx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1378687A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ukai
育弘 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosiden Electronics Co Ltd
Original Assignee
Hosiden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosiden Electronics Co Ltd filed Critical Hosiden Electronics Co Ltd
Priority to JP1378687A priority Critical patent/JPS63181473A/en
Priority to US07/145,949 priority patent/US4849797A/en
Priority to DE88100845T priority patent/DE3881066T2/en
Priority to AT88100845T priority patent/ATE89686T1/en
Priority to EP88100845A priority patent/EP0276002B1/en
Priority to EP19910121805 priority patent/EP0484987A3/en
Publication of JPS63181473A publication Critical patent/JPS63181473A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the mobility of a field effect by a method wherein an active layer at a thin-film transistor to be used for an active liquid-display device is constituted by a heterojunction superlattice. CONSTITUTION:As an active layer 21 at a thin-film transistor which is applied to a top-gate type stagger structure, hydrogenated amorphous silicon carbide a-Si1-xCx (where x<0.5) is used for a well layer and another hydrogenated amorphous silicon carbide a-Si1-xCx (where x> 0.5) is used for a barrier layer; a multilayer laminate is constituted by laminating the two alternately. The active layer 21 is formed by a glow discharge method using silane gas SiH4 and acetylene gas C2H2. If amorphous silicon carbide a-Si1-xCx (where x > 0.5) is used for a gate insulating film 22, it is possible to form the gate insulating film 22 in succession after the formation of the active layer 21. If the amount x of carbon for amorphous silicon carbide a-Si1-xCx is more than 0.5, the conductivity in relation to the amount of carbon for amorphous silicon carbide is reduced remarkably. The mobility due to the electrical conduction of false two-dimensional carriers is increased by a quantum effect, and a big current drive force is obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は例えば薄膜トランジスタをスイッチ素子とし
て用いるアクティブ液晶表示素子に用いられる薄膜トラ
ンジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a thin film transistor used, for example, in an active liquid crystal display device using a thin film transistor as a switching element.

「従来の技術」 従来のこの種の薄膜トランジスタは、例えば第6図に示
すように、ガラスのような透明基板11上に、互に分離
されてドレイン電極1)及びソース電極13が形成され
、こn7らrレイン電極1)及びソース電極13間にわ
たって例えば水素化アモルファスシリコンa−8i:H
の活性層14 カ基板11上に形成され、その活性層1
4上に窒化シリコンS iNxなどのゲート絶縁膜15
が形成され、そのゲート絶縁膜15上にゲート電極16
が形成さしていた。
``Prior Art'' In a conventional thin film transistor of this type, for example, as shown in FIG. 6, a drain electrode 1) and a source electrode 13 are formed on a transparent substrate 11 such as glass and separated from each other. For example, hydrogenated amorphous silicon a-8i:H is applied between the n7 and r rain electrodes 1) and the source electrodes 13.
The active layer 14 is formed on the substrate 11, and the active layer 14 is formed on the substrate 11.
4, a gate insulating film 15 such as silicon nitride SiNx is formed.
is formed, and a gate electrode 16 is formed on the gate insulating film 15.
was forming.

このように従来においτは活性層14としてa−3i 
: Hを用いているため電界移動度が小さいため電流駆
動能力が低い。このため例えばアクテイブ液晶表示素子
における画素電極に対するスイッチ素子として用いた場
合にその動作速度を十分速くすることができず、またア
クティブ液晶表示素子の周辺駆動回路を、薄膜トランジ
スタを用いて実現することは困難であった。
In this way, conventionally τ is a-3i as the active layer 14.
: Since H is used, the electric field mobility is small, so the current driving ability is low. For this reason, for example, when used as a switch element for a pixel electrode in an active liquid crystal display element, the operating speed cannot be made sufficiently high, and it is difficult to realize a peripheral drive circuit for an active liquid crystal display element using thin film transistors. Met.

この発明の目的は電界効果移動度の大きい薄膜トランジ
スタを提供することにある。
An object of the invention is to provide a thin film transistor with high field effect mobility.

「問題点を解決するための手段」 この発明によれば薄膜トランジスタの活性層はへテロ接
合超格子構造とされる。つまシ、この第1発明によれば
水素化炭化アモルファスシリコンa −S+ 1−xC
x :H(x(0,5)の井戸層と、水素化炭化アモル
ファスシリコンa −Si 1−xCx: H(x)0
.5 )のバリヤ層とが交互に多層積層されて構成され
る。
"Means for Solving the Problems" According to the present invention, the active layer of a thin film transistor has a heterojunction superlattice structure. According to the first invention, hydrogenated amorphous silicon a -S+ 1-xC
x :H(x(0,5) well layer and hydrogenated amorphous silicon carbide a-Si 1-xCx: H(x)0
.. 5) and the barrier layer are alternately laminated in multiple layers.

この第2発明によれば、水素化アモルファスシリコンa
−8i:Hの井戸層と、水素化炭化アモルファスシリコ
ンa −S 11−1 Cz : Hのバリヤ層トカ多
層積層されてなる。
According to this second invention, hydrogenated amorphous silicon a
-8i:H well layer and hydrogenated amorphous silicon carbide a-S11-1Cz:H barrier layer are laminated in multiple layers.

このようにこの発明による薄膜トランジスタは活性層か
へテロ接合超格子構造となっているため、量子効果によ
る疑似二次元キャリヤの電気伝導による移動度が増大し
、大きな電流駆動能力が得られる。
As described above, since the thin film transistor according to the present invention has a heterojunction superlattice structure in the active layer, the mobility due to electric conduction of pseudo two-dimensional carriers due to quantum effects increases, and a large current driving ability is obtained.

「実施例」 第1図はこの発明をトップゲート形スタガ構造に適用し
た薄膜トランジスタの一例を示し、第6図と対応する部
分には同一符号を付けである。
Embodiment FIG. 1 shows an example of a thin film transistor in which the present invention is applied to a top gate staggered structure, and parts corresponding to those in FIG. 6 are given the same reference numerals.

この第1発明によれば活性層21として水素化炭化7 
% /l/ 7.7 ス’/す:I y a −Si 
1−xCX(x(0,5)を井戸層とし、水素化炭化ア
モルファスシリコンa −S s 1−xCx (x)
0.5 )をバリヤ層とし、これらを交互に多層積層し
て構成する。前記井戸層の厚さは例えば25X、前記バ
リヤ層の厚さは例えば50Xとし、その積層を例えば1
5周期とし、全体の厚さを1175又とする。
According to this first invention, as the active layer 21, the hydrocarbonized 7
% /l/ 7.7 S'/S: I y a -Si
1-xCX (x (0,5) is a well layer, hydrogenated amorphous silicon carbide a - S s 1-xCx (x)
0.5) as a barrier layer, and these are alternately laminated in multiple layers. The thickness of the well layer is, for example, 25X, the thickness of the barrier layer is, for example, 50X, and the laminated layer is, for example, 1.
There are 5 periods, and the total thickness is 1175.

この活性層21の形成はシランガスSiH4とアセチレ
ンガスC2H2とのグロー放電法によシ形成することが
できる。その場合井戸層とバリヤ層との各層の形成ごと
に放電を停止し、反応容器内のガスを・セージ後、原料
ガスを交換して再び放電を行う方法と、放電を停止せず
に各層の形成はガスの切替えのみで行う方法とが考えら
れる。
The active layer 21 can be formed by a glow discharge method using silane gas SiH4 and acetylene gas C2H2. In this case, two methods are available: one method is to stop the discharge after each layer (well layer and barrier layer) is formed, and after sage the gas in the reaction vessel, replace the raw material gas and start the discharge again. One possible method is to perform the formation by simply switching the gas.

第1図の例ではゲート絶縁膜22として炭化アモルファ
スシリコンa−8i4−xCx(x > 0.5 )を
用いた場合である。このデート絶縁膜22を用いると、
活性層21の形成に引き続き、連続的にゲート絶縁膜2
2の形成を行うことができる。
In the example shown in FIG. 1, amorphous silicon carbide a-8i4-xCx (x>0.5) is used as the gate insulating film 22. When this date insulating film 22 is used,
Following the formation of the active layer 21, the gate insulating film 2 is continuously formed.
2 formations can be performed.

このように炭化アモルファスシリコンa−811−xC
xのカーボン量Xを0.5以上にすると第2図の曲線2
3に示すように導電率が著しく低下し、絶縁層として用
いることができる。
In this way, amorphous silicon carbide a-811-xC
When the carbon content X of x is 0.5 or more, curve 2 in Figure 2
As shown in Figure 3, the electrical conductivity is significantly reduced and it can be used as an insulating layer.

第3図はこの発明を&)ムゲート形スタが構造に適用し
た例を示す。すなわち、基板11上にデート電極16が
形成され、そのゲート電極16上にゲート絶縁膜22が
形成され、更にその上に活性層21が形成され、その活
性層21の両側部上にドレイン電極1)及びソース電極
13が形成される。
FIG. 3 shows an example in which the present invention is applied to a &) Mgate type star structure. That is, a date electrode 16 is formed on the substrate 11, a gate insulating film 22 is formed on the gate electrode 16, an active layer 21 is formed on the gate electrode 16, and a drain electrode 1 is formed on both sides of the active layer 21. ) and source electrode 13 are formed.

第4図はこの発明をコーデラナ構造に適用した薄膜トラ
ンジスタの一例を示す。すなわち基板11上に活性層2
1が形成され、その活性層21上にドレイン電極1)と
ソース電極13とが互に分離されて形成され、これらド
レイン電極1)及びソース電極13間にわたってゲート
絶縁膜22が活性層21上に形成され、ゲート絶縁膜2
2上にゲート電極16が形成される。
FIG. 4 shows an example of a thin film transistor in which the present invention is applied to a Cordelana structure. That is, the active layer 2 is formed on the substrate 11.
A drain electrode 1) and a source electrode 13 are formed on the active layer 21, separated from each other, and a gate insulating film 22 is formed on the active layer 21 between the drain electrode 1) and the source electrode 13. The gate insulating film 2 is formed.
A gate electrode 16 is formed on 2.

上述においては活性層21の井戸層及びバリヤ層として
共に水素化炭化アモルファスシリコンa−8i1−xC
x:Hを用いたが、第2発明によれば活性層21の井戸
層は水素化アモルファスシリコンa−8t:Hで、バリ
ヤ層は水素化炭化アモルファスシリコンa−8t 1−
xCx :Hでそれぞれ構成される。この場合も例えば
井戸層の厚さは25X1バリヤ層の厚さは50Xとし、
15周期の多層構造とし、全厚さを1175Xとされる
。この活性層の形成は先の第1発明の場合と同様に、例
えばS iH4ガスとC2H2ガスのグロー放電法によ
り行うことができる。
In the above description, both the well layer and the barrier layer of the active layer 21 are made of hydrogenated amorphous silicon carbide a-8i1-xC.
According to the second invention, the well layer of the active layer 21 is made of hydrogenated amorphous silicon a-8t:H, and the barrier layer is made of hydrogenated amorphous silicon carbide a-8t1-.
xCx :H. In this case, for example, the thickness of the well layer is 25X, the thickness of the barrier layer is 50X,
It has a multilayer structure with 15 periods and a total thickness of 1175X. This active layer can be formed by, for example, the glow discharge method using SiH4 gas and C2H2 gas, as in the case of the first invention.

「発明の効果」 以上述べたようにこの発明によれば、活性層21がへテ
ロ接合超格子構造となっているため、量子効果による類
似二次元キャリヤの電気伝導による移動度が増大し、大
きな電流駆動能力が得られる。
"Effects of the Invention" As described above, according to the present invention, since the active layer 21 has a heterojunction superlattice structure, the mobility due to electrical conduction of similar two-dimensional carriers due to quantum effects increases, and Current drive capability is obtained.

従って例えばアクティブ液晶表示素子の画素電極に対す
るスイッチ素子としてこの発明の薄膜トランジスタを適
用すると、画素電極に対する充放電を急速に行うことが
できる。また大きな電流駆動能力をもつため、アクティ
ブ液晶表示素子の周辺駆動回路の能動素子としても十分
利用することができ、従って液晶表示素子の基板に画素
電極、そのスイッチ素子としての薄膜トランジスタを形
成すると共にその周辺、駆動回路も同一基板に、この発
明の薄膜トランジスタを用いて同時に形成することがで
きる。
Therefore, for example, when the thin film transistor of the present invention is applied as a switching element for a pixel electrode of an active liquid crystal display element, charging and discharging of the pixel electrode can be performed rapidly. In addition, since it has a large current driving capability, it can be fully used as an active element in the peripheral drive circuit of an active liquid crystal display element. Peripheral and drive circuits can also be formed simultaneously on the same substrate using the thin film transistor of the present invention.

まだ水素化炭化アモルファスシリコンa −S t 1
−A:Hはカーピン量Xを増加すると第3図の曲線24
に示すように光導電率が低下する。また第5図に示すよ
うにカーボン量Xを増加すると光学的エネルギーギャッ
プが大となる。つまりa −S i 1− xCx :
 Hはカーピン量Xを増加すると光導電効果が小さくな
る。従って、第1発明によればバリヤ層のXを05以」
二としているため、基板11全通して外部から活性層2
1に光が入射されてもこれに影響されることなく、薄膜
トランジスタと1〜で良好に動作するものが得らflる
Still hydrogenated amorphous silicon a-S t 1
-A:H increases with the curve 24 in Figure 3 as the carpin amount X increases.
The photoconductivity decreases as shown in . Further, as shown in FIG. 5, when the amount of carbon X is increased, the optical energy gap becomes larger. That is, a −S i 1− xCx:
When H increases the carpin amount X, the photoconductive effect becomes smaller. Therefore, according to the first invention, X of the barrier layer is 05 or more.
2, the active layer 2 is exposed from the outside through the entire substrate 11.
Even if light is incident on the thin film transistor 1, it is not affected by the incident light and can operate well with the thin film transistor 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による薄膜トランジスタの一例を示す
断面図、第2図は炭化アモルファスシリコンのカーピン
量に対する導電率特性例を示す図、第3図及び第4図は
それぞれこの発明の薄膜トランジスタの他の例を示す断
面図、第5図は炭化アモルファスシリコンのカーピン量
に対する光学的エネルギーギャノf特性例を示す図、第
6図は従来の薄膜トランジスタを示す断面図である。 特許出願人  星電器製造株式会社 代 理 人  草   野      憫才 2 図 C21−1)/(SiH4+C2H2)才 37 ;1f74  図
FIG. 1 is a cross-sectional view showing an example of a thin film transistor according to the present invention, FIG. 2 is a diagram showing an example of conductivity characteristics with respect to carpin content of amorphous silicon carbide, and FIGS. FIG. 5 is a cross-sectional view showing an example of the optical energy Gano f characteristic with respect to the carpin amount of amorphous silicon carbide, and FIG. 6 is a cross-sectional view showing a conventional thin film transistor. Patent applicant: Hoshi Denki Manufacturing Co., Ltd. Agent: Keisai Kusano 2 Figure C21-1)/(SiH4+C2H2) 37;1f74 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)ドレイン電極とソース電極との間にわたって活性
層が配され、その活性層上に上記ドレイン電極及びソー
ス電極間にゲート絶縁膜を介してゲート電極が設けられ
た薄膜トランジスタにおいて、上記活性層は水素化炭化
アモルファスシリコンa−Si_1_−_xC_x:H
(x<0.5)の井戸層と、水素化炭化アモルファスシ
リコンa−Si_1_−_xC_x:H(x>0.5)
のバリヤ層とが交互に多層積層されてなることを特徴と
する薄膜トランジスタ。
(1) In a thin film transistor in which an active layer is disposed between a drain electrode and a source electrode, and a gate electrode is provided on the active layer with a gate insulating film interposed between the drain electrode and the source electrode, the active layer is Hydrogenated amorphous silicon carbide a-Si_1_-_xC_x:H
(x<0.5) well layer and hydrogenated amorphous silicon carbide a-Si_1_-_xC_x:H(x>0.5)
A thin film transistor characterized in that a multilayer barrier layer is laminated alternately.
(2)ドレイン電極とソース電極との間にわたって活性
層が配され、その活性層上に上記ドレイン電極及びソー
ス電極間にゲート絶縁膜を介してゲート電極が設けられ
た薄膜トランジスタにおいて、上記活性層は水素化アモ
ルファスシリコンa−Si:Hの井戸層と、水素化炭化
アモルファスシリコンa−Si_1_−_xC_x:H
のバリヤ層とが交互に多層積層されてなることを特徴と
する薄膜トランジスタ。
(2) In a thin film transistor in which an active layer is disposed between a drain electrode and a source electrode, and a gate electrode is provided on the active layer with a gate insulating film interposed between the drain electrode and the source electrode, the active layer is Well layer of hydrogenated amorphous silicon a-Si:H and hydrogenated amorphous silicon carbide a-Si_1_-_xC_x:H
A thin film transistor characterized in that a multilayer barrier layer is laminated alternately.
JP1378687A 1987-01-23 1987-01-23 Thin-film transistor Pending JPS63181473A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1378687A JPS63181473A (en) 1987-01-23 1987-01-23 Thin-film transistor
US07/145,949 US4849797A (en) 1987-01-23 1988-01-20 Thin film transistor
DE88100845T DE3881066T2 (en) 1987-01-23 1988-01-21 Thin film transistor.
AT88100845T ATE89686T1 (en) 1987-01-23 1988-01-21 THIN FILM TRANSISTOR.
EP88100845A EP0276002B1 (en) 1987-01-23 1988-01-21 Thin film transistor
EP19910121805 EP0484987A3 (en) 1987-01-23 1988-01-21 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1378687A JPS63181473A (en) 1987-01-23 1987-01-23 Thin-film transistor

Publications (1)

Publication Number Publication Date
JPS63181473A true JPS63181473A (en) 1988-07-26

Family

ID=11842932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1378687A Pending JPS63181473A (en) 1987-01-23 1987-01-23 Thin-film transistor

Country Status (1)

Country Link
JP (1) JPS63181473A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731531B1 (en) 1997-07-29 2004-05-04 Micron Technology, Inc. Carburized silicon gate insulators for integrated circuits
US6835638B1 (en) 1997-07-29 2004-12-28 Micron Technology, Inc. Silicon carbide gate transistor and fabrication process
WO2006127225A2 (en) * 2005-05-25 2006-11-30 Mears Technologies, Inc. Semiconductor device comprising a superlattice dielectric interface layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124973A (en) * 1983-12-12 1985-07-04 Semiconductor Energy Lab Co Ltd Insulated gate type semiconductor device
JPS61125082A (en) * 1984-11-21 1986-06-12 Hitachi Maxell Ltd Thin film transistor
JPS6242566A (en) * 1985-08-20 1987-02-24 Fujitsu Ltd Thin film transistor
JPS6288367A (en) * 1985-10-11 1987-04-22 ゼネラル エレクトリツク カンパニー Transistor
JPS62299083A (en) * 1986-06-18 1987-12-26 Fujitsu Ltd Thin-film transistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124973A (en) * 1983-12-12 1985-07-04 Semiconductor Energy Lab Co Ltd Insulated gate type semiconductor device
JPS61125082A (en) * 1984-11-21 1986-06-12 Hitachi Maxell Ltd Thin film transistor
JPS6242566A (en) * 1985-08-20 1987-02-24 Fujitsu Ltd Thin film transistor
JPS6288367A (en) * 1985-10-11 1987-04-22 ゼネラル エレクトリツク カンパニー Transistor
JPS62299083A (en) * 1986-06-18 1987-12-26 Fujitsu Ltd Thin-film transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731531B1 (en) 1997-07-29 2004-05-04 Micron Technology, Inc. Carburized silicon gate insulators for integrated circuits
US6835638B1 (en) 1997-07-29 2004-12-28 Micron Technology, Inc. Silicon carbide gate transistor and fabrication process
WO2006127225A2 (en) * 2005-05-25 2006-11-30 Mears Technologies, Inc. Semiconductor device comprising a superlattice dielectric interface layer
WO2006127225A3 (en) * 2005-05-25 2007-02-22 Rj Mears Llc Semiconductor device comprising a superlattice dielectric interface layer

Similar Documents

Publication Publication Date Title
US4849797A (en) Thin film transistor
US4609930A (en) Thin film transistor
US9741752B1 (en) Method for manufacturing TFT substrate
US10361229B2 (en) Display device
JPH05190568A (en) Manufacture of insulated-gate thin-film transistor
WO2015078037A1 (en) Thin film transistor and manufacturing method therefor, and thin film transistor array substrate
US5053354A (en) Method of fabricating a reverse staggered type silicon thin film transistor
JPH1126768A (en) Thin film transistor for liquid, crystal display
JPH04360583A (en) Thin film transistor
JP3121005B2 (en) Thin film semiconductor device, method of manufacturing the same, manufacturing apparatus, and image processing apparatus
JPS63181473A (en) Thin-film transistor
JP2722890B2 (en) Thin film transistor and method of manufacturing the same
KR102039424B1 (en) Method of fabricating oxide thin film transistor
JPS6230379A (en) Thin film transistor
WO2017145943A1 (en) Active matrix substrate and liquid crystal display device
US4979006A (en) Reverse staggered type silicon thin film transistor
JPH0212031B2 (en)
JPS62141776A (en) Thin film transistor
JPH01267616A (en) Liquid crystal display
JPH0385529A (en) Thin-film semiconductor display device
JPH09107107A (en) Thin film transistor, this film transistor array and liquid crystal display device
JPH01162375A (en) Thin film transistor
JPH0277159A (en) Thin film semiconductor element
JPH0262077A (en) Thin film transistor
JPH0828512B2 (en) Thin film transistor