JPS63179018A - Manufacture of extra high tension steel wire having superior ductility - Google Patents

Manufacture of extra high tension steel wire having superior ductility

Info

Publication number
JPS63179018A
JPS63179018A JP997887A JP997887A JPS63179018A JP S63179018 A JPS63179018 A JP S63179018A JP 997887 A JP997887 A JP 997887A JP 997887 A JP997887 A JP 997887A JP S63179018 A JPS63179018 A JP S63179018A
Authority
JP
Japan
Prior art keywords
steel wire
wire
ductility
tensile strength
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP997887A
Other languages
Japanese (ja)
Other versions
JPH089734B2 (en
Inventor
Osamichi Serikawa
芹川 修道
Yukio Ochiai
落合 征雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62009978A priority Critical patent/JPH089734B2/en
Publication of JPS63179018A publication Critical patent/JPS63179018A/en
Publication of JPH089734B2 publication Critical patent/JPH089734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To manufacture an extra high tension steel wire having superior ductility by subjecting a high carbon steel wire rod to cold rolling or drawing with roller dies under specified conditions during or after drawing into a wire. CONSTITUTION:A high carbon steel wire rod contg., by weight, 0.60-1.0% C, 0.1-2.0% Si and 0.1-2.0% Mn or further contg. one or more among 0.1-1.0% Cr, 0.002-0.5% V, 0.002-0.2% Ti and 0.002-0.2% Nb is drawn into a wire at >=50% reduction of area. During the drawing or after the drawing to a prescribed diameter, the wire rod is cold rolled at <=35% draft or drawn with roller dies. An extra high tension steel wire having superior ductility and >=(250-100log.d)kg/mm<2> (d is the diameter of the steel wire) tensile strength is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は延性の優れた超高張力鋼線の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing ultra-high tensile strength steel wire with excellent ductility.

(従来の技術とその問題点) ピアノ線およびこれに準じる鋼線は、PWSワイヤ、ば
ね、ホースワイヤ、タイヤコード等広い分野で使用され
ているが、近年、JIS以上の強度レベルを有する鋼線
の開発に対する要望が高まっている。
(Prior art and its problems) Piano wire and similar steel wires are used in a wide range of fields such as PWS wire, springs, hose wires, and tire cords, but in recent years, steel wires with strength levels higher than JIS have been used. There is a growing demand for the development of

通常、高張力鋼線という場合、JIS G 3522ピ
アノ線相当の強度を有する鋼線を指すのが通例であるた
め、以下、本発明においては、それ以上の強度を有する
鋼線を「超高張力鋼線」と称することとする。 JIS
 G 3522では、直径6關から0.08龍迄の鋼線
の引っ張り強さを規定しているが、引張強さは線径に依
存し、線径の細いほど容易に高強度を達成しうるため、
JISにおいてもこれに準じた体系をなしており、引張
強さの上限は±10kgfZ−12以内の誤差で次式で
表わせる。
Normally, the term "high tensile strength steel wire" refers to a steel wire having a strength equivalent to that of JIS G 3522 piano wire. "Steel wire". JIS
G 3522 specifies the tensile strength of steel wire with a diameter of 6 mm to 0.08 mm, but the tensile strength depends on the wire diameter, and the smaller the wire diameter, the easier it is to achieve high strength. For,
JIS also has a system similar to this, and the upper limit of tensile strength can be expressed by the following formula with an error within ±10 kgfZ-12.

TS−250−1001ogd   Ckg/ms”)
    (1)但し、dは鋼線の直径(龍)である。
TS-250-1001ogd Ckg/ms”)
(1) However, d is the diameter (dragon) of the steel wire.

+11式は、(i〜0.08龍の鋼線について求めたも
のであるが、凡そ10〜0.05 amの範囲で妥当な
ものである。鋼線の断面形状は、円形が多く用いられる
が、角形、梯形、台形等であっても良い。
Equation +11 was obtained for a steel wire with a diameter of (i~0.08 am), but it is valid in the range of approximately 10~0.05 am.The cross-sectional shape of the steel wire is often circular. However, it may be rectangular, trapezoidal, trapezoidal, etc.

この場合、dとしては同じ断面積を有する円の直径を用
いる。
In this case, the diameter of a circle having the same cross-sectional area is used as d.

ピアノ線およびこれに準しるwJ線は、ピアノ線材相当
の線材を用い、これにパテンティング処理を施したのI
)、常温で伸線して、製造されるのが一般的である。
Piano wire and similar wJ wire are manufactured by using a wire material equivalent to piano wire material and applying patenting treatment to it.
), it is generally produced by wire drawing at room temperature.

従来の伸線法で、(1)弐以上の強度レベルの超高張力
鋼線を製造しようとした。場合以下のような問題を生じ
る。
(1) An attempt was made to produce ultra-high tensile strength steel wire with a strength level of 2 or higher using conventional wire drawing methods. In this case, the following problems occur.

即ち強度を高めるためには、パテンティング処理時の強
度を高める方法と、伸LA減面率を大きくする方法があ
るが、いずれの方法においても、通常の伸線方法で製造
するかぎり、強度を高めることは可能であっても、超高
張力鋼線にとって重要な特性である延性、特に捻り特性
および絞りの低下が著しく、撚り線やコイリング等の工
程で、割れや断線などのトラブルが発生しやすくなる。
In other words, there are two ways to increase the strength: one is to increase the strength during patenting treatment, and the other is to increase the area reduction rate of LA drawing. In either method, as long as the wire is manufactured using a normal wire drawing method, the strength cannot be increased. Even if it is possible to increase the ductility, which is an important characteristic for ultra-high tensile strength steel wires, the deterioration of ductility, especially torsional properties and drawing area, will be significant, and problems such as cracking and wire breakage will occur during processes such as stranding and coiling. It becomes easier.

またピアノ線は、めっきあるいはブルーイング処理をし
て用いることが多いが、これらの処理により、時効が生
じ延性が低下し、超高張力レベルを達成することは困難
である。
Furthermore, piano wire is often used after being plated or blued, but these treatments cause aging and reduce ductility, making it difficult to achieve an ultra-high tensile strength level.

また、伸線加工の代りに冷間圧延が行なわれる場合もあ
り、鋼線材の冷間圧延については、Wlre、r、 1
6 (1983)、°7.64に例が示されているが、
例示されているような、通常の炭素鋼では、超高張力レ
ベルを達成することは困難である。
In addition, cold rolling may be performed instead of wire drawing, and for cold rolling of steel wire, Wlre, r, 1
6 (1983), °7.64, but
Ultra-high tensile strength levels are difficult to achieve with conventional carbon steels, such as those illustrated.

それは冷間圧延およびU−ラーダイス引抜きにおいては
、後に述べる理由により、加工限界は通常伸線より大き
いが、力L1−硬化率は、通常伸線より小さいため、通
常のピ°?ノ線材の組成では、超高張力レベルを達成す
るには著しく加工度を大きくする必要があり、そのため
に延性の低下がもたらされるためである。
In cold rolling and U-Lar die drawing, the processing limit is larger than that of normal wire drawing for the reason explained later, but the force L1 - hardening rate is smaller than that of normal wire drawing, so the normal pi This is because the composition of the wire rod requires a significantly greater degree of working to achieve ultra-high tensile strength levels, resulting in a reduction in ductility.

また、特公昭59−33175号公報等に、中炭素鋼を
マルテンサイト化、ローラーダイス伸線する事例がある
が、これは焼戻しマルテンサイト系の高張力線材に関す
るものである。
Furthermore, Japanese Patent Publication No. 59-33175 and the like disclose an example of martensitizing medium carbon steel and drawing it with a roller die, but this relates to a tempered martensitic high-tensile wire rod.

更に、特開昭61186118に孔ダイス伸線後ローラ
ーダイス伸線する方法が示されているが\孔ダイス伸線
による減面率が15〜65%、総減面率が91%以」二
と規定されている。これはローラーダイス伸線減面率は
74%以上に相当するものであり、本発明の構成(伸線
減面率50%以上、圧延又はローラーダイ反による減面
率35%以−0とは明らかに相違する。
Furthermore, Japanese Patent Application Laid-Open No. 61186118 discloses a method of drawing with a roller die after drawing with a hole die; stipulated. This corresponds to a roller die wire drawing area reduction rate of 74% or more, and the structure of the present invention (wire drawing area reduction rate of 50% or more, area reduction rate of 35% or more by rolling or roller die rolling - 0). Obviously different.

本発明は、このような延性の低下を来たすことなく、超
高張力を達成するための鋼線の製造方法を提供すること
にある。
The object of the present invention is to provide a method for manufacturing a steel wire that achieves ultra-high tensile strength without causing such a decrease in ductility.

(問題点を解決するための手段) 本発明は(IIC: 0. G O〜!、0%、Si:
0.1〜2.0%、Mn:0.1〜2.0%を基本成分
とする高炭素鋼線材を、減面率50%以上の伸線加工の
途中、又は、伸線加工後、35%以下の冷間圧延又はロ
ーラーダイス引抜加工をすることにより、250−1 
OOlog d (kg/1m”)以上の引張り強さと
なすことを特徴とする、延性の優れた超高張力鋼線の製
造方法であり、又(2)高炭素鋼線材がC: 0.60
〜1.0%、 Si : 0.1〜2.0%、Mn:0
.1〜2.0%。
(Means for solving the problems) The present invention provides (IIC: 0. GO~!, 0%, Si:
0.1 to 2.0%, Mn: 0.1 to 2.0% as basic components, during or after wire drawing with an area reduction of 50% or more, 250-1 by cold rolling or roller die drawing of 35% or less
This is a method for producing an ultra-high tensile strength steel wire with excellent ductility, characterized by having a tensile strength of OOlog d (kg/1m") or more, and (2) the high carbon steel wire has a C: 0.60.
~1.0%, Si: 0.1~2.0%, Mn: 0
.. 1-2.0%.

を含み、さらに、Cr:0.1=1.0%、  V :
 0.002〜0.5%、 Ti : 0.002〜0
.2%、 Nb: 0.00 ’2゜、〜0.2%の1
種以上を含み、残部鉄および不可避的不純物からなる高
炭素鋼線材である、前記の第1項に記載の延性の優れた
超高張力鋼線の製造方法である。
Further, Cr: 0.1=1.0%, V:
0.002-0.5%, Ti: 0.002-0
.. 2%, Nb: 0.00'2゜, ~0.2% of 1
This is a method for producing an ultra-high tensile strength steel wire with excellent ductility as described in item 1 above, which is a high carbon steel wire rod containing at least 100% of the carbonaceous material and the remainder consisting of iron and unavoidable impurities.

(作 用) 本発明の鋼組成の限定理由は下記による。(for production) The reasons for limiting the steel composition of the present invention are as follows.

Cは経済的かつ有効な強化元素であるが、(1)弐以上
の強度を達成するには、0.6%以上必要である。
C is an economical and effective reinforcing element, but (1) 0.6% or more is required to achieve a strength of 2 or higher.

又、1.0%以上では、パテンティング時に初析セメン
タイトを生成し、冷間加工に適さない、但し、口)式以
−ヒの強度において、より優れた延性を得るためには、
後述のような合金元素を含有させることが望ましい。
Moreover, if it is 1.0% or more, pro-eutectoid cementite is generated during patenting, making it unsuitable for cold working.
It is desirable to contain alloying elements as described below.

Siは脱酸のために001%以上必要であるestは固
溶硬化元素として強化にも効果があるが、0.35%以
下ではその効果は小さく、2%以上では延性が劣化する
ため適当でない。
0.01% or more of Si is required for deoxidation. EST is effective in strengthening as a solid solution hardening element, but if it is less than 0.35%, the effect is small, and if it is more than 2%, the ductility deteriorates, so it is not suitable. .

鋼線の絞りはパーライトラメラ−間隔と密接な関係があ
り、約280Aで最大となるが、Siは素材のパーライ
トラメラ−間隔をほとんど変えずに、フェライト層を強
化するため、延性の低下はほとんどなしに、鋼線の強度
をあげることに有効である。
The reduction of steel wire is closely related to the pearlite lamella spacing, reaching its maximum at about 280A, but since Si strengthens the ferrite layer without changing the pearlite lamella spacing of the material, there is almost no decrease in ductility. It is effective in increasing the strength of the steel wire without using it.

Mnは脱酸お、I、びSの古を除くために0.1%以上
必要である。Mnは焼入性向上元素として、特に太いサ
イズの線材のパテンティング強度を上げるのに有効であ
るが、2%を超えると延性が劣化するため適当でない。
Mn is required in an amount of 0.1% or more in order to deoxidize O, I, and remove old S. Mn is an element that improves hardenability and is particularly effective in increasing the patenting strength of thick wire rods, but if it exceeds 2%, it is not suitable because the ductility deteriorates.

C「はパーライトラメラ−間隔の微細化に有効な元素で
あり、細いサイズから太いサイズ塩、線材の強化に効果
があるが、1%を超えるとその効果を十分に発揮させる
ことは困難である。
C is an effective element for refining pearlite lamella spacing, and is effective for strengthening thin to thick size salts and wires, but if it exceeds 1%, it is difficult to fully demonstrate its effect. .

■は焼入性向上元素として、特に太いサイズの線材のパ
テンティング強度を上げるのに有効である。またオース
テナイト結晶粒度を微細化し、延性の向上に有効である
。0.002%以下ではその効果は少なく、0.5%を
趙えるとかえって延性が劣化するため適当でない。
(2) is an element that improves hardenability and is particularly effective in increasing the patenting strength of thick wire rods. It also refines the austenite grain size and is effective in improving ductility. If it is less than 0.002%, the effect will be small, and if it exceeds 0.5%, the ductility will deteriorate, so it is not suitable.

NbおよびTiはオーステナイト結晶粒度を微細化、し
、延性の向上に有効であるが、O,OO2%以下では効
果がなく、0.2%を超えると、かえって延性が劣化す
るため適当でない。
Nb and Ti are effective in refining the austenite grain size and improving ductility, but they are not effective when O and OO are less than 2%, and when they exceed 0.2%, the ductility deteriorates, so it is not suitable.

なおAlについてぽ、細粒鋼が望ましい場合には0.0
1〜0.1 cH,程度を加え、粗粒鋼あるいは介在物
の軟質化が必要な場合には、0.01%以下とする。こ
れらのいずれの場合もあるため、Alの含有量は特に規
定しない。
For Al, if fine grain steel is desired, 0.0
Add approximately 1 to 0.1 cH, and if it is necessary to soften coarse-grained steel or inclusions, reduce it to 0.01% or less. Since any of these cases may occur, the content of Al is not particularly specified.

以上の鋼組成を有する鋼を50%以上の伸線加工するこ
とにより延性の借れた超高張力鋼線を製造することが可
能であるが、通常の伸線加工では、超高張力レベルまで
強度を高めた場合、延性の低下が大きく、何らかの対策
が必要である。
It is possible to produce ultra-high tensile strength steel wire with reduced ductility by drawing 50% or more of steel with the above steel composition, but normal wire drawing cannot reach ultra-high tensile strength levels. When the strength is increased, the ductility decreases significantly, and some kind of countermeasure is required.

延性の低下は、伸線中の発熱、或いは伸線後のブルーイ
ング処理により可動転位が固定される場合に顕著に現わ
れる。これに対し、発明者らが種々の調査を行なった結
果材料の破壊に至らないような軽微な加1.を加えた場
合、新たに可動転位が導入される結果、延性の回復が起
ることが観察された。特に伸線後の加工法として冷間圧
延又はローラーダイス引抜きを行なう場合には、5%以
下の軽圧下において、上記のように可動転位の導入によ
る延性の回復が得られるばかりでなく、5%以上の圧下
においても以下に述べるように、圧延に固有の変形様式
の故に、伸線加工だけで!!!造する場合に比べ優れた
延性を得ることができる。
The decrease in ductility becomes noticeable when mobile dislocations are fixed due to heat generation during wire drawing or bluing treatment after wire drawing. In contrast, the inventors conducted various investigations and found that minor additions that did not lead to material destruction were found. It was observed that when adding , ductility recovered as a result of the introduction of new mobile dislocations. In particular, when cold rolling or roller die drawing is performed as a processing method after wire drawing, it is possible to not only recover ductility by introducing mobile dislocations as described above under light reduction of 5% or less, but also recover ductility by 5% or less. Even in the above rolling process, as described below, due to the deformation mode unique to rolling, only wire drawing is required! ! ! It is possible to obtain superior ductility compared to when the steel is made of steel.

通常の伸線加工は、(以下単に伸線加工と略す)孔ダイ
スに鋼線材を通し、引抜き加工を行うため、ダイスと鋼
線材との111力、ダイスからの圧縮力、および引抜力
の組合せによる、複雑な応力場における加工であるため
、鋼線材の長手方向に直角な断面内の歪は不均一である
In normal wire drawing processing (hereinafter simply referred to as wire drawing processing), a steel wire is passed through a hole die and drawn, so a combination of 111 force between the die and the steel wire, compression force from the die, and drawing force is performed. Because the processing is performed in a complex stress field, the strain within the cross section perpendicular to the longitudinal direction of the steel wire is non-uniform.

特に、引抜力の割合が圧縮力に比べ大きいため、材料内
の非金属介在物等の周辺1に徽少な割れを生じやすく、
延性を低下させる原因となっている。
In particular, since the proportion of the pull-out force is larger than the compression force, small cracks are likely to occur around non-metallic inclusions in the material.
This causes a decrease in ductility.

また、摩擦仕事が大きいため、表面の発熱が大きく、表
層部近傍の温度上昇による時効脆化が大きい。表層部の
脆化は、特に捻り特性に対して有害である。
Furthermore, since the frictional work is large, heat generation at the surface is large, and aging embrittlement due to temperature rise near the surface layer is large. The embrittlement of the surface layer is particularly harmful to torsional properties.

冷間圧延およびローラーダイス引抜きにおいては、ロー
ルと鋼線材の間の摩擦仕事は、孔ダイスに比べて小さい
こと、引抜力が圧延法ではほぼ零であり、ローラーダイ
スにおいても、孔ダイスに比べて小さいこと、従って主
要な変形応力は、ロールからの圧縮応力であることから
変形が均一であり、非金属介在物周辺の微細な割れを生
じにくく、また、時効による脆化も起りにくいために、
延性の低下を防止しうるのである。
In cold rolling and roller die drawing, the frictional work between the rolls and the steel wire is smaller than that with a hole die, and the drawing force is almost zero in the rolling method, and even with a roller die, compared to a hole die. Because the main deformation stress is the compressive stress from the rolls, the deformation is uniform, and micro cracks around nonmetallic inclusions are less likely to occur, and embrittlement due to aging is less likely to occur.
This can prevent a decrease in ductility.

但し、通常、冷間圧雌装:6あるいは、!コーラーダイ
ス装置は伸線機に比べ構造が複雑で、かつすイズの変更
が困難である。従って冷間圧延又はローラーダイスによ
る工程は少ない程望ましいため、1組のロール対で、成
形可能な35%以下の加工率、又は、延性回復効果だけ
を狙った5%以下の加工率とすることが実際的である。
However, usually cold pressure female mounting: 6 or! Kohler die equipment has a more complex structure than a wire drawing machine, and it is difficult to change the size. Therefore, it is desirable to have as few cold rolling or roller die processes as possible. Therefore, with one pair of rolls, the processing rate should be 35% or less to enable forming, or 5% or less to aim only at the ductility recovery effect. is practical.

従って強化のために必要な加工は、主として伸線加工で
行なうのが適当であり、伸線加工率は十分なファイバー
S、II織を発達さ−Uるために509f以上とするこ
とが望ましい。
Therefore, it is appropriate that the processing necessary for strengthening is performed mainly by wire drawing, and the wire drawing rate is desirably 509 f or more in order to develop sufficient fiber S and II weaves.

(実施例) tJ4線材を鉛パテンティング後酸洗し、スケールを除
去した後、リン酸亜鉛被膜処理を施した。伸線時には伸
vA潤滑剤を用いて、伸線した。
(Example) After lead patenting, tJ4 wire was pickled to remove scale, and then subjected to zinc phosphate coating treatment. During wire drawing, a vA lubricant was used.

50%以上の伸線後、又は、伸線最終ダイスの入側で、
冷間圧延又はローラーダイス引抜加工を行った。
After drawing 50% or more, or on the entry side of the final wire drawing die,
Cold rolling or roller die drawing was performed.

加工後の鋼線は、加工ままの状態または450“Cで、
45秒間のブルーイング処理を施して、引張試験と12
回試験により材質評価を行った。
The steel wire after processing is in the as-processed state or at 450"C,
After applying bluing treatment for 45 seconds, tensile test and 12
Material quality was evaluated through multiple tests.

第1表に各種鋼成分により製造した結果を示す。Table 1 shows the results of manufacturing with various steel components.

従来法の伸線まま、あるいは、伸線後ブルーイング処理
を行ったものは、「超高張力」レベルを達成しようとす
ると、捻回値が低下し、十分な性能が得られないが、冷
間圧延又はローラーダイス引抜加工を施した本発明法に
よれば、捻回値および絞りが高く、優れた延性が得られ
た。
With conventional wires drawn as they are, or with bluing treated after drawing, when trying to achieve an ultra-high tensile strength level, the torsion value decreases and sufficient performance cannot be obtained. According to the method of the present invention in which inter-rolling or roller die drawing was performed, a high twist value and reduction of area were obtained, and excellent ductility was obtained.

(発明の効果) 本発明は以上のように特定の成分を有する鋼線材を、伸
線加工の途中、又は伸線加工後、冷延圧延又はローラー
ダイス引抜加工をすることにより延性の劣化なしに、超
高張力鋼線を製造することを可能とした。本発明により
伸線および撚り線時の断線、成形時の加工割れ、使用時
の破壊を著しく減少せしめること示できた。
(Effects of the Invention) As described above, the present invention can prevent deterioration of ductility by subjecting steel wire rods having specific components to cold rolling or roller die drawing during or after wire drawing. , made it possible to manufacture ultra-high tensile strength steel wire. It has been shown that the present invention significantly reduces wire breakage during wire drawing and stranding, processing cracks during molding, and breakage during use.

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.60〜1.0% Si:0.1〜2.0% Mn:0.1〜2.0% を基本成分とする高炭素鋼線材を、減面率50%以上の
伸線加工の途中、又は、伸線加工後、35%以下の冷間
圧延又はローラーダイス引抜加工をすることにより、2
50−100logd(kg/mm^2)以上の引張り
強さとなすことを特徴とする、延性の優れた超高張力鋼
線の製造方法。
(1) High carbon steel wire rod whose basic components are C: 0.60-1.0% Si: 0.1-2.0% Mn: 0.1-2.0% with an area reduction of 50% or more During the wire drawing process or after the wire drawing process, by performing cold rolling or roller die drawing process of 35% or less,
A method for producing an ultra-high tensile strength steel wire with excellent ductility, characterized in that the wire has a tensile strength of 50-100 logd (kg/mm^2) or more.
(2)高炭素鋼線材が C:0.60〜1.0%、 Si:0.1〜2.0%、 Mn:0.1〜2.0%、 を含み、さらに、 Cr:0.1〜1.0%、V:0.002〜0.5%、
Ti:0.002〜0.2%、Nb:0.002〜0.
2%、の1種以上を含み、残部鉄および不可避的不純物
からなる高炭素鋼線材である、特許請求の範囲第1項に
記載の延性の優れた超高張力鋼線の製造方法。
(2) The high carbon steel wire rod contains C: 0.60 to 1.0%, Si: 0.1 to 2.0%, Mn: 0.1 to 2.0%, and further contains Cr: 0. 1-1.0%, V: 0.002-0.5%,
Ti: 0.002-0.2%, Nb: 0.002-0.
2%, and the balance is iron and unavoidable impurities.
JP62009978A 1987-01-21 1987-01-21 Method for producing ultra high strength steel wire with excellent ductility Expired - Lifetime JPH089734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62009978A JPH089734B2 (en) 1987-01-21 1987-01-21 Method for producing ultra high strength steel wire with excellent ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62009978A JPH089734B2 (en) 1987-01-21 1987-01-21 Method for producing ultra high strength steel wire with excellent ductility

Publications (2)

Publication Number Publication Date
JPS63179018A true JPS63179018A (en) 1988-07-23
JPH089734B2 JPH089734B2 (en) 1996-01-31

Family

ID=11734995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62009978A Expired - Lifetime JPH089734B2 (en) 1987-01-21 1987-01-21 Method for producing ultra high strength steel wire with excellent ductility

Country Status (1)

Country Link
JP (1) JPH089734B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271329A (en) * 1990-03-22 1991-12-03 Nippon Steel Corp Manufacture of high strength steel wire
JPH0610109A (en) * 1992-06-24 1994-01-18 Chuo Spring Co Ltd Manufacture of thin sheet made of carbon steel for power spring
EP0708183A1 (en) * 1993-05-25 1996-04-24 Nippon Steel Corporation High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same
WO2007069497A1 (en) * 2005-12-14 2007-06-21 Sumitomo (Sei) Steel Wire Corp. Steel wire for spring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173828A (en) * 1984-09-19 1986-04-16 Shinko Kosen Kogyo Kk Manufacture of high strength and toughness steel wire
JPS61165219A (en) * 1985-01-17 1986-07-25 Nippon Steel Corp Production of high tensile steel wire excellent in twisting property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173828A (en) * 1984-09-19 1986-04-16 Shinko Kosen Kogyo Kk Manufacture of high strength and toughness steel wire
JPS61165219A (en) * 1985-01-17 1986-07-25 Nippon Steel Corp Production of high tensile steel wire excellent in twisting property

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271329A (en) * 1990-03-22 1991-12-03 Nippon Steel Corp Manufacture of high strength steel wire
JPH0610109A (en) * 1992-06-24 1994-01-18 Chuo Spring Co Ltd Manufacture of thin sheet made of carbon steel for power spring
EP0708183A1 (en) * 1993-05-25 1996-04-24 Nippon Steel Corporation High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same
EP0708183A4 (en) * 1993-05-25 1996-11-06 Nippon Steel Corp High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same
WO2007069497A1 (en) * 2005-12-14 2007-06-21 Sumitomo (Sei) Steel Wire Corp. Steel wire for spring
JP2007185711A (en) * 2005-12-14 2007-07-26 Sumitomo Denko Steel Wire Kk Steel wire for spring

Also Published As

Publication number Publication date
JPH089734B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JP2921978B2 (en) Manufacturing method of high strength and high ductility ultrafine steel wire
JP2004091912A (en) Steel wire rod, production method therefor and production method for steel wire using the steel wire rod
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JP3283332B2 (en) High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same
US4877462A (en) Process for producing oil quench hardening and tempering and hard drawn steel wire of shaped section
JPS63179018A (en) Manufacture of extra high tension steel wire having superior ductility
JP3725576B2 (en) Manufacturing method of high strength galvanized steel wire
JP2000309849A (en) Steel wire rod, steel wire, and their manufacture
JP3840376B2 (en) Steel for hard-drawn wire and hard-drawn wire with excellent fatigue strength and ductility
JPS6152348A (en) High efficiency carbon steel wire
JP3061918B2 (en) Method of manufacturing steel cord with excellent fatigue properties
JP3267833B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JP2756003B2 (en) High strength steel cord excellent in corrosion fatigue resistance and method of manufacturing the same
JP3940264B2 (en) Steel wire for hard pulling spring, wire drawing material for hard pulling spring, hard pulling spring and manufacturing method of hard pulling spring
JP2001220649A (en) High strength extra-fine steel wire excellent in ductility and fatigue characteristic
JPS60204865A (en) High-carbon steel wire rod for hyperfine wire having high strength, toughness and ductility
JPH03271329A (en) Manufacture of high strength steel wire
JPS634016A (en) Production of extra high tension steel wire having excellent ductility
JP3300932B2 (en) Manufacturing method of high strength steel wire
JPS6277418A (en) Production of high-strength and high-ductility steel wire
JP3169454B2 (en) High strength steel wire and its manufacturing method
JPS63179017A (en) Manufacture of extra high tension steel wire having superior ductility
JP2000063987A (en) High carbon steel wire rod excellent in wire drawability
JP3340232B2 (en) Manufacturing method of high strength steel wire
JPH08232046A (en) High strength steel wire excellent in twisting crack resistance