JPS63178576A - Semiconductor laser of buried structure - Google Patents

Semiconductor laser of buried structure

Info

Publication number
JPS63178576A
JPS63178576A JP1081287A JP1081287A JPS63178576A JP S63178576 A JPS63178576 A JP S63178576A JP 1081287 A JP1081287 A JP 1081287A JP 1081287 A JP1081287 A JP 1081287A JP S63178576 A JPS63178576 A JP S63178576A
Authority
JP
Japan
Prior art keywords
layer
doped
semiconductor laser
active region
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1081287A
Other languages
Japanese (ja)
Other versions
JP2522281B2 (en
Inventor
Yoshitake Katou
芳健 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62010812A priority Critical patent/JP2522281B2/en
Publication of JPS63178576A publication Critical patent/JPS63178576A/en
Application granted granted Critical
Publication of JP2522281B2 publication Critical patent/JP2522281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high efficiency and high output while making a high-speed modulation action possible by doping Ti having small diffusion constant to a high resistance current block layer. CONSTITUTION:An active region 11 of a semiconductor laser consists of non- doped InGaAsP (Eg=0.95eV), a p-clad layer 12 consists of InP doped with Zn (1X10<18>cm<-3>), a p-cap layer 18 consists of an InGaAsP (Eg=1.13eV) layer doped with Zn (8X10<18>cm<-3>), an n-buffer layer 13 consists of an InP layer doped with S (1X10<18>cm<-3>), a high resistance current block layer 14 consists of an InP layer doped with Ti (1X10<16>cm<-3>) and a substrate 15 consists of an S-dope InP substrate. Since the impurities doped to the block layer 14 is Ti having small diffusion constant, high-speed modulation with high efficiency and high output is possible.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高速変調動作に適する埋込み構造半導体レー
ザに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a buried structure semiconductor laser suitable for high-speed modulation operation.

(従来の技術) 半導体レーザは光フアイバ通信の光源として実用化が始
まっている。この用途に用いられる半導体レーザは、高
速変PIが可能でかつ高い効率で発振することが望まし
い。特に、光ファイバの低損失化の進展にともない、1
00廟を越える無中継伝送が可能となりつつあるので、
このような要請はより強くなっている。
(Prior Art) Semiconductor lasers have begun to be put into practical use as light sources for optical fiber communications. It is desirable that the semiconductor laser used for this purpose be able to change the PI at high speed and oscillate with high efficiency. In particular, with the progress in reducing the loss of optical fibers, 1
Since it is becoming possible to transmit without relays over 00 temples,
These demands are becoming stronger.

従来の半導体レーザの構造を第3図に示した(アプライ
ド・フィシ・ンクス・レターズ(八ppl。
The structure of a conventional semiconductor laser is shown in Figure 3 (Applied Physics Letters (8ppl.

Phys、  Lett、  ) 48巻、 1986
年、 1572〜1573頁)。
Phys, Lett, ) Volume 48, 1986
, pp. 1572-1573).

この素子では、半導体基板35の上にnバッファ層33
、活性領域31.pクラッド層32.pキャップ層38
が順次積層されており、活性領域31の両側には、Fe
がドープされた斉抵抗M34が配置されている。
In this device, an n-buffer layer 33 is formed on a semiconductor substrate 35.
, active region 31. p cladding layer 32. p cap layer 38
are sequentially stacked, and on both sides of the active region 31, Fe
A resistor M34 doped with is arranged.

この半導体レーザのp側電極36とn側電極37に通電
すると、高抵抗層34の抵抗率が非常に高いから電流は
活性領域31に集中して流れる。この構造では、pn接
合は、活性領域31を上下からはさんだ幅約1μmの領
域にしか形成されない。そこで、この半導体レーザの静
電容量は約1pFと非常に小さくなり、pn逆接合を電
流ブロック屑に用いた半導体レーザの静電容量に比べる
と約171oに低減できる。従って、時定数は非常に短
くなりI GH2以上の高速変調が可能となる。この半
導体レーザでは2GHz程度の高速変調動作が得られた
When current is applied to the p-side electrode 36 and n-side electrode 37 of this semiconductor laser, the current flows concentratedly in the active region 31 because the resistivity of the high-resistance layer 34 is very high. In this structure, the pn junction is formed only in a region with a width of about 1 μm between the active region 31 from above and below. Therefore, the capacitance of this semiconductor laser is very small, about 1 pF, and can be reduced to about 171° compared to the capacitance of a semiconductor laser using a pn inverse junction as the current block waste. Therefore, the time constant becomes extremely short and high-speed modulation of IGH2 or higher is possible. With this semiconductor laser, high-speed modulation operation of about 2 GHz was obtained.

(発明が解決しようとする問題点) 従来の高抵抗層を用いた第3図の半導体レーザでは、室
温(30℃)における外部微分量子効率ηdは片面で0
.2nW/nAであり、最高光出力し1は10〜201
冒程度であった。pnn逆接合電流ブロック層とする半
導体レーザのηdおよびLLlがそれぞれ0.31+W
/l^、 70raWであるから、第3図の構造のηd
およびり、は小さな値であった。このように、従来の半
導体レーザでは、高い量子効率。
(Problems to be Solved by the Invention) In the semiconductor laser shown in FIG. 3 using a conventional high-resistance layer, the external differential quantum efficiency ηd at room temperature (30°C) is 0 on one side.
.. 2nW/nA, maximum light output, 1 is 10-201
It was a blasphemy. ηd and LLl of the semiconductor laser used as the pnn reverse junction current blocking layer are each 0.31+W.
/l^, 70raW, so ηd of the structure shown in Figure 3
and were small values. Thus, conventional semiconductor lasers have high quantum efficiency.

光出力が得られない問題があった。There was a problem that optical output could not be obtained.

本発明の目的は、高効率、高出力が得られ、かつ高速変
調動作が可能な埋込み構造半導体レーザを提供すること
にある。
An object of the present invention is to provide a buried structure semiconductor laser that can obtain high efficiency and high output, and can perform high-speed modulation operation.

(問題点を解決するための手段) 本発明が提供する手段は、活性領域を該活性領域の屈折
率より低い屈折率を有しかつ該活性領域の禁制帯幅より
大きい禁制帯幅を有する半導体で囲んだ埋込み構造半導
体レーザであって、前記活性領域の上側および下側の層
のうち一方がn型で他方がP型であり、前記活性領域を
該活性領域の長手軸の左右両側から埋込む領域はチタニ
ウムがドーピングされた高抵抗電流ブロック層で形成さ
れていることを特徴とする。
(Means for Solving the Problems) The means provided by the present invention provides an active region in a semiconductor having a refractive index lower than the refractive index of the active region and a forbidden band width larger than the forbidden band width of the active region. A buried structure semiconductor laser surrounded by , wherein one of the upper and lower layers of the active region is n-type and the other is p-type, and the active region is buried from both left and right sides of the longitudinal axis of the active region. The doped region is characterized by being formed of a high resistance current blocking layer doped with titanium.

(作用) Tiがドーピングされた■−V族化合物半導体は、鉄(
Fe)がドーピングされたときと同様に半導体の伝導帯
下の深い位置(例えばInPに対しては0.63eV 
)に不純物単位が形成される。この不純物単位が半導体
のキャリアを捕獲して、キャリア濃度が激減し、半導体
が高抵抗化する。
(Function) The ■-V group compound semiconductor doped with Ti is iron (
Similar to when Fe) is doped, the concentration is deep below the conduction band of the semiconductor (for example, 0.63 eV for InP).
) an impurity unit is formed. These impurity units capture carriers in the semiconductor, drastically reducing the carrier concentration and increasing the resistance of the semiconductor.

半導体の深い不純物単位は、キャリアの非発光再結合中
心として働く、従って、拡散係数の大きな不純物を用い
ると埋め込み成長中にその不純物が活性領域中に入り込
み半導体レーザの発光効率を減少させることになる。よ
って、高効率高出力動作する半導体レーザを得るには、
拡散係数の小さな不純物を埋め込み層に用いる必要があ
る。
Deep impurity units in a semiconductor act as non-radiative recombination centers for carriers. Therefore, if an impurity with a large diffusion coefficient is used, the impurity will enter the active region during buried growth and reduce the luminous efficiency of the semiconductor laser. . Therefore, in order to obtain a semiconductor laser that operates with high efficiency and high power,
It is necessary to use an impurity with a small diffusion coefficient in the buried layer.

Feは拡散し易いことが知られている0例えば、InP
系のFeドープ成長では成長中にFeが他の成長層へ拡
散し、その拡散距離が数回に達することが知られている
(エレクトロニクス・レターズ(Electron、 
 Lett、  ) 14巻、 1978年、715〜
716頁)、それに対し、TiドープInPについて本
wB発明者が行った実験ではTiの拡散は極く小さいも
のであった。従って、本発明の半導体レーザでは、Ti
がドーピングされた半導体の埋め込み成長中に活性領域
へのTiの拡散は極めて少ない。その結果高効率、高出
力の発振が得られる。
Fe is known to be easily diffused. For example, InP
It is known that in Fe-doped growth of systems, Fe diffuses to other growth layers during growth, and the diffusion distance reaches several times (Electronics Letters,
Lett, ) 14 volumes, 1978, 715-
(p. 716), on the other hand, in experiments conducted by the inventor of this wB on Ti-doped InP, the diffusion of Ti was extremely small. Therefore, in the semiconductor laser of the present invention, Ti
Diffusion of Ti into the active region during buried growth of a semiconductor doped with Ti is extremely low. As a result, high efficiency and high output oscillation can be obtained.

(実施例) 以下本発明について図面を参照して詳細に説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は本発明の第1の実施例の半導体レーザを示す断
面図である。活性領域11はノンドープI nGaAs
P (エネルギーギャップEg=0.95eV) 、p
クラッド層12は亜鉛(Zn)を1×10180リドー
ブしたInP、pキャブ1層18は亜鉛を8X 101
018a’ドープしなInGaAsP(E g = 1
.13eV)眉、nバッファM13は硫黄(S>をl 
X 1011018aドープしたInP層、高抵抗電流
ブロック層14はチタニウム(Ti)をI X 101
6cm+−3ドープしたInP層から構成されている。
FIG. 1 is a sectional view showing a semiconductor laser according to a first embodiment of the present invention. The active region 11 is made of non-doped InGaAs.
P (energy gap Eg=0.95eV), p
The cladding layer 12 is InP with 1×10180 redoped zinc (Zn), and the p-cab 1 layer 18 is made of 8×101 zinc.
018a'-doped InGaAsP (E g = 1
.. 13eV), n buffer M13 is sulfur (S>l)
X 1011018a doped InP layer, high resistance current blocking layer 14 is titanium (Ti) I
It consists of a 6 cm+-3 doped InP layer.

そして半導体基板15にはSドープInP基板が用いら
れている。
As the semiconductor substrate 15, an S-doped InP substrate is used.

この半導5体レーザは以下に述べる方法で製作された。This semiconductor five-body laser was manufactured by the method described below.

初めに、通常の方法で得られたダブルへテロ(DH>結
晶を第1図に示されるようにストライブ状にケミカルエ
ツチングで活性領域を横幅約1ミクロンのメサ状にする
。その後、ハイドライド気相成長法によって、Tiドー
プInPからなる高抵抗電流ブロック層14を形成した
。ハイドライド気相成長法によってT1ドープInP屑
を形成する場合、In原料としてInメタルとHCIガ
スを高温で反応させて得られるInC!Jガスを用い、
P原料としてPH3ガスを用い、Ti原料としてT i
 C424を用いた。
First, a double hetero (DH> crystal) obtained by a conventional method is chemically etched into stripes as shown in Fig. 1 to form the active region into a mesa shape with a width of about 1 micron. A high-resistance current blocking layer 14 made of Ti-doped InP was formed by a phase growth method.When forming T1-doped InP scraps by a hydride vapor phase growth method, a high-resistance current blocking layer 14 made of Ti-doped InP was formed by reacting In metal and HCI gas as an In raw material at high temperature. Using InC!J gas,
PH3 gas is used as the P raw material, and Ti is used as the Ti raw material.
C424 was used.

この半導体レーザの室温における閾電流は18rDAと
低く、かつ外部微分量子効率ηdは0.2711W/ 
nA。
The threshold current of this semiconductor laser at room temperature is as low as 18 rDA, and the external differential quantum efficiency ηd is 0.2711 W/
nA.

最高光出力し11は55nWであり、高効率、高出力が
得られた。また、変調特性では6 GHz以上の高速変
調動作が得られた。
The highest optical output was 55 nW for No. 11, and high efficiency and high output were obtained. Furthermore, in terms of modulation characteristics, high-speed modulation operation of 6 GHz or higher was obtained.

第2図は本発明の第2の実施例の半導体レーザを示す断
面図である。第1図に示した第1の実施例と異なる点は
、活性領域21の横幅を11JIi程度に制御するため
にInGaAsPを選択エツチングさせてくびれさせた
点である。このようなくびれ部29を有するメサに第1
の実施例と同じ方法でTiドープInPM1をハイドラ
イド気相成長法で埋め込むと、くびれ部29に高抵抗電
流ブロック層24が形成される。この実施例では、第1
の実施例に比べて、溝形状によらず活性層幅を任意の幅
に制御することが可能である。
FIG. 2 is a sectional view showing a semiconductor laser according to a second embodiment of the present invention. The difference from the first embodiment shown in FIG. 1 is that InGaAsP is selectively etched to form a constriction in order to control the width of the active region 21 to about 11JIi. A first mesa with such a constriction 29
When Ti-doped InPM 1 is buried by hydride vapor phase epitaxy in the same manner as in the embodiment, a high-resistance current blocking layer 24 is formed in the constricted portion 29. In this example, the first
Compared to the embodiment described above, it is possible to control the active layer width to an arbitrary width regardless of the groove shape.

この半導体レーザは第1の実施例と同様に高速動作が得
られた。室温におけるηdは0.27nW/l^。
This semiconductor laser achieved high-speed operation similarly to the first example. ηd at room temperature is 0.27 nW/l^.

Llは601Wであり、やはり高効率、高出力が得られ
な。
Ll is 601W, so high efficiency and high output cannot be obtained.

上記第1.第2の実施例では、活性領域に波長1.3ミ
クロンで発振する組成のInGaAsPを用いたが、こ
の組成に限定されないのは明らかである。
Above 1. In the second embodiment, InGaAsP having a composition that oscillates at a wavelength of 1.3 microns is used in the active region, but it is clear that the composition is not limited to this.

上記第1.第2の実施例では、高抵抗電流ブロック層に
InPが用いられたが、InGaAsPでも良い。
Above 1. In the second embodiment, InP was used for the high resistance current blocking layer, but InGaAsP may also be used.

上記第1.第2の実施例では、InGaAsP/ I 
n P半導体材料が用いられたが、GaAρAs/Ga
As、I nGaAuAs/I nP等の他の■−v族
半導体材料からなる半導体レーザにも本発明は同様に適
用可能である。
Above 1. In the second example, InGaAsP/I
Although nP semiconductor materials were used, GaAρAs/Ga
The present invention is similarly applicable to semiconductor lasers made of other ■-v group semiconductor materials such as As and InGaAuAs/InP.

上記第1.第2の実施例では、活性領域の下側をn型、
上側をp型としたが、本発明では下側をp型、上側をn
型としても良い。
Above 1. In the second embodiment, the lower side of the active region is of n-type,
Although the upper side is p-type, in the present invention, the lower side is p-type and the upper side is n-type.
It can also be used as a mold.

(発明の効果) 本発明による半導体レーザは、高抵抗電流ブロック層に
ドープされた不純物が拡散定数の小さいTiであるから
活性領域の発光効率が低下せず、この半導体レーザは高
効率、高出力で発振する。
(Effects of the Invention) In the semiconductor laser according to the present invention, since the impurity doped in the high resistance current blocking layer is Ti, which has a small diffusion constant, the luminous efficiency of the active region does not decrease, and this semiconductor laser has high efficiency and high output. oscillates.

さらに、電流ブロック層が高抵抗であるから、静電容量
が非常に小さく高速の変調が可能である。
Furthermore, since the current blocking layer has a high resistance, the capacitance is very small and high-speed modulation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の半導体レーザを示す断
面図であり、第2図は本発明の第2の実施例の半導体レ
ーザを示す断面図であり、第3図は従来の半導体レーザ
を示す断面図である。 11、21.31・・・活性領域、12.22.32・
・・pクラッド層、13.23.33・・・nバッファ
層、14.24・・・高抵抗電流ブロック層、15.2
5.35・・・半導体基板、16゜26、36−p 0
1lI電極、17.27.37−n側電極、18゜28
、38・・・pキヤツプ層、29・・・くびれ部、34
・・・Feがドープされた高抵抗層。
FIG. 1 is a sectional view showing a semiconductor laser according to a first embodiment of the present invention, FIG. 2 is a sectional view showing a semiconductor laser according to a second embodiment of the present invention, and FIG. FIG. 2 is a cross-sectional view showing a semiconductor laser. 11, 21.31...active region, 12.22.32.
...p cladding layer, 13.23.33...n buffer layer, 14.24...high resistance current blocking layer, 15.2
5.35...Semiconductor substrate, 16°26, 36-p 0
1lI electrode, 17.27.37-n side electrode, 18°28
, 38...p cap layer, 29... constriction, 34
...High resistance layer doped with Fe.

Claims (1)

【特許請求の範囲】[Claims] 活性領域を該活性領域の屈折率より低い屈折率を有しか
つ該活性領域の禁制帯幅より大きい禁制帯幅を有する半
導体で囲んだ埋込み構造半導体レーザにおいて、前記活
性領域の上側および下側の層のうち一方がn型で他方が
p型であり、前記活性領域を該活性領域の長手軸の左右
両側から埋込む領域はチタニウムがドーピングされた高
抵抗電流ブロック層で形成されていることを特徴とする
埋込み構造半導体レーザ。
In a buried structure semiconductor laser in which an active region is surrounded by a semiconductor having a refractive index lower than the refractive index of the active region and a forbidden band width larger than the forbidden band width of the active region, One of the layers is n-type and the other is p-type, and the regions that bury the active region from both left and right sides of the longitudinal axis of the active region are formed of a high resistance current blocking layer doped with titanium. Features a buried structure semiconductor laser.
JP62010812A 1987-01-20 1987-01-20 Embedded structure semiconductor laser Expired - Fee Related JP2522281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62010812A JP2522281B2 (en) 1987-01-20 1987-01-20 Embedded structure semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62010812A JP2522281B2 (en) 1987-01-20 1987-01-20 Embedded structure semiconductor laser

Publications (2)

Publication Number Publication Date
JPS63178576A true JPS63178576A (en) 1988-07-22
JP2522281B2 JP2522281B2 (en) 1996-08-07

Family

ID=11760757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62010812A Expired - Fee Related JP2522281B2 (en) 1987-01-20 1987-01-20 Embedded structure semiconductor laser

Country Status (1)

Country Link
JP (1) JP2522281B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167072A (en) * 1997-06-06 2000-12-26 University Of Florida Modulated cap thin p-clad semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167072A (en) * 1997-06-06 2000-12-26 University Of Florida Modulated cap thin p-clad semiconductor laser

Also Published As

Publication number Publication date
JP2522281B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US4425650A (en) Buried heterostructure laser diode
JPS61264780A (en) Clad superlattice semiconductor laser
JPS6215875A (en) Semiconductor device and manufacture thereof
JP2558744B2 (en) Semiconductor laser device and manufacturing method thereof
JP2553731B2 (en) Semiconductor optical device
JPH09318918A (en) Semiconductor optical modulator
JPS63178576A (en) Semiconductor laser of buried structure
JP2013229568A (en) Semiconductor optical device
JPH0834338B2 (en) Semiconductor laser
US4517674A (en) Zinc-diffused narrow stripe AlGaAs/GaAs double heterostructure laser
JPS6079785A (en) Semiconductor laser device
JP2550714B2 (en) High-resistance semiconductor layer embedded semiconductor laser
US4521887A (en) W-shaped diffused stripe GaAs/AlGaAs laser
JPH0511674B2 (en)
JP2780337B2 (en) High-resistance semiconductor layer embedded semiconductor laser
EP0106152A2 (en) Semiconductor laser device
JPH03133189A (en) Highly resistive semiconductor layer buried type semiconductor laser
EP0177141A2 (en) Semiconductor lasers
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPS6218078A (en) Buried structure semiconductor laser and manufacture of the same
JPS6261383A (en) Semiconductor laser and manufacture thereof
JPH07131116A (en) Semiconductor laser element
JPH05235481A (en) Semiconductor light emitting device
JPS6379392A (en) Manufacture of semiconductor laser having embedded structure
JPS622584A (en) Buried structure semiconductor laser and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees