JPS63179013A - Smelt-reduction method for top and bottom blow refining furnace - Google Patents

Smelt-reduction method for top and bottom blow refining furnace

Info

Publication number
JPS63179013A
JPS63179013A JP948387A JP948387A JPS63179013A JP S63179013 A JPS63179013 A JP S63179013A JP 948387 A JP948387 A JP 948387A JP 948387 A JP948387 A JP 948387A JP S63179013 A JPS63179013 A JP S63179013A
Authority
JP
Japan
Prior art keywords
blowing
lances
oxygen
ore
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP948387A
Other languages
Japanese (ja)
Inventor
Tomiya Fukuda
福田 富也
Yukio Tomita
幸雄 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP948387A priority Critical patent/JPS63179013A/en
Publication of JPS63179013A publication Critical patent/JPS63179013A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make smelt-reduction of ore with high productivity by charging coke and various oxide metal ores onto the molten slag in a top and bottom blown refining furnace, ejecting an oxygen-contg. gas from bottom blowing nozzles in the form of bubbles and ejecting oxygen from plural top blowing lances in the positions deviated therefrom. CONSTITUTION:Solid carbonaceous fuel such as coke is charged to the surface of the molten slag 7 in the top and bottom blown refining furnace 2 provided with the plural oxygen top blowing lances 4a, 4b and bottom blowing nozzles 3a, 3b and the gaseous oxygen is blown from the lances 4a, 4b to burn the coke. The oxygen-contg. gas such as air is ejected from the nozzles 3a, 3b existing in the positions deviated from right under the lances 4a, 4b to stir and heat up molten iron 5 and the molten slag 7. The metal oxide-contg. raw materials such as Fe ore, Mn ore and Cr ore charged into the furnace are simultaneously melted and the Fe2O3, MnO2, Cr2O3, etc., in the ores are reduced to Fe, Mn and Cr which are then added to and incorporated into the molten iron 5. The alloy pig subjected to the component adjustment is thus smelted with high productivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、傾動によって内容物の排出が可能な上底吹型
精錬炉を使用して、炉内の融解物(例えば溶銑と溶融ス
ラグ)に炭素質固体燃料(例えばコークス)を投入し、
上吹きランスから酸化性ガスを吹付けることにより該炭
素質固体燃料を燃焼させ、この燃焼熱によって炉内に別
途投入した精錬目的金属の酸化物を含む固体原料物質(
例えば鉄鉱石、マンガン鉱石、クロム鉱石等)の溶解と
該精錬目的金属の酸化物の還元反応を進行させる溶融還
元法の改善に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses a top-bottom blowing type smelting furnace whose contents can be discharged by tilting, and melts the molten material (for example, hot metal and molten slag) in the furnace. Inject carbonaceous solid fuel (e.g. coke) into
The carbonaceous solid fuel is combusted by blowing oxidizing gas from the top blowing lance, and the combustion heat is used to convert the solid raw material (containing the oxide of the metal to be refined) into the furnace.
The present invention relates to an improvement in a smelting reduction method for melting iron ore, manganese ore, chromium ore, etc.) and promoting the reduction reaction of the oxide of the metal to be refined.

〔発明の背景および従来技術〕[Background of the invention and prior art]

傾動可能な上底吹型精錬炉(転炉型反応炉)内の溶融金
属上の溶融スラグに対して、炉上部より精錬目的金属含
有の固体の酸化物原料並びに炭素質固体燃料を投入し、
上吹きランスから酸化性ガスを吹付けることによって炭
素質固体燃料を燃焼させ、この燃焼熱によって酸化物原
料の溶解と還元を行わせる。上底吹精錬炉での溶融還元
法は電力に依存しないで鉄鉱石、マンガン鉱石、クロム
鉱石などを溶融還元製練する方法として重要視されてい
る。
A solid oxide raw material containing the target metal for refining and a carbonaceous solid fuel are introduced from the top of the furnace into the molten slag above the molten metal in a tiltable top-bottom blowing refining furnace (converter type reactor),
The carbonaceous solid fuel is combusted by blowing oxidizing gas from the top blowing lance, and the oxide raw material is dissolved and reduced by the combustion heat. The smelting reduction method using a top-bottom blowing smelting furnace is considered important as a method for smelting iron ore, manganese ore, chromium ore, etc. without relying on electricity.

この上底吹精錬炉での溶融還元法の生産性は。What is the productivity of the smelting reduction method in this top-bottom blowing smelting furnace?

精錬目的金属含有の固体の酸化物原料(以下、固体酸化
物原料と略称することがある)および必要に応じて添加
される固体の造滓材の溶解速度と。
Dissolution rate of solid oxide raw material containing metal for refining purpose (hereinafter sometimes abbreviated as solid oxide raw material) and solid slag-forming material added as necessary.

該酸化物中の目的金属酸化物の還元速度によって決定さ
れる。このためには、+11.炉内に投入した炭素質固
体燃料を効率良く燃焼させること、+21゜この燃焼熱
を固体酸化物原料の昇熱・溶解に効率良く利用できるよ
うにすること、(3+、  目的金属酸化物の還元反応
が進行するいわゆる反応サイトに未還元酸化物を活発に
供給すること等が肝要となる。
It is determined by the reduction rate of the target metal oxide in the oxide. For this, +11. To efficiently burn the carbonaceous solid fuel input into the furnace, +21° to efficiently use this combustion heat for heating and melting the solid oxide raw material, (3+, reduction of the target metal oxide It is important to actively supply unreduced oxide to the so-called reaction site where the reaction proceeds.

従来、前記(1)の炭素質固体燃料を効率良く燃焼させ
るために、上吹きランスの先端にガス噴出口を多数設け
ることが提案されている。すなわち多数のガス噴出口か
ら酸化性ガスの噴流を末拡がりに拡がる噴流パターンで
溶融スラグ上に吹付け。
Conventionally, in order to efficiently burn the carbonaceous solid fuel described in (1) above, it has been proposed to provide a large number of gas jet ports at the tip of the top blowing lance. In other words, a jet of oxidizing gas is sprayed onto the molten slag from a large number of gas outlets in a jet pattern that spreads outward.

これによって比較的広い面積にわたって火点を形成しよ
うとするものである。
This attempts to form a flash point over a relatively wide area.

また、主として前記(2)や(3)については内容物の
攪拌がその目的に沿うことから、この攪拌を実施する方
法として、最も一般的には底吹きノズルからのガス攪拌
が行われる。さらに反応炉の側壁にも横吹きノズルを設
けてガス攪拌を助成する方法も提案されている。
Furthermore, since the purpose of (2) and (3) is to stir the contents, the most common method for carrying out this stirring is gas stirring from a bottom-blowing nozzle. Furthermore, a method has also been proposed in which a side blow nozzle is provided on the side wall of the reactor to assist in gas agitation.

特開昭59−153819号公報は底吹きノズルや横吹
きノズルからのガス攪拌は行わないで、上吹きランスか
らの酸化性ガスの吹付は位置を浴面周縁部とし、この上
吹きランスを炉の周方向に旋回運動させるか、或いは浴
面周縁に対する接線方向に上吹きランスを傾けて固定し
、浴面上の炭素質固体燃料に酸化性ガスを旋回させなが
ら吹付けるか。
JP-A-59-153819 discloses that the gas is not stirred from the bottom blowing nozzle or the side blowing nozzle, but the oxidizing gas is sprayed from the top blowing lance at the periphery of the bath surface, and this top blowing lance is placed in the furnace. Either the upper blowing lance is tilted and fixed in the tangential direction to the periphery of the bath surface, and the oxidizing gas is sprayed onto the carbonaceous solid fuel on the bath surface while swirling.

或いは酸化性ガスによって炭素質固体燃料を旋回させる
方法を開示する。この方法によると炭素質固体燃料の吹
き寄せ現象が回避されるとされている。また、この方法
によると前記tl+、 +21および(3)の目的も成
る程度達成できるのではないかと推測される。
Alternatively, a method of swirling carbonaceous solid fuel with an oxidizing gas is disclosed. This method is said to avoid the phenomenon of carbonaceous solid fuel blowing up. It is also assumed that this method can achieve the objectives of tl+, +21, and (3) to some extent.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上底吹精錬炉による溶融還元法は1通常の転炉製鋼法と
比較するとその生産性は未だ非常に低いと言わざるを得
ない、この生産性が低いが故に耐火物コストが甚大にな
り、大量の電力を消費する半埋没式電弧炉法や巨大ar
k *を要する高炉法よりも経済性に劣る場合がある。
It must be said that the productivity of the smelting reduction method using a top-bottom blowing refining furnace is still very low compared to the normal converter steel manufacturing method.Because of this low productivity, the cost of refractories becomes enormous. Semi-submerged electric arc furnace method and giant AR which consume large amount of electricity
It may be less economical than the blast furnace method, which requires k*.

このことは、前記の公知の改善法を採用しても然りであ
ると言わねばならない。
It must be said that this is true even if the above-mentioned known improvement method is adopted.

例えば上吹きランス先端の噴出口の数を増して酸化性ガ
スを末拡がりに吹く方法では、各ガス噴出口の口径が小
さくなり、このために圧力損失が著しくなるので、ガス
噴流の拡がりには自から限界があり、現状をはるかに凌
駕する生産性を期待することは難しい。
For example, in the method of increasing the number of jets at the tip of the top blowing lance and blowing the oxidizing gas in a widening direction, the diameter of each gas jet becomes small, which causes a significant pressure loss, so the spread of the gas jet is There are inherent limits, and it is difficult to expect productivity to far exceed the current level.

また、底吹きノズルさらには横吹きノズルからのガス攪
拌を行なう方法では、その吹込ガスとしてAr、Nz+
LPG+CO□等を用いる場合には、吹込ガス量の増加
によって還元反応を行なうための溶融スラグ浴の温度が
次第に低下するという、冷え込みの問題が伴う。この冷
え込みを回避するために酸化性ガスを混合したり、二重
管ノズルを介して同時に酸化性ガスを吹込む場合には、
吹込むノズル溶損の問題が生じたり、或いは吹込ガス量
の増大によって吹き抜けの問題が新たに生じ、結局吹き
込みガス量の増大による撹拌力強化にも自から限界があ
る。
In addition, in the method of stirring gas from a bottom-blowing nozzle or a side-blowing nozzle, Ar, Nz+
When LPG+CO□ or the like is used, there is a problem of cooling, in which the temperature of the molten slag bath for carrying out the reduction reaction gradually decreases as the amount of blown gas increases. To avoid this cooling, when mixing oxidizing gases or simultaneously blowing oxidizing gases through a double pipe nozzle,
The problem of erosion of the blowing nozzle may arise, or the problem of blow-through may arise due to an increase in the amount of blown gas, and as a result, there is a limit to the ability to strengthen the stirring force by increasing the amount of blown gas.

本発明は、このような問題の解決を意図し、上底吹精錬
炉において生産性よく溶融還元を実施する方法の提供を
目的としたものである。
The present invention is intended to solve these problems, and aims to provide a method for carrying out melting reduction with good productivity in a top-bottom blowing refining furnace.

〔問題点を解決する手段〕[Means to solve problems]

前記の目的を達成せんとする本発明の要旨とするところ
は、傾動によって内容物の排出が可能な上底吹型精錬炉
内の融解物を含む湯面に炭素質固体燃料を投入し、上吹
きランスから酸化性ガスを吹付けることにより炭素質固
体燃料を燃焼させ。
The gist of the present invention, which aims to achieve the above object, is to charge carbonaceous solid fuel to the hot water surface containing melt in a top-bottom blowing type refining furnace whose contents can be discharged by tilting, and to Carbonaceous solid fuel is combusted by blowing oxidizing gas from a blow lance.

この燃焼熱によって炉内に投入した精錬目的金属の酸化
物を含む固体原料物質の溶解と該精錬目的金属酸化物の
還元反応を進行させる溶融還元法において、複数本の上
吹きランスを使用し、各々から垂直方向に酸化性ガスを
内容物(溶融金属上の溶融スラグ面)に吹付けて複数の
火点を形成すると共に、各火点の位置を底吹きノズルの
鉛直線上の位置とは偏位させることを特徴とする。すな
わち本発明は、底吹きノズルからのガス攪拌を実施しな
がら、複数本の垂直上吹きランスから複数の定置火点を
溶融スラグの浴面上に形成すること。
In the smelting reduction method, in which the combustion heat is used to melt a solid raw material containing an oxide of a metal to be refined, which is introduced into the furnace, and to proceed with a reduction reaction of the metal oxide to be refined, a plurality of top blowing lances are used. Oxidizing gas is sprayed vertically from each to the contents (molten slag surface on molten metal) to form multiple flash points, and the position of each flash point is deviated from the vertical position of the bottom blowing nozzle. It is characterized by being placed in a position. That is, the present invention is to form a plurality of stationary flash points on the bath surface of molten slag from a plurality of vertical top-blowing lances while performing gas agitation from a bottom-blowing nozzle.

そして各火点位置は底吹きノズルの位置とは偏位させる
こと、によって溶融スラグ層の攪拌流動を効果的に行わ
せながら燃焼効率の向上を図ったものである。
By deviating the position of each fire point from the position of the bottom blowing nozzle, the combustion efficiency is improved while effectively stirring and flowing the molten slag layer.

第1図および第2図は1本発明法を適用する傾動可能な
上底吹精錬炉の例を示したもので、上部に開口lをもつ
傾動可能な精錬容器2の底部には底吹きノズル3が設け
られ、上部開口lからは複数本のランス4a、4bが挿
入される。精錬容器2内に溶銑5を装入し、炉上部の開
口1から炭素質固体燃料としてのコークス並びに固体酸
化物原料としてクロム鉱石を投入し、適宜造滓材を投入
してクロム鉱石の溶融還元を実施する場合を例として本
発明法を以下に具体的に説明する。
Figures 1 and 2 show an example of a tiltable top-bottom blowing refining furnace to which the method of the present invention is applied. 3 is provided, and a plurality of lances 4a, 4b are inserted from the upper opening l. Hot metal 5 is charged into the refining vessel 2, and coke as a carbonaceous solid fuel and chromium ore as a raw material for solid oxide are introduced through the opening 1 at the top of the furnace, and slag making material is introduced as appropriate to melt and reduce the chromium ore. The method of the present invention will be specifically explained below, taking as an example a case where the method is implemented.

底吹きノズル3から酸素含有ガス例えば空気を供給しな
がら溶銑5を容器2内に装入したうえ。
Hot metal 5 is charged into the container 2 while supplying an oxygen-containing gas such as air from the bottom blowing nozzle 3.

上部の開口1からコークスと必要に応して造滓材を投入
し、上吹きランス4 a + 4 bから酸化性ガス例
えば酸素ガスを溶融スラグ上に吹付けて該浴面上のコー
クスを燃焼させる。溶銑温度が十分に昇温したら開口l
からクロム鉱石の投入を開始する。
Coke and slag-making material are introduced from the upper opening 1, and oxidizing gas such as oxygen gas is blown onto the molten slag from the top blowing lances 4a + 4b to burn the coke on the bath surface. let When the hot metal temperature has risen sufficiently, open the
Start adding chrome ore.

このクロム鉱石の投入を回分式または連続式に行なう場
合には、それにつれてコークスも回分式または連続的に
投入して昇温および還元に必要な炭素源を補給する。処
理の間は、底吹きノズル3からのガスの供給と各上吹き
ランス4a、4bからの酸化性ガスの供給を続けるが、
各上吹きランス4a、4bは垂直方向に固設して浴面に
対して酸化性ガスを垂直方向に吹付けて複数の定置火点
6a、6bを形成させる。そのさい、各上吹きランス4
a、4bの位置は、平面的な配置関係を示す第2図に見
られるように、底吹きノズル3a、3bの位置とは偏位
した位置とする。図示の例では、二個の底吹きノズル3
a。
When this chromium ore is added batchwise or continuously, coke is also added batchwise or continuously to replenish the carbon source necessary for temperature raising and reduction. During the treatment, the supply of gas from the bottom blowing nozzle 3 and the supply of oxidizing gas from each top blowing lance 4a, 4b are continued.
Each of the top blowing lances 4a, 4b is vertically fixed and blows oxidizing gas vertically onto the bath surface to form a plurality of stationary flash points 6a, 6b. At that time, each top blow lance 4
The positions of a and 4b are offset from the positions of the bottom blowing nozzles 3a and 3b, as seen in FIG. 2 showing the planar arrangement. In the illustrated example, two bottom blowing nozzles 3
a.

3bが炉心を通る一つの直線上に炉心から一定の距離を
おいて設けられ、この底吹きノズル3a、3bが存在す
る直線とは直交する直線上において炉心がら一定の距離
をおいて上吹きランス4a、4bの位置を定めた例を示
している。より具体的には、成る半径をもつ円環内に底
吹きノズルと上吹きランスとが交互に位置するような関
係をもって両者を配置しである。
3b is provided at a certain distance from the reactor core on a straight line passing through the reactor core, and a top blowing lance is provided at a certain distance from the reactor core on a straight line orthogonal to the straight line where the bottom blowing nozzles 3a and 3b are present. An example is shown in which the positions of 4a and 4b are determined. More specifically, the bottom blowing nozzle and the top blowing lance are arranged in such a relationship that they are alternately located within an annular ring having a radius of .

このような複数の定置火点6a、6bを形成し、この定
置火点6a、6bとは偏位した位置からガスを底吹きす
ることによって、各々高温を維持している複数個の定置
火点6a、6bにスラグ層7中のコークスとクロム鉱石
が連続的に供給され、クロム鉱石の溶解と還元反応が効
果的に進行する。これは。
A plurality of such fixed hot points 6a, 6b are formed, and these fixed hot points 6a, 6b are a plurality of fixed hot points each maintaining a high temperature by bottom-blowing gas from offset positions. The coke and chromium ore in the slag layer 7 are continuously supplied to 6a and 6b, and the dissolution and reduction reaction of the chromium ore proceed effectively. this is.

還元反応は高温のコークスの表面ないしは表面近傍で進
行すると思料されるが2本発明法によるとこのような高
温のコークスの表面ないしは表面近傍の反応サイトが複
数形成され、各々の反応サイトに未還元のクロム鉱石が
連続的に供給されることになるからであろうと考えられ
る。特に1本発明法のように目的金属酸化物の溶融還元
を実施する場合には1通常の転炉製鋼法とは異なり極め
て大量のスラグ層7が、処理の間、常時存在することに
なるが、かようなスラグ層7は溶銑に比べて熱伝導性が
著しく小さり、シたがって、その全体を短時間で昇温す
ることは困難となるが1本発明法のように高温の定置火
点6a、6bを複数形成したうえで、各高温の定置火点
6a 、 6bに底吹きガスによる攪拌によって未還元
物質を連続的に供給する場合には、目的金属酸化物の溶
解と還元がこの部分で積極的に進行することになると考
えられる。
It is thought that the reduction reaction proceeds on or near the surface of high-temperature coke.2 According to the method of the present invention, a plurality of reaction sites are formed on or near the surface of high-temperature coke, and each reaction site has unreduced This is thought to be due to the continuous supply of chromium ore. In particular, when the target metal oxide is smelted and reduced as in the method of the present invention, an extremely large amount of slag layer 7 is constantly present during the process, unlike the normal converter steel manufacturing method. The thermal conductivity of such a slag layer 7 is significantly lower than that of hot metal, and therefore it is difficult to raise the temperature of the entire layer in a short time. When a plurality of points 6a and 6b are formed and unreduced substances are continuously supplied to each high-temperature fixed boiling point 6a and 6b by stirring with bottom-blown gas, the dissolution and reduction of the target metal oxide are It is thought that this will be actively promoted in some areas.

また本発明法のように定置火点を複数個形成することに
よって、溶融スラグ浴の凹部の内表面の総面積が増大す
る。したがって、、+iランスと同量の酸化性ガスを本
発明のように複数のランスから分配して供給した場合に
も(供給ガス量は単ランスと同じであっても)、単ラン
スの場合に比べて均一混合時間が短縮するものと考えら
れる。このようなことから1本発明法によると上底吹精
錬炉での溶融還元処理の作業性が著しく改善される。ま
た本発明法では各ランスへの地金の付着が無くランス寿
命が短くなることもない。
Further, by forming a plurality of stationary flash points as in the method of the present invention, the total area of the inner surface of the recessed portion of the molten slag bath increases. Therefore, even if the same amount of oxidizing gas as +i lance is distributed and supplied from multiple lances as in the present invention (even if the amount of gas supplied is the same as that of a single lance), in the case of a single lance, It is thought that the uniform mixing time is shortened in comparison. For these reasons, according to the method of the present invention, the workability of melting reduction treatment in a top-bottom blowing refining furnace is significantly improved. In addition, in the method of the present invention, metal does not adhere to each lance, and the life of the lance is not shortened.

以下に実施例を挙げて本発明の効果を具体的に示す。EXAMPLES The effects of the present invention will be specifically illustrated by examples below.

実施例 第1図および第2図に示したように、炉底に二個の底吹
きノズル3a、3bを有する30トン規模の精錬容器2
を使用し、各底吹きノズル3a、3bから20ONm’
/hr・ノズルの流量で酸素30%、窒素70%のガス
を吹込ながら、C:3.4%、Si:0.3%+  M
n:0,4%、  P :0.020%、  S :o
、o2i%、  Cr : 10.5%の温度が141
0℃の含クロム溶銑21.6 トンを装入し1次いで、
第1表に示す化学成分値のコークス2.0トンと、第1
表に示す化学成分値の生石灰および珪石を、生成する溶
融スラグの塩基度が1.0となるように割り振って合計
で2.5トンを炉上部の開口lから容器内に投入し、第
1〜2図に示すように各底吹きノズル3a、3bとは偏
心した位置に垂直に固設した二本の上吹きランス4a、
4bの各々から酸素ガスを255ON+i’/hr・ラ
ンスの泥足で浴面に向けて吹付け、含クロム溶銑の温度
を1600℃まで昇温して造滓した。
Embodiment As shown in FIGS. 1 and 2, a 30-ton refining vessel 2 has two bottom blowing nozzles 3a and 3b at the bottom of the furnace.
20ONm' from each bottom blowing nozzle 3a, 3b.
C: 3.4%, Si: 0.3% + M while blowing 30% oxygen and 70% nitrogen gas at a flow rate of /hr nozzle.
n: 0.4%, P: 0.020%, S: o
, o2i%, Cr: 10.5% temperature is 141
First, 21.6 tons of chromium-containing hot metal at 0°C was charged.
2.0 tons of coke with the chemical composition values shown in Table 1 and
A total of 2.5 tons of quicklime and silica stone having the chemical composition values shown in the table are distributed so that the basicity of the molten slag produced is 1.0, and a total of 2.5 tons is charged into the container from the opening L at the top of the furnace. ~2 As shown in Figure 2, each bottom blowing nozzle 3a, 3b consists of two top blowing lances 4a fixed vertically at eccentric positions.
Oxygen gas was blown onto the bath surface from each of 4b with a lance of 255 ON+i'/hr, and the temperature of the chromium-containing hot metal was raised to 1600°C to form slag.

その後、第1表に示す化学成分値のクロム鉱石半還元ペ
レッ)  (Cr分還元率=47%、Fe分還元率二8
4%)に、コークスと、溶融スラグの塩基度が常に0.
90−1.05の範囲で且つスラグ中のMgO+ A 
l 、0.が40〜42%の範囲に維持されるように造
滓材を添加しながら、溶銑温度を測定しつつ該温度が常
に1580〜1640℃の範囲に維持されるように、温
度が低い間はこの温度に達するまで装入を差し控える方
法で、全21.0 トンのベレットを1/15づづに分
けて間歇的に装入を続けた。このクロム鉱石半還元ペレ
ットの装入開始からその全量装入終了まで101分間で
あった。全装入の終了後は各上吹きランス4 a + 
4 bの酸素量を1/2に減じて7分間吹錬したあと上
吹きを停止し、炉を傾動して溶滓と溶銑を排出し、cニ
ア、o%、Si:0.2%。
After that, semi-reduced chromium ore pellets with chemical composition values shown in Table 1) (Cr content reduction rate = 47%, Fe content reduction rate 28%)
4%), the basicity of coke and molten slag is always 0.
MgO+A in the range of 90-1.05 and in the slag
l, 0. While the temperature is low, the hot metal temperature is constantly maintained in the range of 1580 to 1640 °C while adding slag material so that the temperature is maintained in the range of 40 to 42%. The total 21.0 ton pellets were divided into 1/15 portions and charging was continued intermittently by withholding charging until the temperature was reached. It took 101 minutes from the start of charging the semi-reduced chromium ore pellets to the end of charging the entire amount. After all charging is completed, each top blow lance 4a +
After blowing for 7 minutes with the oxygen content of 4 B reduced to 1/2, top blowing was stopped, the furnace was tilted to discharge the slag and hot metal, and c near, 0%, Si: 0.2%.

Mn:0.5%、  P : 0.027%、  S 
:o、o36%、Cr:24.9%の含クロム溶銑31
.1 トンを得た。
Mn: 0.5%, P: 0.027%, S
:o, o36%, Cr:24.9% chromium-containing hot metal 31
.. Obtained 1 ton.

比較例 前記実施例と同じ精錬容器を使用したが、容器のセンタ
ーに位置させた一本の上吹きランスを使用し、C:3.
5%、Si:0.4%、Mn:0.3%。
Comparative Example The same refining vessel as in the previous example was used, but with a single top blowing lance located in the center of the vessel, and C:3.
5%, Si: 0.4%, Mn: 0.3%.

P : 0.024%、  S : 0.020%、C
r:10.7%の温度が1420℃の含クロム溶銑21
.2 )ンを使用した以外は実施例1と同じ操作を行っ
た。なお、上吹き単ランスからの酸素ガス供給量は前記
実施例の二本の合計I!k(5100Nm3/hr)で
ある。
P: 0.024%, S: 0.020%, C
r: 10.7% chromium-containing hot metal 21 with a temperature of 1420°C
.. 2) The same operation as in Example 1 was performed except that a tube was used. The amount of oxygen gas supplied from the top-blowing single lance is the total of the two lances in the above example. k (5100Nm3/hr).

本例ではクロム鉱石半還元ペレットの装入開始から全5
1 (21,0)ン)装入終了まで133分を要した。
In this example, a total of 5
1 (21,0)) It took 133 minutes to complete charging.

また、全量装入終了から8分間は上吹き酸素量を172
に減じて吹錬を行ない、前記実施例と同様に溶滓と溶銑
を排出して、C:6.8%+Si:0.3%+Mn:O
−5%、  P :0.029%、  S :o、o3
s%、Cr:24.5%の含クロム溶銑31.5 )ン
を得た。
In addition, for 8 minutes after the completion of full charging, the amount of top-blown oxygen was increased to 172
The slag and hot metal were discharged in the same manner as in the previous example, and C: 6.8% + Si: 0.3% + Mn: O
-5%, P: 0.029%, S: o, o3
A chromium-containing hot metal of 31.5% and Cr: 24.5% was obtained.

以上のように、実施例の本発明法では比較例の場合に比
べて、上底吹きのガス量が同じであっても、クロム鉱石
の溶融還元の生産性は約20%改善されたことがわかる
。また、前記の実施例同様の操業を同じ上吹きランス4
a、4bを使用して15回実施し、しかる後に両ランス
の付着地金の有無を点検したが付着地金は皆無であった
As described above, the productivity of smelting reduction of chromium ore was improved by about 20% in the method of the present invention in the example, compared to the comparative example, even if the amount of gas in top and bottom blowing was the same. Recognize. In addition, the same top blowing lance 4 was used in the same operation as in the above embodiment.
The test was carried out 15 times using lances a and 4b, and then both lances were inspected for the presence or absence of adhered metal, but there was no adhered metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法を実施するのに好適な上底吹精錬炉の
例を示す略断面図、第2図は第1図の精錬炉の底吹きノ
ズルと上吹きランスとの設置関係を説明するための略平
面図である。 1・・上部開口、  2・・精錬容器、  3・・底吹
きノズル、   4・・上吹きランス、  5・・溶銑
、  6・・火点、  7・・溶融スラグ層。
Figure 1 is a schematic sectional view showing an example of a top-bottom blowing refining furnace suitable for carrying out the method of the present invention, and Figure 2 shows the installation relationship between the bottom-blowing nozzle and top-blowing lance of the refining furnace shown in Figure 1. FIG. 2 is a schematic plan view for explanation. 1. Top opening, 2. Refining vessel, 3. Bottom blowing nozzle, 4. Top blowing lance, 5. Hot metal, 6. Fire point, 7. Molten slag layer.

Claims (1)

【特許請求の範囲】[Claims] 傾動によって内容物の排出が可能な上底吹型精錬炉内の
融解物を含む湯面に炭素質固体燃料を投入し、上吹きラ
ンスから酸化性ガスを吹付けることにより該炭素質固体
燃料を燃焼させ、この燃焼熱によって炉内に投入した精
錬目的金属の酸化物を含む固体原料物質の溶解と該精錬
目的金属酸化物の還元反応を進行させる溶融還元法にお
いて、複数本の上吹きランスを使用し、各々から垂直方
向に酸化性ガスを内容物に吹付けて複数の火点を形成す
ると共に、各火点の位置を底吹きノズルの鉛直線上の位
置とは偏位させることを特徴とする上底吹型精錬炉にお
ける溶融還元法。
Carbonaceous solid fuel is poured into the hot water surface containing melt in a top-bottom blowing type refining furnace whose contents can be discharged by tilting, and the carbonaceous solid fuel is blown by blowing oxidizing gas from a top-blowing lance. In the smelting reduction method, which uses the combustion heat to melt a solid raw material containing an oxide of a metal to be refined, which is put into a furnace, and to proceed with a reduction reaction of the metal oxide to be refined, a plurality of top-blowing lances are used. oxidizing gas is sprayed vertically onto the contents from each to form a plurality of flash points, and the position of each flash point is deviated from the position on the vertical line of the bottom blowing nozzle. Smelting reduction method in a top-bottom blowing refining furnace.
JP948387A 1987-01-19 1987-01-19 Smelt-reduction method for top and bottom blow refining furnace Pending JPS63179013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP948387A JPS63179013A (en) 1987-01-19 1987-01-19 Smelt-reduction method for top and bottom blow refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP948387A JPS63179013A (en) 1987-01-19 1987-01-19 Smelt-reduction method for top and bottom blow refining furnace

Publications (1)

Publication Number Publication Date
JPS63179013A true JPS63179013A (en) 1988-07-23

Family

ID=11721488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP948387A Pending JPS63179013A (en) 1987-01-19 1987-01-19 Smelt-reduction method for top and bottom blow refining furnace

Country Status (1)

Country Link
JP (1) JPS63179013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132969A (en) * 2007-11-30 2009-06-18 Jfe Steel Corp Top and bottom-blown converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137113A (en) * 1986-11-29 1988-06-09 Nippon Steel Corp Method and apparatus for smelting reduction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137113A (en) * 1986-11-29 1988-06-09 Nippon Steel Corp Method and apparatus for smelting reduction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132969A (en) * 2007-11-30 2009-06-18 Jfe Steel Corp Top and bottom-blown converter

Similar Documents

Publication Publication Date Title
JP2007092158A (en) Dephosphorize-treatment method for molten iron
JP2012031452A (en) Method of dephosphorizing hot metal
JP4715384B2 (en) Method for dephosphorizing hot metal and top blowing lance for dephosphorization
US3323907A (en) Production of chromium steels
JPH01127613A (en) Method and apparatus for refining molten metal
JPS63179013A (en) Smelt-reduction method for top and bottom blow refining furnace
JP2020125541A (en) Converter refining method
JPH0477046B2 (en)
JP4686880B2 (en) Hot phosphorus dephosphorization method
JP2005089839A (en) Method for refining molten steel
JP2000337776A (en) Method for improving secondary combustion rate and heating efficiency of melting furnace, or the like
JPH0768574B2 (en) Metal oxide smelting reduction method and smelting reduction furnace
JP3309395B2 (en) Converter refining method
JPS61284512A (en) Production of high-chromium steel using chromium ore
JPH0860221A (en) Converter steelmaking method
JP2842185B2 (en) Method for producing molten stainless steel by smelting reduction
JPS631367B2 (en)
JPH02221310A (en) Production of ni-and cr-containing molten metal
JP3788392B2 (en) Method for producing high Cr molten steel
JPH0431016B2 (en)
JPS624810A (en) Refining furnace for iron making by melt reduction
JP2713795B2 (en) Stainless steel smelting method
JPS62116712A (en) Melting and smelting vessel having splash lance
JPS63179014A (en) Smelt-reduction method for metal oxide in top and bottom blown refining furnace
JPH09202912A (en) Method for dephosphorizing molten iron under condition excellent in scrap melting capacity