JPS63175768A - Method and instrument for immune analysis - Google Patents

Method and instrument for immune analysis

Info

Publication number
JPS63175768A
JPS63175768A JP782687A JP782687A JPS63175768A JP S63175768 A JPS63175768 A JP S63175768A JP 782687 A JP782687 A JP 782687A JP 782687 A JP782687 A JP 782687A JP S63175768 A JPS63175768 A JP S63175768A
Authority
JP
Japan
Prior art keywords
antigen
fluorescence
solid phase
flow cell
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP782687A
Other languages
Japanese (ja)
Inventor
Susumu Saito
進 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP782687A priority Critical patent/JPS63175768A/en
Publication of JPS63175768A publication Critical patent/JPS63175768A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit fluorescent immune analysis without making physical sepn. of a solid phase/liquid phase by passing a soln. after an antigen-antibody reaction to a flow cell by a pump, etc. CONSTITUTION:The soln. after the antigen-antibody reaction from a soln. tank 2 is fed into the flow cell 3 by the pump 1 and a beam of light is projected from a light source to the soln. after the antigen-antibody reaction passing the inside. The intensity of scattered light is changed by an immobilized antibody 6 when the beam of the light is projected to the soln. after the antigen- antibody reaction at the time when the soln. passes the inside of the flow cell 3. Then, the quantity of the fluorescent light in the immobilized antibody 6 changes according to the volumetric ratio of a fluorescent-labeled antigen and a non-labeled antigen 5 and, therefore, the intensity of said scattered light and the quantity of the fluorescent light can be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、免疫作用を利用して生体中に含まれる成分の
分析を行う免疫分析法及び免疫分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an immunoassay method and an immunoassay device for analyzing components contained in a living body by utilizing immune action.

〔従来の技術〕[Conventional technology]

第4図は免疫分析法の従来例を説明するための図であり
、21は蛍光標識抗原、22は固定化抗体、23はビー
ズ、24は非標識抗原、25は未知試料を示す。
FIG. 4 is a diagram for explaining a conventional example of an immunoassay method, in which 21 shows a fluorescently labeled antigen, 22 shows an immobilized antibody, 23 shows beads, 24 shows an unlabeled antigen, and 25 shows an unknown sample.

i光免疫分子(イムノアッセイ)において、未知の試料
中にある成分(抗原)を測定する場合には、第4図に示
すような方法が用いられる。
In photoimmunoassay (immunoassay), when measuring a component (antigen) in an unknown sample, a method as shown in FIG. 4 is used.

まず、a−1のようにビーズ23等の固定化した一定量
の固定化抗体22に対して一定量の蛍光標識抗原21を
反応させる。すると、a−2に示すように固相(ビーズ
)に蛍光標識抗原がラベルされる。これを遠心分離した
後固相を懸濁して蛍光量を測定する(a−1)。
First, as in a-1, a fixed amount of fluorescently labeled antigen 21 is reacted with a fixed amount of immobilized antibody 22 fixed on beads 23 or the like. Then, as shown in a-2, the solid phase (beads) is labeled with the fluorescently labeled antigen. After centrifuging this, the solid phase is suspended and the amount of fluorescence is measured (a-1).

次に、b−1に示すように蛍光1ffi抗原21と既知
量の非標識抗原24をta+の場合と同様に固定化抗体
22に反応させるゆすると、b−2に示すように標識/
非標識抗体量比に比例したラベルが固相に対して行、わ
れる、これを+alと同様に処理して蛍光量を測定する
Next, as shown in b-1, the fluorescent 1ffi antigen 21 and a known amount of unlabeled antigen 24 are reacted with the immobilized antibody 22 in the same manner as in the case of ta+, and then the labeled/unlabeled antigen 24 is reacted with the immobilized antibody 22 as shown in b-2.
Labeling is performed on the solid phase in proportion to the ratio of unlabeled antibody amounts, and this is treated in the same manner as +al to measure the amount of fluorescence.

続いてFC+では、非標識抗原24の量を増やし同様に
して蛍光量を測定する。
Subsequently, in FC+, the amount of unlabeled antigen 24 is increased and the amount of fluorescence is measured in the same manner.

以上、(al、(bl、(C)の測定により非標識抗原
量の増加に伴う固相の蛍光量の減少検量線が得られる。
As described above, by measuring (al, (bl, (C)), a calibration curve in which the amount of fluorescence of the solid phase decreases as the amount of unlabeled antigen increases is obtained.

そこで、今度は(dlに示すように未知試料25につい
て同様に蛍光量を測定することによって、検量線に基づ
いて未知試料25の中の抗原量が測定できる。
Therefore, by similarly measuring the amount of fluorescence of the unknown sample 25 as shown in (dl), the amount of antigen in the unknown sample 25 can be measured based on the calibration curve.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の免疫分析法では、固相(固定
化抗体)に抗原をバウンドした後、残ったフリーの抗体
を分離するために、遠心分離、上澄み除去、さらに固相
の懸濁等の工程が必要であって、自動化しようとした場
合、非常に手間がかかるという問題がある。また、この
ようなバウンド、フリーの抗原を物理的に分離して測定
する方法の他、分離せず測定する方法もいくつか考えら
れているが、それらも感度、応用性等で種々の問題があ
る。
However, in the above-mentioned conventional immunoassay method, in order to separate the remaining free antibody after bouncing the antigen on the solid phase (immobilized antibody), steps such as centrifugation, removal of the supernatant, and further suspension of the solid phase are necessary. is necessary, and if you try to automate it, there is a problem that it will take a lot of time and effort. In addition to these methods of physically separating and measuring bound and free antigens, several methods have been considered that measure without separating them, but these also have various problems in sensitivity, applicability, etc. be.

本発明は、上記の問題点を解決するものであって、物理
的に固相、液相の分離を行うことなく蛍光免疫分析が行
える免疫分析法及び免疫分析装置を提供することを目的
とするものである。
The present invention solves the above-mentioned problems, and aims to provide an immunoassay method and an immunoassay device that can perform fluorescent immunoassay without physically separating a solid phase and a liquid phase. It is something.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の免疫分析法は、抗原抗体反応後の固
相を含む溶液を流通せしめ、光ビームを照射して散乱光
と蛍光を測定することによって、固相及び液相における
それぞれの蛍光量データを得ることを特徴とし、その免
疫分析装置は、光ビームが照射されるフローセル、抗原
抗体反応後の固相を含む溶液を順次流通せしめる送液手
段、フローセルでの散乱光と蛍光を検出する検出手段、
及び散乱光強度と蛍光強度を解析して固相と液相でのそ
れぞれの蛍光量を得るデータ処理手段を備えたことを特
徴とする。
To this end, the immunoassay method of the present invention circulates a solution containing a solid phase after antigen-antibody reaction, irradiates it with a light beam, and measures the scattered light and fluorescence, thereby determining the amount of fluorescence in each of the solid phase and liquid phase. The immunoanalyzer is characterized by obtaining data, and includes a flow cell that is irradiated with a light beam, a liquid feeding means that sequentially flows a solution containing a solid phase after antigen-antibody reaction, and detection of scattered light and fluorescence in the flow cell. detection means,
and a data processing means for analyzing the scattered light intensity and the fluorescence intensity to obtain respective amounts of fluorescence in the solid phase and the liquid phase.

〔作用〕[Effect]

本発明の免疫分析法及び免疫分析装置では、抗原抗体反
応後の固相を含む溶液を流通せしめ、光ビームを照射す
ると、固相でその散乱光の強度が変化するので、固相と
液相とを認識できる。また蛍光量により蛍光標識抗原の
量を検出することができる。
In the immunoassay method and immunoassay device of the present invention, when a solution containing a solid phase after an antigen-antibody reaction is passed through and irradiated with a light beam, the intensity of the scattered light changes in the solid phase. I can recognize that. Furthermore, the amount of fluorescently labeled antigen can be detected based on the amount of fluorescence.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は本発明に係る免疫分析法及び免疫分析装置の1
実施例を説明するための図、第2図はフローセルにおけ
る散乱強度と蛍光強度の測定例を示す図である。
FIG. 1 shows one of the immunoassay method and immunoassay device according to the present invention.
FIG. 2, which is a diagram for explaining the embodiment, is a diagram showing an example of measurement of scattering intensity and fluorescence intensity in a flow cell.

第1図において、1はポンプ、2は溶液槽、3はフロー
セル、4は蛍光標識抗原、5は非標識抗原、6は固定化
抗体を示す。溶液槽2は、先に述べた第4図により抗原
抗体反応を行った後の溶液を収容したものであり、ポン
プ1は、この溶液槽2から抗原抗体反応後の溶液をフロ
ーセル3に送り込むものである。フローセル3では、ポ
ンプlにより溶液槽2から抗原抗体反応後の溶液が送り
込まれ、光源から内部を流通する抗原抗体反応後の溶液
に光のビームが照射される。このようにフローセル3内
を抗原抗体反応後の溶液が流通するとき、光のビームが
照射されると、固定化抗体6により散乱光の強度が変化
し、蛍光標識抗原4と非標識抗原5の容量比に応じて固
定化抗体6における蛍光量が変化する0本発明では、こ
の散乱光の強度及び蛍光量を測定するものである。
In FIG. 1, 1 is a pump, 2 is a solution tank, 3 is a flow cell, 4 is a fluorescently labeled antigen, 5 is an unlabeled antigen, and 6 is an immobilized antibody. The solution tank 2 contains the solution after performing the antigen-antibody reaction as shown in FIG. It is. In the flow cell 3, the solution after the antigen-antibody reaction is fed from the solution tank 2 by the pump 1, and a light beam is irradiated from the light source to the solution after the antigen-antibody reaction flowing inside. When the solution after the antigen-antibody reaction flows through the flow cell 3 in this way, when it is irradiated with a light beam, the intensity of the scattered light changes due to the immobilized antibody 6, and the fluorescently labeled antigen 4 and the unlabeled antigen 5 are separated. The amount of fluorescence in the immobilized antibody 6 changes depending on the capacity ratio. In the present invention, the intensity and amount of fluorescence of this scattered light are measured.

次にフローセル3における散乱光及び蛍光の測定を説明
する。今、光源から10μm程度の細いビームを照射し
ている状態において、散乱光の強度を測定すると、第2
図fa)に示すようにフローセル3内のビームのある部
分に数μm〜数十μmの固相が流れてきた場合には増加
し、液相のみの場合には弱い。また、蛍光を測定すると
、第2図Q)1に示すように蛍光標識抗原量に応じて変
化する。
Next, measurement of scattered light and fluorescence in the flow cell 3 will be explained. Now, when we measure the intensity of the scattered light when a narrow beam of about 10 μm is irradiated from the light source, we find that the second
As shown in Figure fa), it increases when a solid phase of several μm to several tens of μm flows into a certain part of the beam in the flow cell 3, and is weak when only a liquid phase flows. Furthermore, when fluorescence is measured, it changes depending on the amount of fluorescently labeled antigen, as shown in Q) 1 in Figure 2.

そこで、散乱強度にスレッシュホールドレベルを設け、
散乱強度がこのスレッシュホールドレベル以下のときの
蛍光量の総和、すなわちフリーの蛍光標識抗原の蛍光量
を測定すると、第4図(alないしくC1により求めた
検量線から非標識抗原量を知ることができる。
Therefore, we set a threshold level for the scattering intensity,
When the total amount of fluorescence when the scattering intensity is below this threshold level, that is, the amount of fluorescence of free fluorescently labeled antigen, is measured, the amount of unlabeled antigen can be determined from the calibration curve obtained from Figure 4 (al or C1). Can be done.

第3図は散乱光及び蛍光量の測定系の構成例を示す図で
ある。この第3図に示す測定系は、フローセル17の前
方にレンズ18を通して前方散乱光ディテクター19を
設けて散乱光の強度を測定し、横方にレンズ14、ハー
フミラ−12、フィルター11を通してディテクター1
3を設けて蛍光量を測定するように構成したものである
。しかも、この例は、異なる波長の蛍光を検出するため
に複数のディテクター13を用意したものである。
FIG. 3 is a diagram showing an example of the configuration of a measurement system for the amount of scattered light and fluorescence. In the measurement system shown in FIG. 3, a forward scattered light detector 19 is provided in front of a flow cell 17 through a lens 18 to measure the intensity of the scattered light, and a detector 19 is provided in front of a flow cell 17 through a lens 14, a half mirror 12, and a filter 11.
3 to measure the amount of fluorescence. Moreover, in this example, a plurality of detectors 13 are prepared to detect fluorescence of different wavelengths.

このようにすると、異なる波長の蛍光物質で標識した抗
原と、それらに対する抗体を同一、若しくは別々に固相
に固定化し、これら固定化抗体、標識抗原と同一の試料
を反応した後測定することにより、1つの試料で複数の
項目について測定することができる。
In this way, antigens labeled with fluorescent substances of different wavelengths and antibodies against them are immobilized on the same solid phase or separately, and the immobilized antibodies and the labeled antigen are reacted with the same sample and then measured. , multiple items can be measured with one sample.

なお、本発明は、種々の変形が可能であり、上記の実施
例に限定されるものではない。
Note that the present invention can be modified in various ways and is not limited to the above embodiments.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、固定
化抗体若しくは抗原を用いる固相化競合法の蛍光免疫分
析において、抗原−抗体反応後にその溶液をポンプ等で
フローセルに流通せしめるので、散乱光を測定して固相
を検出することができ、固相若しくは液相での蛍光量を
測定することにより非標識抗体量を知ることができる。
As is clear from the above description, according to the present invention, in fluorescence immunoassay using immobilized antibodies or antigens using the immobilized competitive method, after the antigen-antibody reaction, the solution is caused to flow through the flow cell using a pump or the like. The solid phase can be detected by measuring scattered light, and the amount of unlabeled antibody can be determined by measuring the amount of fluorescence in the solid phase or liquid phase.

従って、物理的に固相/液相の分離を行うことなく蛍光
免疫分析が行える。
Therefore, fluorescence immunoanalysis can be performed without physically separating solid phase/liquid phase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る免疫分析法及び免疫分析装置の1
実施例を説明するための図、第2図はフローセルにおけ
る散乱強度と蛍光強度の測定例を示す図、第3図は散乱
光及び蛍光量の測定系の構成例を示す図、第4図は免疫
分析法の従来例を説明するための図である。 l・・・ポンプ、2・・・溶液槽、3・・・フローセル
、4・・・蛍光標識抗原、5・・・非標識抗原、6・・
・固定化抗体。 出 願 人  日本電子株式会社 代理人 弁理士 阿 部 龍 吉(外2名)第1図 P 第2図(cL) 11川C 第2図(1)) 第3図 へり 2′3 (す (り 第4図
FIG. 1 shows one of the immunoassay method and immunoassay device according to the present invention.
Figure 2 is a diagram illustrating an example of measuring scattered light and fluorescence intensity in a flow cell; Figure 3 is a diagram illustrating a configuration example of a measurement system for scattered light and fluorescence amount; Figure 4 is a diagram for explaining an example. FIG. 2 is a diagram for explaining a conventional example of an immunoassay method. l...pump, 2...solution tank, 3...flow cell, 4...fluorescent labeled antigen, 5...unlabeled antigen, 6...
・Immobilized antibody. Applicant JEOL Co., Ltd. Agent Patent Attorney Ryukichi Abe (2 others) Figure 1 P Figure 2 (cL) 11 River C Figure 2 (1)) Figure 3 Edge 2'3 (S( Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)抗原抗体反応後の固相を含む溶液を流通せしめ、
光ビームを照射して散乱光と蛍光を測定することによっ
て、固相及び液相におけるそれぞれの蛍光量データを得
ることを特徴とする免疫分析法。
(1) Flowing a solution containing a solid phase after antigen-antibody reaction,
An immunoassay method characterized by obtaining data on the amount of fluorescence in a solid phase and a liquid phase by irradiating a light beam and measuring scattered light and fluorescence.
(2)光ビームが照射されるフローセル、抗原抗体反応
後の固相を含む溶液を順次流通せしめる送液手段、フロ
ーセルでの散乱光と蛍光の強度を検出する検出手段、及
び散乱光強度と蛍光強度を解析して固相と液相でのそれ
ぞれの蛍光量を得るデータ処理手段を備えたことを特徴
とする免疫分析装置。
(2) A flow cell that is irradiated with a light beam, a liquid feeding means that sequentially flows the solution containing the solid phase after the antigen-antibody reaction, a detection means that detects the intensity of scattered light and fluorescence in the flow cell, and the scattered light intensity and fluorescence An immunoassay device characterized in that it is equipped with a data processing means for analyzing intensity and obtaining respective amounts of fluorescence in a solid phase and a liquid phase.
JP782687A 1987-01-14 1987-01-14 Method and instrument for immune analysis Pending JPS63175768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP782687A JPS63175768A (en) 1987-01-14 1987-01-14 Method and instrument for immune analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP782687A JPS63175768A (en) 1987-01-14 1987-01-14 Method and instrument for immune analysis

Publications (1)

Publication Number Publication Date
JPS63175768A true JPS63175768A (en) 1988-07-20

Family

ID=11676398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP782687A Pending JPS63175768A (en) 1987-01-14 1987-01-14 Method and instrument for immune analysis

Country Status (1)

Country Link
JP (1) JPS63175768A (en)

Similar Documents

Publication Publication Date Title
US4421860A (en) Homogeneous fluoroimmunoassay involving autocorrelation processing of optically sensed signals
TW297094B (en)
JP3534756B2 (en) Test system
US4476231A (en) Method of analyzing the distribution of a reagent between particles and liquid in a suspension
US11709161B2 (en) Assays for detecting analytes in samples and kits and compositions related thereto
US4407964A (en) Homogeneous fluoroimmunoassay involving sensing radiation for forward and back directions
JPS598779B2 (en) Antibodies, Antigens or Antibodies: Methods for Analyzing Antigen Complexes
JP4274944B2 (en) Particle-based ligand assay with extended dynamic range
JPS6183938A (en) Fluctuation analysis method of high-degree particle detecting capability
Yu et al. Multiplex competitive microbead-based flow cytometric immunoassay using quantum dot fluorescent labels
JP2683172B2 (en) Sample measuring method and sample measuring device
JP2005510706A5 (en)
Then et al. Quantitative detection of weak D antigen variants in blood typing using SPR
US9360433B1 (en) Detection of agglutination by optical density measurement
CN109416357B (en) Devices, systems, and methods for detecting an analyte in a bodily fluid sample comprising a plurality of cells
JPS63175768A (en) Method and instrument for immune analysis
JP3400430B2 (en) Biospecific homogeneous assays using solid-phase, two-photon excitation and confocal fluorescence detection
JPS6281567A (en) Quantification method using particle agglutination reaction
JP5017596B2 (en) Aggregation inspection method
JP2009031097A (en) Method of quantifying/detecting measuring objective substance using fine particles and measuring device used for the method
JP2001183377A (en) Immunological inspection method for many items
JPS6281566A (en) Quantification method by measurement of fluorescent intensity of fine particle
Ho et al. [42] Quantification of immune complexes by nephelometry
JPS61290362A (en) Measurement of fine particle size
JPS61272637A (en) Measuring instrument for polarized fluorescent light