JPS63176444A - Hyperfine-grained high cemented carbide alloy - Google Patents

Hyperfine-grained high cemented carbide alloy

Info

Publication number
JPS63176444A
JPS63176444A JP552587A JP552587A JPS63176444A JP S63176444 A JPS63176444 A JP S63176444A JP 552587 A JP552587 A JP 552587A JP 552587 A JP552587 A JP 552587A JP S63176444 A JPS63176444 A JP S63176444A
Authority
JP
Japan
Prior art keywords
cemented carbide
phase
metal phase
grained
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP552587A
Other languages
Japanese (ja)
Other versions
JPH0657865B2 (en
Inventor
Nobuhiko Shima
順彦 島
Shiro Okayama
岡山 史郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP62005525A priority Critical patent/JPH0657865B2/en
Publication of JPS63176444A publication Critical patent/JPS63176444A/en
Publication of JPH0657865B2 publication Critical patent/JPH0657865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a hyperfine-grained high cemented carbide improved in wear resistance, chipping resistance, and toughness, by specifying the grain size of WC and the content and composition of a binding metal phase, respectively, in a cemented carbide alloy consisting of a hard phase of WC and a binding metal phase. CONSTITUTION:In the cemented carbide alloy consisting of the hard phase of WC and the binding metal phase, the average grain size of WC is regulated to <=0.4mu and the binding metal phase is also regulated so that it comprises 5-50wt.% and has a structure which is principally composed of one or two elements among Co, Ni, and Fe and in which one of >=2 elements among Cr, Mo, and W are allowed to enter into solid solution. Moreover, the total amount of one or >=2 elements among Cr, Mo, and W existing in the form of solid solution in the binding phase is regulated to 0.5-20wt.% based on the total binding metal phase.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は超微粒子超硬合金に関するものである。[Detailed description of the invention] [Industrial application field] This invention relates to ultrafine grain cemented carbide.

〔従来の技術〕[Conventional technology]

従来、平均粒径1μm以下の炭化タングステン(以下W
Cと称す)よりなる超微粒子超硬合金は結合金属相の主
成分がCoであり、焼結中のWC粒成長を抑制する目的
で、炭化バナジウム(以下VCと称す)、炭化クロム(
以下Cr、C2と称す)炭化タンタル(以下T a C
と称す)等の粒成長抑制剤が0.1重量%〜2.0重量
%添加されているものが一般的であった。しかしこれら
超微粒合金として市販されているもののWCの平均粒径
は0.6〜0.7μmである。
Conventionally, tungsten carbide (hereinafter referred to as W) with an average particle size of 1 μm or less
The main component of the bonded metal phase of the ultrafine-grain cemented carbide is Co, and in order to suppress the growth of WC grains during sintering, vanadium carbide (hereinafter referred to as VC) and chromium carbide (
Tantalum carbide (hereinafter referred to as Cr, C2)
In general, 0.1% to 2.0% by weight of grain growth inhibitors such as However, the average grain size of WC of these commercially available ultrafine grained alloys is 0.6 to 0.7 μm.

また最近、超微粒超硬合金として更にWCを微粒化した
合金が発表された例もあるが、(日刊工業新聞1986
.8.12)WC平均粒径は0.55〜0.6μmであ
り、平均粒径0.4μm以下のWC粒子からなるもので
はない。
In addition, some alloys with even finer grained WC have recently been announced as ultrafine-grained cemented carbide (Nikkan Kogyo Shimbun 1986).
.. 8.12) The WC average particle size is 0.55 to 0.6 μm, and the WC particles do not have an average particle size of 0.4 μm or less.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように現状の超微粒子合金は出発原料として微粒W
Cを用い、これに粒成長抑制剤を加え、CO合金金結合
相とする基本的概念の中にあり、従って、せいぜいWC
の平均粒径で0.6μm前後の合金しか存在し得ていな
い、超微粒子合金としてはよりWC平均粒径が細かいほ
ど強度、耐チッピング、耐摩耗性に優れるため、出発W
CM料の製造法から更に細かい方へ種々の検討はなされ
ているが、現状では前述の如く0.6μm前後が限界で
ある。
In this way, the current ultrafine grain alloys use fine grain W as the starting material.
The basic concept is to use C and add a grain growth inhibitor to form a CO alloy gold binding phase, and therefore, at most WC
There are only alloys with an average grain size of around 0.6 μm.As an ultrafine grain alloy, the finer the WC average grain size, the better the strength, chipping resistance, and wear resistance.
Although various studies have been made to improve the manufacturing method of CM materials, the current limit is around 0.6 μm as described above.

それゆえにこの発明の目的は更に細かいWC平均粒径を
もつ超微粒超硬合金を提供することにある。
Therefore, an object of the present invention is to provide an ultrafine-grained cemented carbide having an even finer WC average grain size.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は上記目的に添い開発されたものであり、その
主旨は従来のW C−Co−粒成長抑制剤という基本概
念から離れ、結合金属相をCo。
This invention was developed in accordance with the above-mentioned objective, and its gist departs from the basic concept of the conventional W C--Co grain growth inhibitor, and uses Co as the binding metal phase.

Ni、Fe、Cr、Mo、Wから選ばれたものより構成
される合金金属相とした微粒合金であることを特徴とす
る。
It is characterized by being a fine-grained alloy with an alloy metal phase composed of a metal selected from Ni, Fe, Cr, Mo, and W.

以下にこの発明の詳細な説明する。This invention will be explained in detail below.

本発明者は微粒合金の粒成長過程を調査中に次の事実を
見出した。市販の平均粒径0.6μmのWC粉末を用い
1粒成長抑制剤とGoを添加し、一般的超微粒合金を作
製すると、0.7μm程度のWC平均粒径をもつ超微粒
合金ができる0粒成長抑制剤の種類によりこのWC平均
粒径は若干の差はあるが大体0.7μm前後である。と
ころが合金作製中における混合粉砕後のWC粒径を調べ
ると出発原料として用いた平均粒径0.6μmのWCは
0.1〜0.3μmまでに粉砕されている。このことは
何を意味するかと云えば、焼結中にWCが粒成長し、0
.7μm前後になることに他ならない、この粒成長の機
構はWCのCO結合相への固溶、その固溶したW、Cの
既存WC粒子への析出が連続的に行われる(オストワル
ド成長)ものである。周知の如<Coは1400℃で2
0%以上のWを固溶するため、結合相としてCOを用い
る限り上述の固溶、析出に基づく粒成長は粒成長抑制剤
を添加しても生じることは避けられない。
The present inventor discovered the following fact while investigating the grain growth process of fine-grained alloys. When a general ultrafine-grained alloy is prepared by using a commercially available WC powder with an average grain size of 0.6 μm and adding a grain growth inhibitor and Go, an ultrafine-grained alloy with a WC average grain size of about 0.7 μm can be obtained. The average WC particle size varies slightly depending on the type of grain growth inhibitor, but is generally around 0.7 μm. However, when examining the WC particle size after mixing and pulverization during alloy production, the WC used as a starting material with an average particle size of 0.6 μm was pulverized to 0.1 to 0.3 μm. What this means is that WC grains grow during sintering and
.. The grain growth mechanism is that the solid solution of WC into the CO binder phase and the precipitation of the dissolved W and C onto the existing WC particles occur continuously (Ostwald growth). It is. As is well known, <Co is 2 at 1400℃
Since 0% or more of W is dissolved in solid solution, as long as CO is used as the binder phase, grain growth due to the above-mentioned solid solution and precipitation will inevitably occur even if a grain growth inhibitor is added.

本発明者はこのような観点から高温にてWの固溶が少な
い結合金属を種々調査し、基本的にC0−N i −C
r 、 Co −N i −Cr −M oおよびCo
−Ni−Fe−Cr等からなる合金を結合相とすること
によりWの固溶限が少ないため、WCの固溶、析出に基
づく粒成長をほぼ全面的に抑制し得、はぼ粉砕後の0.
1〜0.3μmの粒径をもつWCよりなる超微粒合金を
得るに至った。この本発明による合金と従来のW C−
Co−粒成長抑制剤からなる微粒合金の破面写真を第1
図に示す。
From this point of view, the present inventor investigated various bonding metals in which solid solution of W is small at high temperatures, and basically C0-N i -C
r, Co-Ni-Cr-Mo and Co
- By using an alloy consisting of Ni-Fe-Cr etc. as a binder phase, the solid solubility limit of W is small, so grain growth due to solid solution and precipitation of WC can be almost completely suppressed, and the 0.
An ultrafine-grained alloy made of WC with a grain size of 1 to 0.3 μm was obtained. This alloy according to the present invention and the conventional W C-
The first photograph of the fracture surface of a fine-grained alloy made of a Co-grain growth inhibitor is shown below.
As shown in the figure.

次に数値限定した理由を述べる。Next, we will explain the reason for limiting the numerical values.

結合金属相が5重量%に満たないと靭性が著しく劣化し
、また50重量%を越えると工具としての耐摩耗性が満
足されないため、5重量%以上50重量%以下とした。
If the content of the binder metal phase is less than 5% by weight, the toughness will be significantly deteriorated, and if it exceeds 50% by weight, the wear resistance as a tool will not be satisfied.

更に本発明合金は結合金属相の主成分がCo。Furthermore, in the alloy of the present invention, the main component of the bonding metal phase is Co.

W、Feなどの鉄族であり、この中にCr、Mo。Iron family members such as W and Fe, including Cr and Mo.

Wの1種もしくは2種以上が結合金属相全体に対し0.
5〜20重量%固溶されている。この固溶されているC
r、Mo、Wは0.5重量%未満では所望の粒成長抑制
効果がなく、また20重量%を越えて固溶すると逆に靭
性を劣化するため、上記割合で固溶されることが不可欠
となる。
One or more types of W have a 0.
5 to 20% by weight of solid solution. This solid solution C
If r, Mo, and W are less than 0.5% by weight, they will not have the desired grain growth suppressing effect, and if they exceed 20% by weight, the toughness will deteriorate, so it is essential that they be dissolved in the above proportions. becomes.

〔実施例〕〔Example〕

実施例1 市販のWC粉末(平均粒径0.67zm)、TaC(同
1.5μm)、VC(同1.0μm)、水アトマイズN
i−Cr粉(同5.0μm)、CO粉(同1.0μm)
を用い、所定量称量後湿式混合粉砕を行なった。しかる
後4X8X25に成形し、1350℃ 1時間の真空焼
結を行いテス、トピースを作製した。
Example 1 Commercially available WC powder (average particle size 0.67 zm), TaC (1.5 μm), VC (1.0 μm), water atomized N
i-Cr powder (5.0 μm), CO powder (1.0 μm)
After a predetermined quantitative amount, wet mixing and pulverization was performed using a . Thereafter, it was molded into a size of 4×8×25 and vacuum sintered at 1350° C. for 1 hour to produce a test piece.

第1表に本発明合金の物性2粒径を示すが比較合金に比
べ格段に粒径が細かく靭性が高いことがわかる。
Table 1 shows the physical properties of the alloy of the present invention.It is seen that the grain size is much smaller and the toughness is higher than that of the comparative alloy.

実施例2 第1表に示した合金において、φ10mmのエンドミル
を作製し、第2表に示す条件にて油性切削油を用い片削
りの切削テストを行なった結果を第3表に示す。本発明
合金は微粒であるが由に耐チッピング性を示すチッピン
グ発生率及び耐摩耗性とも格段に優れることが認められ
る。尚、チッピ第1表 ング発生率とはチッピングした切刃長さの総和を全切刃
長さの総和で除し、100分率で表わしたものである。
Example 2 An end mill with a diameter of 10 mm was prepared using the alloy shown in Table 1, and a chip cutting test was conducted using an oil-based cutting oil under the conditions shown in Table 2. The results are shown in Table 3. Since the alloy of the present invention has fine grains, it is recognized that both the chipping occurrence rate and the wear resistance are extremely excellent. Incidentally, the first chipping occurrence rate is the sum of the lengths of chipped cutting edges divided by the sum of all the lengths of cutting edges, and is expressed as a percentage.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、従来の微粒WC−Co
−粒成長抑制剤という基本概念では不可能であった0、
4μm以下の平均粒径をもっWCノ、(超硬合金の製造
が可能となり、これにより例えばエンドミル切削等にお
いて、耐摩耗性、耐チッピング性、靭性が著しく改善さ
れることが可能となる。本発明の超微粒合金は従来の超
微粒合金とは全く別の類の新規超微粒超硬合金であるこ
とは云うまでもない。
As described above, according to the present invention, the conventional fine-grained WC-Co
-0, which was impossible with the basic concept of a grain growth inhibitor.
It is possible to produce cemented carbide (WC) with an average grain size of 4 μm or less, and this makes it possible to significantly improve wear resistance, chipping resistance, and toughness, for example, in end mill cutting. It goes without saying that the ultrafine-grained alloy of the invention is a new ultrafine-grained cemented carbide that is completely different from conventional ultrafine-grained alloys.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明合金と従来の超微粒超硬合金との粒径の
差を示すための破面のSEM写真で、第1図(a)は本
発明合金の組織写真を、第1(b)図は従来の超微粒超
硬合金の組織写真を示す図である。
Fig. 1 is an SEM photograph of a fracture surface to show the difference in grain size between the present invention alloy and a conventional ultrafine-grained cemented carbide. b) The figure shows a photograph of the structure of a conventional ultrafine-grained cemented carbide.

Claims (2)

【特許請求の範囲】[Claims] (1)炭化タングステンの硬質相と結合金属相とからな
る超硬合金において、炭化タングステンの平均粒径が0
.4μm以下であり、結合金属相が5重量%以上、50
重量%以下であり、該結合金属相はCo、Ni、Feの
1種もしくは2種以上を主成分に、Cr、Mo、Wの1
種もしくは2種以上が固溶しているものよりなることを
特徴とする超微粒超硬合金。
(1) In a cemented carbide consisting of a hard phase of tungsten carbide and a bonding metal phase, the average grain size of tungsten carbide is 0.
.. 4 μm or less, the binding metal phase is 5% by weight or more, 50
% by weight or less, and the binding metal phase is mainly composed of one or more of Co, Ni, and Fe, and one of Cr, Mo, and W.
An ultrafine-grained cemented carbide comprising one or more species dissolved in solid solution.
(2)特許請求の範囲第1項記載の超硬合金において該
結合相中に固溶する前記Cr、Mo、Wの1種もしくは
2種以上の総量が全結合金属相に対し、0.5重量%以
上20重量%以下であることを特徴とする超微粒超硬合
金。
(2) In the cemented carbide according to claim 1, the total amount of one or more of Cr, Mo, and W dissolved in the binder phase is 0.5 with respect to the total binder metal phase. An ultrafine cemented carbide having a content of % by weight or more and 20% by weight or less.
JP62005525A 1987-01-13 1987-01-13 Superfine cemented carbide Expired - Fee Related JPH0657865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62005525A JPH0657865B2 (en) 1987-01-13 1987-01-13 Superfine cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62005525A JPH0657865B2 (en) 1987-01-13 1987-01-13 Superfine cemented carbide

Publications (2)

Publication Number Publication Date
JPS63176444A true JPS63176444A (en) 1988-07-20
JPH0657865B2 JPH0657865B2 (en) 1994-08-03

Family

ID=11613603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62005525A Expired - Fee Related JPH0657865B2 (en) 1987-01-13 1987-01-13 Superfine cemented carbide

Country Status (1)

Country Link
JP (1) JPH0657865B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255642A (en) * 1988-04-05 1989-10-12 Tokyo Tungsten Co Ltd Dot pin made of sintered hard alloy with corrosion resistance and sintered hard alloy material therefor
JPH036349A (en) * 1989-06-02 1991-01-11 Hitachi Tool Eng Ltd Sintered hard alloy and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176646A (en) * 1984-09-21 1986-04-19 Mitsubishi Metal Corp Tungsten carbide-base sintered hard alloy
JPS61221352A (en) * 1985-03-27 1986-10-01 Sumitomo Electric Ind Ltd Sintered hard alloy for warm and hot forging tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176646A (en) * 1984-09-21 1986-04-19 Mitsubishi Metal Corp Tungsten carbide-base sintered hard alloy
JPS61221352A (en) * 1985-03-27 1986-10-01 Sumitomo Electric Ind Ltd Sintered hard alloy for warm and hot forging tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255642A (en) * 1988-04-05 1989-10-12 Tokyo Tungsten Co Ltd Dot pin made of sintered hard alloy with corrosion resistance and sintered hard alloy material therefor
JPH036349A (en) * 1989-06-02 1991-01-11 Hitachi Tool Eng Ltd Sintered hard alloy and its manufacture
JPH0711049B2 (en) * 1989-06-02 1995-02-08 日立ツール株式会社 Cemented carbide and manufacturing method

Also Published As

Publication number Publication date
JPH0657865B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
JP4662599B2 (en) Manufacturing method of submicron cemented carbide with increased toughness
JP3717525B2 (en) Hard sintered alloy
JP2009540129A (en) Sintered carbide with precision structure
JP2009000807A (en) COATED CUTTING INSERT HAVING Fe-Ni BASE BINDER PHASE
JP2009013495A (en) Fine grained cemented carbide with fine structure
KR20110079901A (en) Metal powder containing molybdenum for producing hard metals based on tungstene carbide
JP2005126824A (en) Cemented carbide and method of making the same
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
JP2007044807A (en) Extremely small diameter end mill made of cemented carbide
JP2580168B2 (en) Nitrogen-containing tungsten carbide based sintered alloy
JP2003013169A (en) WC-Co FINE-PARTICULATE CEMENTED CARBIDE SUPERIOR IN OXIDATION RESISTANCE
JPH07197180A (en) High strength and high hardness sintered hard alloy excellent in corrosion resistance
JPS63176444A (en) Hyperfine-grained high cemented carbide alloy
JPS6176646A (en) Tungsten carbide-base sintered hard alloy
JPS63286550A (en) Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation
JP4282298B2 (en) Super fine cemented carbide
JPS6256944B2 (en)
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPH09111391A (en) Cemented carbide for die
JPH0346538B2 (en)
JPS63109139A (en) Titanium carbide sintered alloy for cutting tool parts
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JP2001115229A (en) Tough superfine cemented carbide
JP2008196041A (en) Cemented carbide
JPH10324942A (en) Ultra-fine cemented carbide, and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees