JPH036349A - Sintered hard alloy and its manufacture - Google Patents

Sintered hard alloy and its manufacture

Info

Publication number
JPH036349A
JPH036349A JP1140685A JP14068589A JPH036349A JP H036349 A JPH036349 A JP H036349A JP 1140685 A JP1140685 A JP 1140685A JP 14068589 A JP14068589 A JP 14068589A JP H036349 A JPH036349 A JP H036349A
Authority
JP
Japan
Prior art keywords
phase
carbide
type solid
solid solution
hard alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1140685A
Other languages
Japanese (ja)
Other versions
JPH0711049B2 (en
Inventor
Hitoshi Horie
堀江 仁
Yusuke Iyori
裕介 井寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP1140685A priority Critical patent/JPH0711049B2/en
Publication of JPH036349A publication Critical patent/JPH036349A/en
Publication of JPH0711049B2 publication Critical patent/JPH0711049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the sintered hard alloy having excellent chipping resistance and wear resistance by subjecting a sintered hard alloy having specified compsn. constituted of a hard phase of WC or the like and a bonding phase of iron-family metal to regulate the grain size by the entering of WC into B-1 type solid soln. CONSTITUTION:In a sintered hard alloy constituted of a hard phase, 80 to 95%, by weight, of 6 to 11% TiC, 1 to 10% TiN, 6 to 12% TaC and/or TaN and/or NbC and the balance WC and a bonding phase of iron-family metal, 5 to 20%, regulation of grain size thereof is executed by the entering of WC into B-1 type solid soln. to refine and uniformize the grains. By this method, the above sintered hard alloy is transformed into a sintered body constituted of a WC phase (alpha phase) of <=1.5 grain size and B-1 type solid soln. (beta phase) of <=2mu. In this way, the sintered hard alloy having excellent chipping resistance and wear resistance in micro cutting or the like can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はP系超硬合金の改良に関する。詳細には、転削
工具の応用範囲の拡大に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in P-based cemented carbide. In detail, it relates to expanding the range of applications of milling tools.

[従来の技術] 硬質相が炭化タングステンとB−1型固溶体からなる超
硬合金はそのすぐれた耐摩耗性と耐衝撃性から様々な用
途に実用化されている。特に、WC−TiC−Ta (
Nb)C−Co系にTiNを微量添加した合金は、その
窒素の添加により、前記の超硬合金よりE−1型固溶体
相の微細化が計れ、より強靭性が要求される用途に使用
されている。従来、B−1型固溶体には、2元系または
4元系の固溶体(WTi)C,(WTiTaNb)C1
が使用され、W C−T i C−第3硬質物質郡(T
aCNbC)の擬3元系状態図で示される。
[Prior Art] Cemented carbide whose hard phase is composed of tungsten carbide and B-1 type solid solution has been put to practical use in a variety of applications due to its excellent wear resistance and impact resistance. In particular, WC-TiC-Ta (
Nb)C-Co alloys with a small amount of TiN added have a finer E-1 type solid solution phase than the above-mentioned cemented carbide due to the addition of nitrogen, and can be used in applications that require higher toughness. ing. Conventionally, B-1 type solid solutions include binary or quaternary solid solutions (WTi)C, (WTiTaNb)C1
is used, W C-T i C- third hard material group (T
aCNbC) is shown in the pseudo-ternary system phase diagram.

FCC相中へのHCP相の固溶限界に近似した組成で使
用されていた。このことは、使用されているWCを固溶
反応を生じさせずに、元の状態のまま、焼結体中に残存
させ、粒度分布の調整をより、しやすくしている効果も
ある。すなわち、wc相には比較的粗い粒度のものを用
いて、B−1型固溶体の微細化に伴う機械的衝撃、耐塑
性変形等の性能をWCの粗粒化によりバランスをとって
いる。
A composition close to the solid solubility limit of the HCP phase in the FCC phase was used. This also has the effect of allowing the WC used to remain in the sintered body in its original state without causing a solid solution reaction, making it easier to adjust the particle size distribution. That is, the WC phase has a relatively coarse grain size, and the properties such as mechanical impact and plastic deformation resistance caused by the refinement of the B-1 solid solution are balanced by making the WC grain coarser.

[発明が解決しようとする問題点] 上記の様に従来のP系超硬合金は4〜8ミクロンの粗粒
WCと1〜2ミクロンの微粒B−1型固溶体をCoで結
合したものであり、T j N 9Q加した場合も概略
同様であった。しかし、最近の高速、高能率切削により
本系列合金の欠点として■耐摩耗性がネト分■切削面粗
度が劣る■微少切削に対しチッピングを生じやすい等、
問題点も指摘されている。
[Problems to be Solved by the Invention] As mentioned above, the conventional P-based cemented carbide is made by combining coarse grains of WC of 4 to 8 microns and B-1 type solid solution of fine grains of 1 to 2 microns with Co. , T j N 9Q was added as well. However, due to recent high-speed, high-efficiency cutting, the drawbacks of this series of alloys include: ■ poor wear resistance; poor cutting surface roughness; and easy chipping during micro-cutting.
Problems have also been pointed out.

[問題点を解決する手段] 合金の組成が同じ場合、B−1型固溶体の組成により合
金の耐摩耗性がきまり、B−1型固溶体中のW含有率が
低いほど耐摩耗性は向上する。さらに切削面粗度は合金
の粒度と相関し、比較的粗粒を使用した場合はおどるの
が一般的であり、微少切削におけるチッピングにたいし
ても同様な傾向が確認されている。従って、B−1型固
溶体中のW含有率をさげ、WC,B−]型固溶体とも、
ある程度まで微細化、均粒化する必要がある。
[Means for solving the problem] When the composition of the alloys is the same, the wear resistance of the alloy is determined by the composition of the B-1 type solid solution, and the lower the W content in the B-1 type solid solution, the better the wear resistance is. . Furthermore, the roughness of the cut surface is correlated with the grain size of the alloy, and generally decreases when relatively coarse grains are used, and a similar tendency has been confirmed for chipping in micro-cutting. Therefore, by lowering the W content in the B-1 type solid solution, both WC and B-] type solid solutions
It is necessary to make the grains finer and more uniform to a certain extent.

B−1型固溶体中のW含有率をさげ耐摩耗性の向上をは
かる方法を種々検討した結果、Tiの添加方法を変えて
も焼結中の拡散により平衡状態となり一定となってしま
う。B−1型固溶、体に窒化物を添加するとWの固溶を
抑制し、B−1型固溶体の組成をIll整することがで
きる。特に、窒化物としては、TiN、TaNの効果が
大きい。またB−1型固溶体の微細化についても、上記
窒化物は効果が高い。
As a result of various studies on ways to improve wear resistance by lowering the W content in the B-1 type solid solution, even if the method of adding Ti was changed, it remained constant in an equilibrium state due to diffusion during sintering. When nitride is added to the B-1 type solid solution, the solid solution of W can be suppressed and the composition of the B-1 type solid solution can be adjusted. In particular, TiN and TaN are particularly effective as nitrides. Furthermore, the above-mentioned nitrides are highly effective in reducing the size of the B-1 type solid solution.

WCに関しては出発原料の平均粒度で調整するが、粒度
分布が問題となり、均一化が困難である。
Regarding WC, it is adjusted by the average particle size of the starting material, but the particle size distribution becomes a problem and it is difficult to make it uniform.

そのため、その粒度調整をB−1型固溶体中へのWC固
溶化に伴う細がなWC粒子の消滅より均粒化を行うこと
を見いだしたのである。
Therefore, the inventors have discovered that the particle size can be adjusted by eliminating fine WC particles as a result of WC solid solution in the B-1 type solid solution.

[作用] 以上のごとく、本発明は炭化チタン6〜11%、窒化チ
タン1〜JO%、炭化タンタル及び/または窒化タンタ
ル及び/または炭化ニオブ6〜12%、残り、炭化タン
グステンからなる硬質相8゜〜95%、鉄族金属からな
る結合相5〜2o%(以上重量パーセント)からなる超
硬合金において焼結体に於ける平均粒度が炭化タングス
テン相(α相)1.5ミクロン以下、B−1型固溶体(
β相)2ミクロン以下よりなり、またその粒度調整をB
−1型固溶体中へのWC固溶化により粒子の微細化、均
粒化を行うことを特徴とする超硬合金の製造方法である
[Function] As described above, the present invention has a hard phase 8 consisting of 6 to 11% titanium carbide, 1 to JO% titanium nitride, 6 to 12% tantalum carbide and/or tantalum nitride and/or niobium carbide, and the remainder tungsten carbide. B −1 type solid solution (
β phase) consists of 2 microns or less, and its particle size is controlled by B
This is a method for producing a cemented carbide, which is characterized in that particles are made finer and more uniform by making them a WC solid solution in a type-1 solid solution.

本発明による超硬合金の組成は以下の理由により限定さ
れる。
The composition of the cemented carbide according to the present invention is limited for the following reasons.

1)TiC添加量は、6%未満では耐クレーター性への
効果が少なく、12%を越えると著しく靭性を阻害する
ために、6〜】2%とした。
1) The amount of TiC added is set to 6 to 2% because less than 6% has little effect on crater resistance, and more than 12% significantly impairs toughness.

2)TiNg=加量ハB −1型固溶体中(D T i
 / Wの比率を決定する必須な添加物であり、1%未
満では、その効果が少なく、10%を越えると著しく靭
性を阻害するために、 1〜10%とした。
2) TiNg=Additional HaB-1 type solid solution (D Ti
It is an essential additive that determines the ratio of W/W, and if it is less than 1%, its effect will be small, and if it exceeds 10%, it will significantly inhibit toughness, so it was set at 1 to 10%.

3)TaC,TaN、NbCの流加量は、(5%未満で
は、粒抑制への効果が少なく、12%を越えて添加して
も顕著な効果がないため6〜12%とした。
3) The fed amounts of TaC, TaN, and NbC were set to 6 to 12% (less than 5% has little effect on grain suppression, and adding more than 12% has no significant effect).

4)鉄族金属の添加量は、5%未満では充分な靭性が得
られず、20%をこえると耐塑性変形性、耐摩耗性を悪
くするため、5〜20%とした。
4) The amount of iron group metal added is set to 5 to 20% because sufficient toughness cannot be obtained if it is less than 5%, and plastic deformation resistance and wear resistance become worse if it exceeds 20%.

5)WC相の粒度は、焼結体での粒度が1.5ミクロン
をこえると、切削面粗度が悪くなるため、1.5ミクロ
ン以下とした。
5) The grain size of the WC phase was set to 1.5 microns or less, since if the grain size in the sintered body exceeds 1.5 microns, the roughness of the cut surface will deteriorate.

6)B−1型固溶体相の粒度は、焼結体での粒度が2ミ
クロンをこえると、WC相に比較し脆い相なため、強度
が劣化しチッピングしやすくなるため、2ミクロン以下
としたが、望ましくは1.5ミクロン以下が良い。
6) The particle size of the B-1 type solid solution phase was set to 2 microns or less because if the particle size in the sintered body exceeds 2 microns, it is a brittle phase compared to the WC phase, resulting in decreased strength and chipping. However, it is preferably 1.5 microns or less.

7)B−]型型温溶体へのWC固溶化は、WCT j、
 C−T a C系では、TaCの量に依らずほぼW 
C/ T i C= 70 / 30の比率となる。し
がし、この系の一部にTiNを雄加すると、この比率は
図2.に示すように、Wの含有率が変化し、Tiに富む
組成となる。この組成は出発原料によらず、ほぼ一定と
なる。例えばWC/1’jC固溶体を用いた場合には、
平衡状態より過飽和となるため、焼結中にWCが析出し
、WC,TiCを単独または飽和しない状態で用いた場
合では、WCを吸収する。この状態は、WCが粗粒の場
合には、焼結時の安定性を計るため、 トリプルカーバ
イドまたはダブルカーバイドと称する予め固溶体を作成
し調整したほうがWC粒度の管理も行い易い等の効果も
あった。しかし、WCの微粒化を計る場合には、混合等
に依って生ずるWCの微粉を焼結中にB=1型固溶固溶
体中り込み、均粒化をはかるのに効果を発揮する。以下
本発明を実施例に基ずき詳細に説明する。
7) WC solid solution in B-] type hot solution is WCT j,
In the C-T a C system, almost W is independent of the amount of TaC.
The ratio is C/T i C=70/30. However, if TiN is added to part of this system, this ratio will increase as shown in Figure 2. As shown in , the W content changes, resulting in a Ti-rich composition. This composition remains almost constant regardless of the starting materials. For example, when using WC/1'jC solid solution,
Since it becomes supersaturated compared to the equilibrium state, WC precipitates during sintering, and when WC and TiC are used alone or in an unsaturated state, WC is absorbed. In this state, if the WC is coarse-grained, it is easier to control the WC particle size by preparing and adjusting a solid solution called triple carbide or double carbide in advance to ensure stability during sintering. Ta. However, when aiming at atomization of WC, the fine WC powder generated by mixing etc. gets into the B=1 type solid solution during sintering, which is effective in achieving uniform particle size. The present invention will be explained in detail below based on examples.

[実施例] 71WC−] 0TiC−10TaC−9Coの組成に
なるよう配合した。配合に使用した原料は市販のWC粉
末(平均粒度1.0μm及び5.0μm)  、’ri
C粉末(同1. 0μm)  、Tj、N粉末(同]、
Oμm)   DC粉末(W C/ Ti C= 70
/30  同1.5μm)  、DC粉末(WC/ T
 i C= 50 / 50  同1.0μm)  、
及び、上記粉末を使用してW C−T i C−T i
 Nの固溶体を作成した。固溶体は■W C/ T j
 C/ T i N=6/3/1   ■W C/ T
 j C/ T i N = 4 /4/2 となるよ
う配合し、乾燥後、1600°C2時間、N雰囲気中で
固溶化処理し、粒度調整を行い、平均粒度0.8μmの
粉末を作成した。
[Example] 71WC-] It was blended to have a composition of 0TiC-10TaC-9Co. The raw materials used in the formulation were commercially available WC powder (average particle size 1.0 μm and 5.0 μm), 'ri
C powder (same 1.0 μm), Tj, N powder (same),
Oμm) DC powder (WC/TiC=70
/30 same 1.5μm), DC powder (WC/T
iC=50/50 same 1.0μm),
And, using the above powder, W C-T i C-T i
A solid solution of N was created. The solid solution is ■W C/ T j
C/ T i N=6/3/1 ■W C/ T
The mixture was blended so that C/T i N = 4/4/2, and after drying, solution treatment was performed at 1600°C for 2 hours in a N atmosphere to adjust the particle size to create a powder with an average particle size of 0.8 μm. .

これらの粉末を第1表に示す様に種々な方法で混合した
。その混合終了後、乾燥した後、TEE433のスロー
アウェイチップをプレス成形し、真空中1400℃ l
hr  焼結したのち、所定の形状に加工した。
These powders were mixed in various ways as shown in Table 1. After completing the mixing and drying, a TEE433 indexable tip was press-molded and heated at 1400°C in a vacuum.
After sintering, it was processed into a predetermined shape.

また、物性、ミクロ組織上の変化を確認するため、上記
チップを研磨、ラップした後、硬さ、破壊靭性値を測定
した。その結果も併せて併記する。
In addition, in order to confirm changes in physical properties and microstructure, the chips were polished and lapped, and then the hardness and fracture toughness values were measured. The results are also listed.

また、粒度は電子顕微鏡による組織観察を行い、その写
真より測定した。本発明】と比較例10の測定結果は、
本発明1がWC相の平均粒度は1、 05μm、  B
−]型固溶体は0.91μmであり、比較例10は、W
C相の平均粒度は4、 0μm、  B−1型固溶体は
2.5.czmと粗く成っていた。さらに、切削性能を
確認するため、下記の諸元でおこなった。
Further, the particle size was determined by observing the structure using an electron microscope and from the photograph. The measurement results of the present invention] and Comparative Example 10 are as follows:
In Invention 1, the average particle size of the WC phase is 1.05 μm, B
-] type solid solution is 0.91 μm, and Comparative Example 10 is W
The average particle size of the C phase is 4.0 μm, and the B-1 type solid solution is 2.5. It was coarsely made of czm. Furthermore, in order to confirm the cutting performance, the following specifications were used.

切削速度  150m/min 送り       0.08mm/刃 切込み     1. 0mm 被削材    5US304 チップ形状  TEE433 カッター形状 φ633枚刃 寿命基準   VB=0.2mmまでの切削時間(mi
n) その結果も表1.に併せて併記する。
Cutting speed 150m/min Feed 0.08mm/blade depth of cut 1. 0mm Work material 5US304 Chip shape TEE433 Cutter shape φ633 Blade life standard Cutting time until VB=0.2mm (mi
n) The results are also shown in Table 1. It is also listed in conjunction with.

第1表の結果より、硬さと破壊靭性値の関係がWC粒度
の違いより、ある程度の差があるが、これらの切削試験
においては、粒度の影響が現れ、比較例は使用初期〜中
期にチッピングによりが命に達したのに対し、本発明例
は正常摩耗により長寿命化が達成されている。また切削
面の粗さも良好である。
From the results in Table 1, the relationship between hardness and fracture toughness values differs to some extent due to the difference in WC grain size, but in these cutting tests, the influence of grain size appeared, and the comparative example showed chipping in the early to mid-use period. In contrast, the example of the present invention achieved a longer life due to normal wear. The roughness of the cut surface is also good.

[発明の効果] P系超硬合金において、焼結体に於ける窒化物添加、及
び製法を調整することにより焼結体における平均粒度を
炭化タングステン相(α相)1.5ミクロン以下、B−
1型固溶体相(β相)1ミクロン以下と微細化を計るこ
とにより微小切削等において、耐チッピング性、耐摩耗
性に優れた超硬合金を開発した。
[Effect of the invention] In P-based cemented carbide, by adjusting the addition of nitride in the sintered body and the manufacturing method, the average grain size in the sintered body can be reduced to 1.5 microns or less for the tungsten carbide phase (α phase) and B −
By miniaturizing the type 1 solid solution phase (β phase) to 1 micron or less, we have developed a cemented carbide with excellent chipping and wear resistance in micro-cutting.

Claims (1)

【特許請求の範囲】 1)炭化チタン6〜11%、窒化チタン1〜10%、炭
化タンタル及び/または窒化タンタル及び/または炭化
ニオブ6〜12%残り、炭化タングステンからなる硬質
相80〜95%、鉄族金属からなる結合相5〜20%(
以上重量パーセント)からなる超硬合金において、焼結
体に於ける平均粒度が炭化タングステン相(α相)1.
5ミクロン以下、B−1型固溶体(β相)2ミクロン以
下よりなることを特徴とする超硬合金。 2)炭化チタン6〜11%、窒化チタン1〜10%、炭
化タンタル及び/または窒化タンタル及び/または炭化
ニオブ6〜12%残り、炭化タングステンからなる硬質
相80〜95%、鉄族金属からなる結合相5〜20%(
以上重量パーセント)からなる超硬合金において、その
粒度調整をB−1型固溶体中へのWC固溶化により行う
ことを特徴とする超硬合金の製造方法。
[Claims] 1) 6 to 11% titanium carbide, 1 to 10% titanium nitride, 6 to 12% tantalum carbide and/or tantalum nitride and/or niobium carbide remaining, and 80 to 95% hard phase consisting of tungsten carbide. , 5-20% binder phase consisting of iron group metals (
In a cemented carbide consisting of a tungsten carbide phase (α phase) with an average grain size of 1.
A cemented carbide characterized by having a diameter of 5 microns or less, and a B-1 type solid solution (β phase) of 2 microns or less. 2) 6-11% titanium carbide, 1-10% titanium nitride, remaining 6-12% tantalum carbide and/or tantalum nitride and/or niobium carbide, 80-95% hard phase consisting of tungsten carbide, consisting of iron group metals Bonded phase 5-20% (
1. A method for producing a cemented carbide, characterized in that the grain size of the cemented carbide is adjusted by dissolving WC into a B-1 type solid solution.
JP1140685A 1989-06-02 1989-06-02 Cemented carbide and manufacturing method Expired - Fee Related JPH0711049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1140685A JPH0711049B2 (en) 1989-06-02 1989-06-02 Cemented carbide and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1140685A JPH0711049B2 (en) 1989-06-02 1989-06-02 Cemented carbide and manufacturing method

Publications (2)

Publication Number Publication Date
JPH036349A true JPH036349A (en) 1991-01-11
JPH0711049B2 JPH0711049B2 (en) 1995-02-08

Family

ID=15274375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1140685A Expired - Fee Related JPH0711049B2 (en) 1989-06-02 1989-06-02 Cemented carbide and manufacturing method

Country Status (1)

Country Link
JP (1) JPH0711049B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591953A (en) * 1978-12-29 1980-07-11 Sumitomo Electric Ind Ltd Sintered hard alloy
JPS602647A (en) * 1983-06-20 1985-01-08 Mitsubishi Metal Corp Tungsten carbide-base sintered hard alloy for cutting tool
JPS63176444A (en) * 1987-01-13 1988-07-20 Hitachi Tool Eng Ltd Hyperfine-grained high cemented carbide alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591953A (en) * 1978-12-29 1980-07-11 Sumitomo Electric Ind Ltd Sintered hard alloy
JPS602647A (en) * 1983-06-20 1985-01-08 Mitsubishi Metal Corp Tungsten carbide-base sintered hard alloy for cutting tool
JPS63176444A (en) * 1987-01-13 1988-07-20 Hitachi Tool Eng Ltd Hyperfine-grained high cemented carbide alloy

Also Published As

Publication number Publication date
JPH0711049B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JP2890592B2 (en) Carbide alloy drill
JP4569767B2 (en) Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JP2000319735A (en) Manufacture of submicron order cemented carbide increased in toughness
JPH10219385A (en) Cutting tool made of composite cermet, excellent in wear resistance
US5421851A (en) Sintered carbonitride alloy with controlled grain size
WO1996022403A1 (en) Titanium-based carbonitride alloy with controllable wear resistance and toughness
JP2003013169A (en) WC-Co FINE-PARTICULATE CEMENTED CARBIDE SUPERIOR IN OXIDATION RESISTANCE
JPH036349A (en) Sintered hard alloy and its manufacture
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
US5503653A (en) Sintered carbonitride alloy with improved wear resistance
JPH05230588A (en) Hard alloy
JPH0346538B2 (en)
JP2006144089A (en) Hard metal made of superfine particle
JPS63109139A (en) Titanium carbide sintered alloy for cutting tool parts
JPS6176646A (en) Tungsten carbide-base sintered hard alloy
JP3232599B2 (en) High hardness cemented carbide
JPS61201750A (en) Sintered hard alloy
JPS602647A (en) Tungsten carbide-base sintered hard alloy for cutting tool
JPH0713277B2 (en) High toughness cermet alloy
JPS636618B2 (en)
JPS5864340A (en) Sintered material for cutting tool with superior characteristic at high temperature
JPS63262443A (en) Tungsten carbide based cemented carbide for cutting tool
JPS60135552A (en) Hyperfine tungsten carbide-base sintered alloy
JPH05311313A (en) Wc-base sintered hard alloy
JPS63176444A (en) Hyperfine-grained high cemented carbide alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees