JPH05311313A - Wc-base sintered hard alloy - Google Patents

Wc-base sintered hard alloy

Info

Publication number
JPH05311313A
JPH05311313A JP14480992A JP14480992A JPH05311313A JP H05311313 A JPH05311313 A JP H05311313A JP 14480992 A JP14480992 A JP 14480992A JP 14480992 A JP14480992 A JP 14480992A JP H05311313 A JPH05311313 A JP H05311313A
Authority
JP
Japan
Prior art keywords
phase
grain
base sintered
hard alloy
sintered hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14480992A
Other languages
Japanese (ja)
Inventor
Akio Washimi
暁夫 鷲見
Hitoshi Horie
仁 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP14480992A priority Critical patent/JPH05311313A/en
Publication of JPH05311313A publication Critical patent/JPH05311313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a WC-base sintered hard alloy for mining tool for which crack propagation is inhibited by specifying the grain size distribution of WC and carbon content in a WC-base sintered hard alloy consisting of specific percentages of WC and binding phase composed essentially of Co. CONSTITUTION:In a WC-base sintered hard alloy used for the mining tool, etc., and consisting of, by weight, 80-95% WC and the balance binding phase, composed essentially of Co, with inevitable impurities, the grain size of hard phase is regulated, from the microstructure at the grinding surface, so that the hard phase consists of, by area ratio, 10-30% coarse-grain WC (>7mu), 30-60% medium-grain WC (4-7mu), and the balance fine-grain WC (<7mu), and further, carbon content is regulated to a theoretical value or below, expressed in terms of WC in a two-phase region. Morover, a part of Co in the binding phase can be substituted by Ni and/or Cr by 0.1-50% and also a part of WC in the hard phase may be substituted by TaC and/or NbC by 0.1-3%. By this method, the WC-base sintered hard alloy where grain growth is prevented and crack propagation is inhibited can be obtained. By using this alloy, a high strength tool can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉱山工具用に適した超
硬合金に関する。
FIELD OF THE INVENTION The present invention relates to a cemented carbide suitable for use in mining tools.

【0002】[0002]

【従来の技術及び課題が解決しようとする問題点】鉱山
工具等に使用される超硬合金には、JIS E種として
粗粒WCを使用したE1(Co量6%)〜E6(同20
%)まで6種類の材種がある。この系の特徴はWCを粗
くし、均粒化を計ったことにあり、粉末の平均粒度で5
〜6ミクロンの粒子が一様に分散しているのが特徴であ
る。
[Problems to be Solved by the Prior Art and Problems] For cemented carbides used for mining tools, etc., E1 (Co amount 6%) to E6 (Same 20%) using coarse grain WC as JIS E type is used.
%), There are 6 types of materials. The characteristic of this system is that the WC is made coarse and the particle size is made uniform.
Characteristic is that particles of ~ 6 microns are uniformly dispersed.

【0003】次に、鉱山用としてはおもにE3、E4、
E5相当品がその使用目的に応じて使用されている。し
かし、破壊靱性値からこの系の材種を見ると、強度の一
つの目安となる抗折力では300kg/mm2 を超える
値を示すのに対し、クラックの伝搬性が破壊のもととな
る破壊靱性値においてはその伝搬性がCo量に応じて、
特にCo量の少ない高硬度材種では、その傾向が顕著と
なる。
Next, for mining, mainly E3, E4,
E5 equivalent products are used according to the purpose of use. However, looking at the grade of this system from the fracture toughness value, while the transverse rupture strength, which is one measure of strength, shows a value exceeding 300 kg / mm 2 , crack propagation is the cause of fracture. In the fracture toughness value, its propagation depends on the Co content,
This tendency becomes remarkable especially in the case of a high hardness material having a small amount of Co.

【0004】[0004]

【発明が解決しようとする課題】この原因は、Co量の
mfp(平均自由工程)が薄くなることにより、クラッ
クを止める効果が小さくなり、強度の向上が十分はかれ
ていないことを示すものである。クラックの伝搬はWC
粒子とCoの境界、WCの粒内、Co中の順で伝搬しに
くくなるため、mfpを厚くするとともに、WCの粒度
分布、特に細粒を減少させる必要がある。
The cause of this is that the effect of stopping cracks becomes small due to the thinning of the mfp (mean free path) of the amount of Co, and the strength is not sufficiently improved. is there. Crack propagation is WC
Since it becomes difficult to propagate in the order of the boundary between the particles and Co, the grains of WC, and the inside of Co, it is necessary to increase the thickness of mfp and reduce the particle size distribution of WC, particularly the fine grains.

【0005】[0005]

【課題を解決するための手段】そのため、ミクロ組織上
では、従来のE種のWC粒子は多角形状を示し、WCと
WC粒子の接触が多くなり、クラックの伝搬が起こり易
くなる。そのためWC粒子を多角形状に成長させずに、
混合・粉砕等の過程で粒子エッジを落とした形状を焼結
後も維持すればWC粒子とCoの境界を減少することが
できることが分かった。
Therefore, on the microstructure, the conventional E-type WC particles have a polygonal shape, the number of contacts between WC and WC particles increases, and crack propagation is likely to occur. Therefore, without growing the WC particles into a polygonal shape,
It was found that the boundary between WC particles and Co can be reduced by maintaining the shape with the particle edges dropped during the process of mixing and crushing even after sintering.

【0006】[0006]

【作用】すなわち、WC80〜95重量%と、残りCo
を主成分とする結合相と不可避不純物からなるWC基超
硬合金において、前記硬質相のWC粒度を研磨面上のミ
クロ組織より面積率にて粗粒WC(7μm以上)10〜
30%、中粒WC(4〜7μm)30〜60%、残りを
細粒WC(4μm以下)とし、かつカーボン量を2相域
のWC換算において、理論値以下とすることによりなさ
れたものであり、まず、WCに粗粒を使用しmfpを厚
くすると共に、カーボンを極力抑えることにより粒成長
を抑止し、クラック伝播を押さえる効果を持たせたもの
である。
Function: That is, 80 to 95% by weight of WC and the remaining Co
In a WC-based cemented carbide composed of a binder phase containing as a main component and unavoidable impurities, the WC grain size of the hard phase is a coarse grain WC (7 μm or more) in an area ratio from the microstructure on the polished surface.
30%, medium grain WC (4 to 7 μm) 30 to 60%, the rest fine grain WC (4 μm or less), and the carbon amount in the two-phase region in terms of WC converted to the theoretical value or less. First, coarse particles are used for WC to thicken mfp, and carbon is suppressed as much as possible to suppress grain growth and suppress crack propagation.

【0007】さらに、よりその効果を高めるため、結合
相中にNiおよび/またはCrを少量添加し、粒の球状
化を計り、硬質相中にTaCおよび/またはNbCを少
量添加することによりWC粒子の成長を抑制する効果を
持たせることができる。
Further, in order to further enhance the effect, a small amount of Ni and / or Cr is added to the binder phase, spheroidization of grains is measured, and a small amount of TaC and / or NbC is added to the hard phase to form WC particles. Can have the effect of suppressing the growth of.

【0008】以下、数値限定した理由に付いて説明す
る。粗粒WC7μmは、10%未満であるとクラック伝
播が生じやすく、30%を越えると硬さ(HRA)が低
下する為10〜30%とした。中粒WC4〜7μmが3
0%未満であるとクラック伝播が大きく、60%越える
とほぼ均粒な超硬となるため30〜60%ととした。ま
た細粒を残りとしたのは、研磨面で観察するため、その
切断の位置関係により生ずるものである。またカーボン
量をWC換算にて6.13%以下と規定したのは、2相
域中カーボン量が高くなると粒子の成長が激しくなり、
焼結過程での溶解析出により、粒子が成長しやすいが、
WC換算にて6.13%以下とするとこの傾向が抑えら
れ、多角形状の粒子形状がやや角が丸くなる。以下、実
施例に基づき、詳細に説明する。
The reason for limiting the numerical values will be described below. Coarse-grained WC 7 μm is less than 10%, crack propagation is likely to occur, and if it exceeds 30%, hardness (HRA) decreases, so the content was made 10 to 30%. Medium grain WC4-7μm is 3
If it is less than 0%, crack propagation is large, and if it exceeds 60%, almost uniform grain size is obtained, so that it is 30 to 60%. The fine particles are left because they are observed on the polished surface and are caused by the positional relationship of the cutting. Also, the amount of carbon is specified to be 6.13% or less in terms of WC, because the higher the amount of carbon in the two-phase region, the more the particles grow,
Particles grow easily due to dissolution and precipitation in the sintering process,
When it is 6.13% or less in terms of WC, this tendency is suppressed, and the polygonal particle shape has slightly rounded corners. Hereinafter, detailed description will be given based on examples.

【0009】[0009]

【実施例】組成としてbalWC−8.0〜12%Co
合金にて、WCの粒度を変化させる為市販の粗粒WC
(平均粒度8ミクロン)及び中粒WC(同5ミクロン)
の粉末を使用し、残り硬質相成分及び結合相構成粉末と
ともに配合し湿式混合粉砕を行った。しかる後、破壊靱
性を求めるため、試験片を成形し1350〜1500°
Cの温度で焼結し、研削加工を行い作成した。表面をラ
ップし鏡面に仕上げ、ミクロ組織観察を行い平均粒度
(長軸径+短軸径)/2をもって分類し、おのおの画像
処理装置にかけ面積を求めた。さらにHRA測定及び破
壊靱性の1方法としてビッカースインデンテーション法
(クラック平均長さ−ビッカーズ硬度計による圧痕の四
角に生じるクラック)にて測定した。その結果を表1に
併記する。
EXAMPLES BalWC-8.0 to 12% Co as a composition
Coarse-grained WC for alloys to change the WC grain size
(Average particle size 8 micron) and Medium particle WC (5 micron same)
Was mixed with the remaining hard phase component and binder phase constituent powder, and wet mixed and pulverized. After that, in order to obtain fracture toughness, a test piece is formed, and 1350 to 1500 °
It was made by sintering at a temperature of C and grinding. The surface was lapped and finished into a mirror surface, and the microstructure was observed and classified according to the average grain size (major axis diameter + minor axis diameter) / 2, and the area was applied to each image processing device. Furthermore, as one of the methods of HRA measurement and fracture toughness, the Vickers indentation method (crack average length-cracks generated in squares of indentation by Vickers hardness meter) was measured. The results are also shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】表1より粗粒WCを分散させることによ
り、クラック長さを減ずることができ、とくにカーボン
量を抑えた合金、Crを添加した合金ではこの傾向がは
っきりと現れている。
From Table 1, it is possible to reduce the crack length by dispersing coarse particles WC, and this tendency is clearly shown especially in alloys containing a small amount of carbon and alloys containing Cr.

【0012】[0012]

【発明の効果】以上のように、鉱山工具等に使用される
超硬合金において、破壊靱性値より種々検討した結果、
破壊のもととなるクラツクの伝搬性を粗粒の粒度を特定
し、かつWC粒子の形状を丸みのある多角形状とするこ
とにより破壊靱性を向上するとができた。
As described above, in the cemented carbide used for mining tools and the like, as a result of various studies from the fracture toughness value,
It was possible to improve the fracture toughness by specifying the grain size of the coarse grains as the crack propagation property that causes fracture and making the WC grains into a rounded polygonal shape.

【表2】 [Table 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鉱山工具等に使用されるWC80〜95
重量%と、残りCoを主成分とする結合相と不可避不純
物からなるWC基超硬合金において、前記硬質相のWC
粒度を研磨面上のミクロ組織より面積率にて粗粒WC
(7μm以上)10〜30%、中粒WC(4〜7μm)
30〜60%、残りを細粒WC(4μm以下)とし、か
つカーボン量を2相域のWC換算において、理論値以下
としたことを特徴とするWC基超硬合金。
1. WC80-95 used for mining tools, etc.
In a WC-based cemented carbide containing a binder phase containing Co as a main component and an unavoidable impurity, the WC of the hard phase
Grain size WC in the area ratio from the microstructure on the polished surface
(7 μm or more) 10 to 30%, medium grain WC (4 to 7 μm)
A WC-based cemented carbide, wherein 30 to 60%, the rest is fine-grained WC (4 μm or less), and the carbon amount is not more than a theoretical value in terms of WC conversion in the two-phase region.
【請求項2】 請求項1において、該結合相中のCoの
一部を、Ni及び/またはCrで0.1〜50%置き換
えたことを特徴とするWC基超硬合金。 【請求項2】 請求項1ないし2において、該硬質相中
のWCの一部を、TaC及び/またはNbCで0.1〜
3%置き換えたことを特徴とするWC基超硬合金。
2. The WC-based cemented carbide according to claim 1, wherein a part of Co in the binder phase is replaced by Ni and / or Cr by 0.1 to 50%. 2. The method according to claim 1, wherein a part of WC in the hard phase is TaC and / or NbC of 0.1 to 0.1.
WC-based cemented carbide characterized by 3% replacement.
JP14480992A 1992-05-11 1992-05-11 Wc-base sintered hard alloy Pending JPH05311313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14480992A JPH05311313A (en) 1992-05-11 1992-05-11 Wc-base sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14480992A JPH05311313A (en) 1992-05-11 1992-05-11 Wc-base sintered hard alloy

Publications (1)

Publication Number Publication Date
JPH05311313A true JPH05311313A (en) 1993-11-22

Family

ID=15370971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14480992A Pending JPH05311313A (en) 1992-05-11 1992-05-11 Wc-base sintered hard alloy

Country Status (1)

Country Link
JP (1) JPH05311313A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191109A (en) * 2001-12-25 2003-07-08 Kyocera Corp Cemented carbide and cutting tool using it
CN108048723A (en) * 2017-11-17 2018-05-18 北京有色金属研究总院 A kind of wide size distribution hard alloy and preparation method thereof
CN111187960A (en) * 2019-12-31 2020-05-22 株洲硬质合金集团有限公司 Double-crystal hard alloy and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191109A (en) * 2001-12-25 2003-07-08 Kyocera Corp Cemented carbide and cutting tool using it
CN108048723A (en) * 2017-11-17 2018-05-18 北京有色金属研究总院 A kind of wide size distribution hard alloy and preparation method thereof
CN111187960A (en) * 2019-12-31 2020-05-22 株洲硬质合金集团有限公司 Double-crystal hard alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH10219385A (en) Cutting tool made of composite cermet, excellent in wear resistance
JPS589137B2 (en) Cemented carbide for cutting
JP2000514874A (en) Cemented carbide body with improved wear resistance
JP2000290738A (en) Manufacture of hard carbide powder having low compacting pressure
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
US4828611A (en) High hardness sintered compact and process for producing the same
JPH05311313A (en) Wc-base sintered hard alloy
JP2017024165A (en) Wc-based hard metal cutting tool and manufacturing method thereof
EP0019335A1 (en) Ceramic cutting tip for machining tools and method of production thereof
JPH1161317A (en) Ball end mill made of cemented carbide, having ball nose end half excellent in wear resistance
JP6968341B2 (en) Cubic boron nitride-based sintered body with microstructural structure and cutting tools
JP4282298B2 (en) Super fine cemented carbide
JP2006111947A (en) Ultra-fine particle of cermet
JP2668962B2 (en) End mill made of tungsten carbide based cemented carbide with excellent fracture resistance
JP2663474B2 (en) Square cutting tip made of cemented carbide for cutting Ti alloy
JPS6256943B2 (en)
JP3428333B2 (en) Cemented carbide, its manufacturing method and carbide tool
JP2757469B2 (en) Tungsten carbide based cemented carbide end mill
JPH10324943A (en) Ultra-fine cemented carbide, and its manufacture
JPS6240340A (en) Diamond-type sintered material for cutting tool
JPH10212165A (en) Composite carbide powder and its production
JPH11138326A (en) Cemented carbide ball end mill having ball nose part whose half tip part indicates excellent antifriction property
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
RU2048569C1 (en) Method for production of sintered hard alloy
JPH0598369A (en) Production of sintered hard alloy